

ОПОВІДІ національної академії наук україни

ЕНЕРГЕТИКА

УДК 621.3.(0758)

© 2007

Член-корреспондент НАН Украины А.Е. Божко

Об условных сопротивлениях электроцепей при полигармонических входных сигналах

The formulas for the conditional resistances of circuits with RL, RC, RLC, R(LIIC) elements under polyharmonic input signals are obtained.

В работе [1] представлено явление автоматической реструктуризации электроцепей с реактивными элементами при входных полигармонических напряжениях вида

$$U = \sum_{k=1}^{n} U_{ak} \cos \omega_k t,$$

где U_{ak} — амплитуда гармоники; ω_k — круговая частота k-й гармоники ($\omega_k = 2\pi f_k$, f_k — частота); t — время. Однако досконального вывода формул преобразованных сопротивлений в цепях с реактивными элементами не было. В связи с этим возникла задача четко знать математические выражения условно возникших сопротивлений для цепей RL, RC, RLC и R(LIIC), где R — резистор; L — индуктивность; C — электрическая емкость; II — знак параллельного соединения элементов.

На основании полученных формул можно сделать выводы о характере условного соединения реактивных элементов L и C при полигармонических входных сигналах. Формулы сопротивлений будем выводить последовательно для каждой цепи.

Итак, цепь RL (рис. 1), где i_{Σ} — ток. Уравнение цепи

$$U = \sum_{k=1}^{n} U_{ak} \cos \omega_k t = Ri_{\Sigma} + L \frac{di_{\Sigma}}{dt}.$$
(1)

Так как рассматриваемая цепь линейная, то применим принцип суперпозиции (этот принцип применим ко всем схемам) и

$$i_{\Sigma} = \sum_{k=1}^{n} i_{k} = \sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t - \varphi_{k})}{|z_{Lk}|},$$

$$\varphi_{k} = \operatorname{arctg} \frac{\omega_{k} L}{R},$$
(2)

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №2

где i_k — ток в цепи, возникший от действия k-й гармоники входного напряжения; i_{Σ} — суммарный ток от действия всех гармоник входного напряжения U; $|z_{Lk}|$ — модуль полного сопротивления цепи для тока i_k ; φ_k — угол сдвига между напряжением U_k и током i_k , $k = \overline{1, n}$.

На основании (1), (2)

$$|z_{Lk}| = \sqrt{R^2 + (\omega_k L)^2}$$

И

$$i_{\Sigma} = \frac{\sum_{k=1}^{n} U_{ak} \cos \omega_k t}{z_{L\Sigma}} = \sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_k t - \varphi_k)}{|z_{Lk}|},\tag{3}$$

где $z_{L\Sigma}$ — полное сопротивление цепи. U .

В (3) введем преобразование $\frac{U_{a1}}{U_{ak}} = \alpha_k$. Тогда (3) запишем в виде

$$i_{\Sigma} = \frac{U_{a1}}{z_{L\Sigma}} \sum_{k=1}^{n} \frac{1}{\alpha_k} \cos \omega_k t = U_{a1} \sum_{k=1}^{n} \frac{\cos(\omega_k t - \varphi_k)}{\alpha_k |z_{Lk}|},$$

откуда

$$z_{L\Sigma} = \frac{\sum_{k=1}^{n} \frac{\cos \omega_k t}{\alpha_k}}{\sum_{k=1}^{n} \frac{\cos(\omega_k t - \varphi_k)}{\alpha_k |z_{Lk}|}}.$$
(4)

Формула (4) отображает сопротивление схемы с условным параллельным соединением сопротивлений z_{Lk} . Если не вводить приведение (3) к напряжению первой гармоники через коэффициенты α_k , $k = \overline{1, n}$, то, по нашему мнению, при разных U_{ak} , $k = \overline{1, n}$, также в реструктуризированной схеме соединение сопротивлений z_{Lk} будет условно параллельным и имеет вид

$$z_{L\Sigma} = \frac{\sum_{k=1}^{n} U_{ak} \cos \omega_k t}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_k t - \varphi_k)}{|z_{Lk}|}}.$$
(5)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 2

