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Anomauia. Y cmammi 0ocnioxcero cyyachi monimopuneogi inmenekmyanvui cucmemu (MIC), axi 30ammi
NPOSHO3Y8AMU HACAIOKU NPULHAMUX KepYIoUUX piuieHb cucmem niompumkuy nputinamms piwens (CIIIIP)
3a60KU MOOETOBAHHIO XAPAKMEPUCIMUK 00 'ekmig mMoHimopuney. IIpodemoncmposano nedoniku icHyro-
yux peanizayiti MIC npu pobomi 6 ymogax kpuz08020 mouimopunzy. Tax AK Kpu3o8uti MOHImMOpUuHe Ha-
Knaoae psao obmedsicenv Ha wsuoxkicmos poobomu CIIIP ma eenuxy 8ipozioHicms 8uxody HagueHux mooenell
MIC i3 cmporo, mo suxopucmanns icHyrouux peanizayii MIC € npobremamuunum. J{ocaioxnceno npuyunu
ICHYBAHHA OAHUX HEOONIKI6 Ma ANOPUMMU, 3 AKUMU Ye N0 a3ano. JJocaiodceno nepegazu ma HedoiKu
icHytouux memoois popmyseants mixcpiguegux 36 ’a3xig y MIC. Ocobnugy ysaey 36epHeHo Ha Memoo Kia-
cugpixayii’ macueie exionux oanux (MB/]) 3a ix xapaxmepucmuxamu 00 GIONOBIOHO20 KAACY ANCOPUMMIE
cunmesy mooenei (ACM). 3anpononosano 600CKOHAIUMU GIOOMULL MeMOO KAACUGixayii Macusié xiOHUux
OaHUX 34 OONOMO0K BUKOPUCHAHHS VHIKAILHUX A0ANMUBHUX KAACUDIKAMOPi8 05l KOHCHO20 i3 KIACi8
aneopummie cunmesy mooenell i3 CHUCKy peanizosanux y cucmemi. lIposedeno mecmyeanus 3anponoHo-
BAHUX BOOCKOHANEHD. [ NpogedenHs Mmecmy8ants 3anpoOnoHO8ari 600CKOHANEHHS OYI0 Peaniz08aHo y
NPOSPAMHOMY KOMNLEKCl, noby008aHoMy HA Kageopi iHMeIeKMydalbHUX CUCmem NPULHAMMSA pilleHs
Yepkracvrkoeo HayioHanvHozo yHigepcumemy imeni boeoana Xmenvrnuysvkozo. OO’ ekmom MoHimopuuzey 014
mecmysanus Oy10 00PaHo pe3yabmamu CHOCMEPedtCeHb 3d 3ax8oproganicmio Hacenennss Yepkacvkoi 00-
aacmi enpoooeac 2000-2016 poxie. [lns oyinku pobomu Memoody eUKOPUCMOBYSANUCL NOKAZHUKU SKOCHI,
OMpUMAHi NpU HAGYAHHI MoOenell, ma WEUOKICMb HABYAHHA. 34 pe3yibmamamiu mecmy8anHs 80dN0Cs
docsiemu 30inbuenHs WeUOKoCmi Hagyanus cucmemu 8 3—4 pasu npu He3HAYHUX 6Mpamax 8 SIKOCMi
OMPUMAHUX KIHYesUX MoOeell, Wo He nepesuuyroms 4% noxuoxu Mooemo8anHs.

Knrouoei cnosa: monimopune Kpusu, MOHIMOPUH20BE IHMENEKMYANbHI CUCTeMY, CUHme3 Mooeiel, Kia-
cupixayis, bacamopisHese MOOenO8AHHS, CKIHYEHHUL A8MOMAm, WEUOKICMb HABYAHHA MoOOeiel, Hac
PECMPYKmMypu3ayii cucmemu, NOMUIKA MOOENI08AHHS.