При t = 0 из (4) и (5)

$$z_{L\Sigma} = \frac{\sum_{k=1}^{n} \frac{1}{\alpha_k}}{\sum_{k=1}^{n} \frac{\cos \varphi_k}{\alpha_k |z_{Lk}|}}; \qquad z_{L\Sigma} = \frac{\sum_{k=1}^{n} U_{ak}}{\sum_{k=1}^{n} \frac{U_{ak} \cos \varphi_k}{|z_{Lk}|}}.$$

При равных амплитудах $U_{ak}=U_a,\,k=\overline{1,n},$ при t=0

$$z_{L\Sigma} = \frac{n}{\sum_{k=1}^{n} \frac{\cos \varphi_k}{|z_{Lk}|}}.$$

Эта формула отображает *п* последовательно соединенных параллельных цепей

$$\frac{\cos\varphi_1}{|z_{L1}|} ||\frac{\cos\varphi_2}{|z_{L2}|}||\cdots||\frac{\cos\varphi_n}{|z_{Ln}|}.$$

Перейдем к рассмотрению цепи с RC элементами (см. рис. 2). Уравнение цепи с RC следующее:

$$Ri_{\Sigma} + \frac{1}{C} \int_{0}^{t} i_{\Sigma} dt = \sum_{k=1}^{n} U_{ak} \cos \omega_k t.$$
(6)

Ток

$$i_{\Sigma} = \sum_{k=1}^{n} i_{k} = \frac{\sum_{k=1}^{n} U_{ak} \cos \omega_{k} t}{z_{C\Sigma}} = \sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t + \varphi_{k})}{|z_{Ck}|},$$

$$\varphi_{k} = \operatorname{arctg} \frac{1}{\omega_{k} RC}, \qquad \varphi_{k} - \text{угол между } U_{k} \text{ и } i_{k},$$
(7)

где $z_{C\Sigma}$ — условно полное сопротивление для тока i_{Σ} ; $|z_{Ck}|$ — модуль сопротивления цепи для тока i_k , $k = \overline{1, n}$.

На основании (6) с учетом принципа суперпозиции имеем

$$Ri_k + \frac{1}{C} \int_0^t i_k \, dt = U_{ak} \cos \omega_k t,$$

из которого

$$|z_{Ck}| = \sqrt{R^2 + \left(\frac{1}{\omega_k C}\right)^2}.$$

Так же, как и для схемы с RL, введем обозначения $\frac{U_{a1}}{U_{ak}} = \alpha_k$. Тогда (7) запишется в виде

$$i_{\Sigma} = \frac{U_{a1}}{z_{C\Sigma}} \sum_{k=1}^{n} \frac{1}{\alpha_k} \cos \omega_k t = U_{a1} \sum_{k=1}^{n} \frac{\cos(\omega_k t + \varphi_k)}{\alpha_k |z_{Ck}|},$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №2

Рис. 3 откуда

$$z_{C\Sigma} = \frac{\sum_{k=1}^{n} \frac{\cos \omega_k t}{\alpha_k}}{\sum_{k=1}^{n} \frac{\cos(\omega_k t + \varphi_k)}{\alpha_k |z_{Ck}|}}.$$
(8)

Как видно из (8), эта формула отображает условно параллельное соединение сопротивлений $z_{Ck}, k = \overline{1, n}$. Если не вводить α_k , то

$$z_{C\Sigma} = \frac{\sum_{k=1}^{n} U_{ak} \cos \omega_k t}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_k t + \varphi_k)}{|z_{Ck}|}}.$$
(9)

Формулы (4) и (8), (5) и (9) соответственно по виду идентичны. В них разные сопротивления $z_{L\Sigma}$, z_{Lk} и $z_{C\Sigma}$, z_{Ck} , соответствующие каждому реактивному элементу L или C. При t = 0 (5) и (9) приобретают вид

$$z_{C\Sigma} = \frac{\sum_{k=1}^{n} \frac{1}{\alpha_k}}{\sum_{k=1}^{n} \frac{\cos \varphi_k}{\alpha_k |z_{Ck}|}}; \qquad z_{C\Sigma} = \frac{\sum_{k=1}^{n} U_{ak}}{\sum_{k=1}^{n} \frac{U_{ak} \cos \varphi_k}{|z_{Ck}|}}$$

При $U_{ak} = U_a, k = \overline{1, n}, t = 0$

$$z_{C\Sigma} = \frac{n}{\sum_{k=1}^{n} \frac{\cos \varphi_k}{|z_{Ck}|}}.$$

Рассмотрим схему соединения элементов R, L и C последовательно (рис. 3). Уравнение этой цепи относительно общего тока i_{Σ} следующее:

$$Ri_{\Sigma} + L\frac{di_{\Sigma}}{dt} + \frac{1}{C}\int_{0}^{t}i_{\Sigma} dt = \sum_{k=1}^{n} U_{ak}\cos\omega_{k}t.$$
(10)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 2

Применяя принцип суперпозиции, из (10) получаем

$$Ri_k + L\frac{di_k}{dt} + \frac{1}{C}\int_0^t i_k dt = U_{ak}\cos\omega_k t.$$
(11)

На основании (11) модуль сопротивления для тока i_k в этой цепи запишем

$$|z_{LCk}| = \sqrt{R^2 + \left(\omega_k L - \frac{1}{\omega_k C}\right)^2}.$$
(12)

Сдвиг фаз между U_k и i_k

$$\varphi_{k1} = \operatorname{arctg} \frac{\omega_k L - \frac{1}{\omega_k C}}{R}.$$
(13)

При дальнейшем определении условно полного сопротивления всей цепи z_{Σ} в функции модулей сопротивлений z_{LCk} выражения для z_{Σ} будут аналогичны выражениям (4) и (8) или (5) и (9) с разницей в том, что в этом случае будут фигурировать сопротивления z_{LCk} [см. (12)] вместо z_{Lk} или z_{Ck} и углы φ_{k1} . Поэтому и в этом случае при полигармоническом входном сигнале цепь реструктуризируется в условно параллельное соединение цепей с сопротивлениями для токов i_k , $k = \overline{1, n}$.

Перейдем к рассмотрению цепи с *R*(*L*II*C*) (см. рис. 4). Уравнения этой цепи следующие:

$$\begin{cases}
i_{\Sigma} = i_{L\Sigma} + i_{C\Sigma}; \\
Ri_{L\Sigma} + L\frac{di_{L\Sigma}}{dt} = \sum_{k=1}^{n} U_{ak} \cos \omega_{k} t; \\
Ri_{C\Sigma} + \frac{1}{C} \int_{0}^{t} i_{C\Sigma} dt = \sum_{k=1}^{n} U_{ak} \cos \omega_{k} t.
\end{cases}$$
(14)

Уравнения (14) соответствуют уравнениям (1) и (6). Поэтому $i_{L\Sigma}$ записывается выражением (2), а $i_{C\Sigma}$ — выражением (7). Полные условные сопротивления для токов $i_{L\Sigma}$ и $i_{C\Sigma}$ тогда определяются выражениями (4), (5) и (8), (9) соответственно. Реактивные сопротивления $x_{L\Sigma} = (z_{L\Sigma} - R)$ и $x_{C\Sigma} = (z_{C\Sigma} - R)$ соединены параллельно и общее условное сопротивление данной схемы имеет вид