Annomayua. B cmamove ucciedosamvl co8peMeHHble MOHUNMOPUHEO8ble UHMELIEKMYAlbHble CUCHEeMbl
(MHUC), xomopvie cnocoOHbl NPOSHO3UPOBAMb NOCIEOCEUS NPUHUMACMBIX YNPAGTAIOWUX PeuleHUll CU-
cmem noddepaicku npunsimust peuwenutl (CIIIP) bnazooaps MOOeruposanuro Xapaxmepucmuk 00vexmos
monumopurea. Ilpodemoncmpuposanvl neoocmamku cywecmayowux pearusayuti MUC npu pabome &
VCR0BUAX KPUBUCHO20 MOHUMOpUHed. Tak Kak KpusuCHulll MOHUMOPUHE HAKAAObI8Aem P50 OSpAHUYEHUL
Ha cxopocmv pabomul CIIIIP u bonvuiyio seposmuocmy 6vixo0a ooyuennwvix modenett MUC uz cmpos, mo
ucnonvzosanue cywecmeyrowux peanuzayutt MUC sensemcs npobiemamuynvim. Mcciedoeanvl npudutsl
Cyuecmeo8anuss OAHHbIX HeOOCMAMmKO8 U al2OpUmmbl, ¢ KOMopuiMu 3mo cesazano. Hccnedosanvl npe-
uMynecmea 1 HeOOCMamKy CyWecmsayiouux Memooos Gopmuposanus mexcyposnesvix ceszei ¢ MUC.
Ocoboe énumanue oOpauieHo Ha Memoo KIaCCUPUKAyuUu Maccusos 6xoonvix oannvix (MB/]) no ux xa-
PaAKmepucmukam K COOmeemcmsyrmemy Kiaccy areopummos cunmesa mooeneti (ACM). Ilpeonoceno
VCOBEPUIEHCTNBOBAMb U3BECMHbIIL Memo0 Knaccupurxayuu MBJ] nocpedcmeom ucnonb306anus yHuKaib-
HbIX AOANMUGHBLIX KAACCUPUKAmMopos 0si Kaxcooeo uz knaccoe ACM. s nposedenus mecmupoeanus
NPeOloJCEeHHble YCOBEPULEHCBOBARUS ObLIU PEanu308aHbl 8 NPOSPAMMHOM KOMNLEKCe, NOCMPOCHHOM HA
Kageope uHmMeIeKmyaibHblX Cucmem npuHamus pewenuil Yepracckoeo HAYUOHAILHO20 YHUBEPCUMEMd
umenu boedana Xmenvhuyxozo. Obvekmom MOHUMOpUH2a Ol MeCMUPO8aHusi ObLIU 8blOPAHbL Pe3yilb-
mamul HabI00eHull 3a 3a601eeaemocmyio Hacerenus Yepkacckoi oonacmu 6 meuenue 2000—2016 20008.
s oyenxu pabomer Memooa UCHOIb308ANUCH NOKA3AMENU KAYeCMEAd HOMYYEHHbIX NPU 00YUeHUU Mooe-
qei u ckopocms ooyuenus. Ilo pesynromamam mecmuposanus y0anocb 00CMuib V8eaUdeHus cKopoCcmu
00yuenus cucmemvl 8 3—4 paza npu He3HAYUMENLHBIX NOMEPSIX 8 KAYECMEe NOLYUEHHbIX KOHEYHbIX MOOe-
nell, He npesvluarowux 4% noepeutHocmu MOOeaupoB8aHus.
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Knrouegvle cnosa: kpusucHwlli MOHUMOPUH2, MOHUMOPUH2OBblE UHMELIEKMYalbHble CUCTNEeMbl, CUHIME3
MoOenel, Klaccuguxayus, MHO20YPOBHe80e MOO0eIUPO8anUe, KOHEUHblll a8moMam, cKOpoCcmys 00yyYeHUs.
MoOenel, 8peMsa peCmpyKmypuzayuu Cucmemyl, OUUOKA MOOETUPOBAHUSL.

Abstract. The article investigates modern intellectual monitoring systems (IMS), which are able to predict
the consequences of the adopted control decisions of decision support systems (DSS), thanks to the model-
ing of the characteristics of monitored objects. The drawbacks of existing implementations of IMS show
when working in crisis monitoring. Since crisis monitoring imposes a number of restrictions on the speed
of DSS and the high probability of failure of the trained IMS models, the use of existing implementations
of IMS is problematic. The reasons of the existence of these shortcomings, and the algorithms with which
it is connected lies in existing methodology. The paper investigates advantages and disadvantages of exist-
ing methods for the formation of inter-level relations in the IMS. A particular attention is paid to the
method of classification of input data arrays (IDA) according to their characteristics, to the correspond-
ing class of model synthesis algorithm (MSA). This paper proposes to improve the well-known method of
classifying MIA by using unique adaptive classifiers for each of the MSA class. For testing, the proposed
improvements implemented in a software package built at the department of intelligent decision-making
systems at Bohdan Khmelnytsky Cherkasy National University. The monitored object for testing was se-
lected from the results of observations of the disease incidence of the population of Cherkasy region dur-
ing the years 2000-2016. To evaluate the performance of the method, the quality indicators obtained from
the learning models and the learning speed were used. According to the test results, it was possible to
achieve an increase in the learning rate of the system by 3—4 times, with insignificant losses in the quality
of the final models obtained, not exceeding 4% of the modeling error.

Keywords: crisis monitoring, intellectual monitoring systems, model synthesis, classification, multilevel
modeling, finite state machine, model learning speed, system restructuring time, modeling error.
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1. Description of a task

1.1. Introduction

With developing of modern technologies of multilevel modeling [1] it became easier and more
effective to build the intellectual monitoring systems (IMS). The main objective of these systems
is to provide information for decision-making according to parameters given by client. However,
ISM not just gather information they can also simulate reactions to a made control decision by
modeling the parameters of monitored objects.

Systems like this is popular in socioecology, medicine, economics, cybernetics and other
spheres of study where there are many objects that need to be monitored.

Example of such tasks is crisis monitoring, which is a monitoring of objects in emergency
situations. Decision making in this situations demands fast and adequate processing of gathered
data with a bigger adaptivity to quick changes to characteristics and structure of input data. Part
of objects characteristics can lose their informativity that will demand of finding additional char-
acteristics instead. It increases the chances of errors while the decision making system uses the
premade models. Such broken models will then be resynthesized witch will increase the time and
cost of using such monitoring systems. In crisis monitoring tasks, such cost is inexcusable.

Therefore, the main task of this article will be to ensure the reduction of time of re-
learning the system while maintaining the quality parameters of the models.

1.2. Analysis of monitoring system

Multilevel monitoring systems built as hierarchical combination if multiparameter models [2].
Models like this synthesized by using special inductive algorithms, neural networks, ge-
netic algorithms and others.
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In this technology selection of algo-
rithms for model synthesis (AMS) imple-
mented by testing the models synthesized
by all of them, and choosing the best model.
On Fig. 1 presented a subsystem for infor-
mation processing in automated hierarchical
system for multilevel socio-ecological mon-
itoring.

Models on every level of hierarchy
solve their own local tasks of information
processing and combination of all levels
solves the global task of a system. Such
structures can combine many models for
example one hundred and more.

In process of monitoring in emer-
gency situations characteristics of input
data arrays (IDA) are constantly changing.
This means that there is a high chance that

Figure 1 — Hierarchical structure of subsystem for one or multiple pre made models could start
information conversion give inadequate results. To repair such
«damaged» models we need to replace them

and all models related to them with newly synthesized models.

=
Nt K

2. Suggested ways to solve the problem

Obviously, characteristics of IDA are different for different objects. This means that we can
choose different AMS individually for each IDA [3]. This way, adaptation of model synthesis to
changes in characteristics of IDA is ensured. Today in existing IMS synthesis of models made by
sequential testing of algorithms implemented in a system with subsequent choice of the best.