 $z_{\Sigma} = R + (z_{L\Sigma} - R) || (z_{C\Sigma} - R).$

Введем в это выражение формулы (4) и (8), а затем (5) и (9). В результате получим

$$z_{\Sigma} = R + \frac{\left[\frac{\sum_{k=1}^{n} \frac{\cos \omega_{k}t}{\alpha_{k}}}{\sum_{k=1}^{n} \frac{\cos(\omega_{k}t - \varphi_{Lk})}{\alpha_{k}|z_{Lk}|} - R\right]}{\left[\frac{\sum_{k=1}^{n} \frac{\cos(\omega_{k}t - \varphi_{Lk})}{\alpha_{k}|z_{Ck}|}}{\sum_{k=1}^{n} \frac{\cos \omega_{k}t}{\alpha_{k}}}{\alpha_{k}|z_{Lk}|} - R\right] + \left[\frac{\sum_{k=1}^{n} \frac{\cos \omega_{k}t}{\alpha_{k}}}{\sum_{k=1}^{n} \frac{\cos(\omega_{k}t - \varphi_{Lk})}{\alpha_{k}|z_{Lk}|}} - R\right];$$
(15)

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №2

$$z_{\Sigma} = R + \frac{\left[\frac{\sum_{k=1}^{n} U_{ak} \cos \omega_{k} t}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t - \varphi_{Lk})}{|z_{Lk}|} - R\right] \left[\frac{\sum_{k=1}^{n} U_{ak} \cos(\omega_{k} t + \varphi_{Ck})}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t + \varphi_{Ck})}{|z_{Ck}|} - R\right]}{\left[\frac{\sum_{k=1}^{n} U_{ak} \cos \omega_{k} t}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t - \varphi_{Lk})}{|z_{Lk}|} - R\right] + \left[\frac{\sum_{k=1}^{n} U_{ak} \cos(\omega_{k} t + \varphi_{Ck})}{\sum_{k=1}^{n} \frac{U_{ak} \cos(\omega_{k} t - \varphi_{Lk})}{|z_{Ck}|} - R\right]}.$$
(16)

Выражения (14) и (15) также подтверждают тот факт, что полигармоническое входное напряжение порождает реструктуризацию рассматриваемой схемы (см. рис. 4) в виде формирования последовательно-параллельного соединения цепей z_{Σ} и $z_{L\Sigma}$, $z_{C\Sigma}$. Если принять во внимание случай, когда все U_{ak} , $k = \overline{1, n}$, равны между собой и взять момент t = 0, то (15) принимает вид

$$z_{\Sigma} = R + \left[\left(n \middle/ \left(\sum_{k=1}^{n} \frac{\cos \varphi_{Lk}}{|z_{Lk}|} - R \right) \right)^{-1} + \left(n \middle/ \left(\sum_{k=1}^{n} \frac{\cos \varphi_{Ck}}{|z_{Ck}|} - R \right) \right)^{-1} \right]^{-1}.$$
 (17)

Выведенные формулы условных полных сопротивлений z_{Σ} можно также представить в символической форме. Для этого выразим входное напряжение схемы в виде

$$U = \sum_{k=1}^{n} U_{ak} e^{j\omega_k t},$$

где $j = \sqrt{-1}$.

Тогда для схем, изображенных на рис. 1, 2 и 3,

$$z_{\Sigma} = \frac{\sum_{k=1}^{n} U_{ak} e^{j\omega_k t}}{\sum_{k=1}^{n} \frac{U_{ak} e^{j(\omega_k t + \varphi_k)}}{|z_k|}},\tag{18}$$

где φ_k определяются по формулам (2), (7), (13), соответствующим схемам *RL*, *RC*, *RLC*; $z_k, k = \overline{1, n}, -$ сопротивления этих же цепей соответственно.