Using this we formulated hypothesis that reducing of time for synthesis of models can be
achieved by adaptation of model synthesizer. It proposed to adapt synthesis by solving the prob-
lem of classification of IDA. At the same time, the main task becomes building a deciding rule
with which we determine affiliation of new IDA to a class of IDA’s which best AMS already
found experimentally.

Thus, we have the set Q of IDA classes, whose power is determined by the volume of the

constructed AMS:
|Q=y+1, 1)

where y —number of AMS constructed in system. +1 for a class “impossible to classify”.
Characteristics of IDA are represented by the set X . Elements of set X is vectors
X, € X, structure of which contains attributes of classification characteristics of the IDA [3]:

><i :{Xil’XiZ’ ""Xim}’ i:1,_n, (2

where m — numbers of IDA characteristics, n — numbers of IDA used in building classifier and
equal to the power of set X.

To provide the models with specified parameters we tested and found the best AMS for
each IDA. This will let us find out which elements of X associated with elements of Q, meaning
we found the answer to:

a:X —>Q, 3
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experimentally.
We need to find analytical expression for a deciding rule a (3) which will provide maxi-
mal numbers rightly classified elements of X and provide effective work of model synthesizer.
Synthesizer can be described in a form of deterministic finite automaton:

M=(\V,Q, q, F,d), (1)

where V ={0,1, ..., k} — input alphabet, k — numbers of AMS known to system, Q — set of au-
tomaton states, q, — starting state of automaton, F — set of finishing automaton states F — Q, &
— switch function.

5:Qx(Vu{e}) »Q. ()

Therefore, IDA classifier generates a signal that brings the information about what class
of AMS each IDA belongs to, which
will tell us what ASM need to be used
RS rER TR e | RCEASSIEER to synthesize best models. Model syn-
1 thesizer receives the signal from clas-
Maisl sifier automaton switches into state

that represents the appropriate AMS.
L _ s Model In this state AMS uses IDA and fol-
. lows the steps of synthesizing, testing
_— and the usage of model. The whole
algorithm presented schematically in
L —»| Model Fig. 2.

Nem

IDA Nel

IDA Ne2

SYNTHESIZER

IDANem

Thus was formed a hypothesis
t that to build the deciding rule we need
S to use algorithms for inductive model-
ing which was already implemented
Figure 2 — Functional scheme for process of IDA inside of model synthesizer. On input,
classification and model synthesis we need to send an array of character-

istics vectors of IDA, which is sug-

gested in [3].

The algorithm represented in Fig. 2 and all required functions was implemented as a part
of IMS created on department of intellectual systems for decision making in Bohdan Khmelny-
tsky Cherkasy National University. After that, the IMS was used to confirm the hypothesis.

To create a solving rule we used multi GMDH algorithms [2]. To synthase models, we
used the Results of monitoring morbidity in Cherkassy region during 2000-2016 years [1]. We
write a special application that implemented all algorithms and options needed. AMS’s in this
application mostly constructed based on GMDH algorithms with different options. For criteria
with which we choose, best models and best algorithms that made the model can be used standard
deviation and absolute deviation. In addition, to make a quality of classification models better we
used the method of adaptive level multiplying for each of them [8].

In Fig. 3, we can see comparison of time spent on finding and synthesizing models with
the best AMS between “test all and compare the results” method that is used as standard and our
classification algorithm. Comparison shows us that speed of synthesis is 4 times bigger at max
and 70% bigger in average.

To test the quality parameters of synthesized models between algorithms we used two
cases. First, one (see Tabl. 1) is when models modeled separately and use their own IDA. Second,
one (see Tabl. 1) is when models grouped in a strict hierarchy where models of higher levels use
data provided by models of lesser levels in their IDA. In both cases, modeling error of classifica-
tion algorithm did not differ, from standard algorithm more than in 5% on average.
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Figure 3 — Speed of synthesis in comparing with classifier

Table 1 — Comparison of the modeling errors

Modelling error %
Diseases of without hierarchy with hierarchy
standard | classification | standard | classification

Breathing 12,4 12,4 12,4 12,4
Blood 8,22 8,22 8,22 8,22
Stomach 111 111 13,6 13,6
Endocrine system 13,6 13,6 37,1 38,4
Nervous system 35 37,1 26 26
Bronchitis 26 26 10,2 10,2
Asthma 10,2 10,2 16,8 16,1
Gastritis 16,8 16,8 11,3 11,3
Diabetes 11,3 11,3 26,6 24,3
Iron-deficiency anemia 26,6 26,6 27,3 27,3
Allergy 180 215 30,5 22,6
Pneumonia 27,3 27,3 40,1 40,1
Genitourinary system 30,5 30,5 19,9 19,9
Glomerulonephritis 36,8 40,1 7,79 7,78
Genetic anomaly 19,9 19,9 3,32 3,2

3. Conclusions and suggestions

Growth of modeling error is “payment” for reducing the time of model synthesis. Given the fact
that the structure of the information system of multilevel data transformation contains 100 models
and more, it is possible to achieve a significant reduction in the time structure by adapting to
changes in the properties of IDA. Results like this give us hope and possibility to effectively use
IMS with multilevel information processing technologies to provide data for a decision-making in
situations of crisis monitoring.

In this method the reduction of time for synthesis of models reached by replacing the full
testing of AMS for a deciding rule that can classify IDA to a best AMS for it.

REFERENCES

1. Tony6 C.B. BararopiBHeBe MOJENIOBaHHS B TEXHOJIOTISIX MOHITOPMHIY OTOYYIOHYOTO CEPEeJOBHUIIA.
Yepkacu: YHY, 2007. 218 c.

ISSN 1028-9763. Marematnuni MamuHu i cuctemu, 2019, Ne 3 133



2. Baxuenko A.I'. IHIyKTHBHBIN METOJl CAaMOOPTaHU3aIlluu MOJIeTeH cliokHbIX cucteM. Kuer: Haykosa
nymka, 1981. 296 c.

3. Konoc T1.0. BusHaueHHsI MHOXHMHN 1H)OPMATHBHUX TapaMmeTpiB TAONHUI MEPBUHHOTO OIMUCY 00’ €KTa
MojientoBaHHs. Bichuk Yeprkacvkoeo ynisepcumemy. Yepkacu: Bun. UHY, 2009. Bum. 173. C. 121-128.

4. Tmypman B.E. Teopus BeposiTHOCTEH W MaTeMaTHYeCKas CTAaTHCTHKA: y4eO. mocod. s By3oB. 10-¢
n3a. Mocksa: Briciias mxkona, 2004. 479 c.

5. baxpyuna B.E. MeTtonpl oLieHUBaHUS XapaKTEPUCTUK HETMHEWHBIX CTATUCTUYECKUX cBsi3eil. Cucmem-
Hvle mexnonocuu. 2011. Ne 2 (73). C. 9-14.

6. 'antmaxep @.P. Teopust marpui. M.: Hayxka, 1988, 548 c.

7. Xape6or K.C. KoMIsloTepHBIE METOIBI PEIICHUS 33a1add HAaUMEHBIITNX KBaIpaToB M MPOOIEMBI CO0-
CTBCHHBIX 3HaueHui. Bnagukaska3: U3g-sBo COI'Y, 1995, 76 c.

8. I'omy6 C.B., Hemuenko B.}O. AnantuBHe (hopMyBaHHS TyONIOIOYHX PIBHIB B CTPYKTYPI i€papXidHUX
cUCTeM 0araTOpiBHEBOT'O COILIOTITIEHIYHOTO MOHITOPHHTY. [HOYKIMUBHE MOOEN08AHHA CKIAOHUX CUCTNEM:
30. Hayk. panb / pen. B.C. Crenamko. Kuis: Mi>kHap. HayK.- HaBY. IEHTp iHPOPM. TEXHOJIOTIH Ta CHCTEM
HAH ta MOH VYkpainu, 2011. Bum. 1. C. 41-48.

Cmamms naoivuiia 0o peoaxyii 08.07.2019

134 ISSN 1028-9763. MaTemaTuuHi MamuHy i cuctemu, 2019, Ne 3