Если ввести обозначения $U_a/U_{ak} = \alpha_k; \, \omega_k/\omega_1 = \beta_k,$ то (18) можно представить в виде

$$z_{\Sigma} = \frac{\sum_{k=1}^{n} \frac{1}{\alpha_{k}} e^{\beta_{k}\omega_{1}t}}{\sum_{k=1}^{n} \frac{e^{j(\beta_{k}\omega_{1}t+\varphi_{k})}}{\alpha_{k}|z_{k}|}}.$$
(19)

При t = 0 и одинаковых $U_{ak} = U_a$ из (19) получаем z_{Σ} в виде

$$z_{\Sigma} = \frac{n}{\sum_{k=1}^{n} \frac{e^{j\varphi_k}}{|z_k|}}.$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, № 2

Для схемы, изображенной на рис. 4, полное условное сопротивление z_{Σ} в символической форме равно

$$z_{\Sigma} = R + \left\{ \left[\frac{\sum_{k=1}^{n} U_{ak} e^{j\omega_{k}t}}{\sum_{k=1}^{n} \frac{U_{ak} e^{j(\omega_{k}t - \varphi_{Lk})}}{|z_{Lk}|} - R \right]^{-1} + \left[\frac{\sum_{k=1}^{n} U_{ak} e^{j\omega_{k}t}}{\sum_{k=1}^{n} \frac{U_{ak} e^{j(\omega_{k}t + \varphi_{Ck})}}{|z_{Ck}|} - R \right]^{-1} \right\}^{-1}.$$
 (20)

При $U_{ak} = U_a$ и t = 0 выражение (20) принимает вид

$$z_{\Sigma} = R + \left\{ \left[n \middle/ \left(\sum_{k=1}^{n} \frac{e^{-j\varphi_{Lk}}}{|z_{Lk}|} \right) - R \right]^{-1} + \left[n \middle/ \left(\sum_{k=1}^{n} \frac{U_{ak}e^{j\varphi_{Ck}}}{|z_{Ck}|} \right) - R \right]^{-1} \right\}^{-1}.$$
 (21)

Формула (21) идентична выражению (17).

Справедливость выведенных формул условных сопротивлений для рассматриваемых электрических схем можно проверить на примере формулы (5) таким образом.

Пусть входное напряжение $U = U_{ak} \cos \omega_k t$. Тогда (5) принимает вид

$$z_{Lk} = |z_k| \frac{\cos \omega_k t}{\cos(\omega_k t - \varphi_k)}.$$
(22)

К (22) применим формулу Эйлера

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}.$$

Тогда полное сопротивление z_{Lk} представлено в показательной форме (см. [5] с. 255)

$$z_{Lk} = |z_k| e^{j\varphi_k}.$$

Известно [5], что

$$z_{Lk} = R + j\omega_k L. \tag{24}$$

Преобразуем (24)

$$z_{Lk} = R + j\omega_k L = \left(\sqrt{R^2 + \omega_k^2 L^2}\right)(\cos\varphi_k + j\sin\varphi_k) =$$
$$= |z_k| \left(\frac{e^{j\varphi_k} + e^{-j\varphi_k}}{2} + j\frac{e^{j\varphi_k} e^{-j\varphi_k}}{2j}\right) = |z_k|e^{j\varphi_k}, \qquad \varphi_k = \operatorname{arctg} \frac{\omega_k L}{R}$$

и получим в итоге формулу (23).

Таким образом, это простое доказательство подтверждает правильность полученных формул для цепей *RL* и, в принципе, для *RC* и *RLC* цепей.

ISSN 1025-6415 Доповіді Національної академії наук України, 2007, №2

Также проверим справедливость формул (15) или (16). Для этого рассмотрим (16) для *k*-й гармоники. В этом случае

$$z_{k} = R + \frac{\left[\frac{|z_{Lk}|\cos\omega_{k}t - \varphi_{Lk}}{\cos(\omega_{k}t - \varphi_{Lk})} - R\right] \left[\frac{|z_{Ck}|\cos\omega_{k}t + \varphi_{Ck}}{\cos(\omega_{k}t + \varphi_{Ck})} - R\right]}{\left[\frac{|z_{Lk}|\cos\omega_{k}t}{\cos(\omega_{k}t - \varphi_{Lk})} - R\right] + \left[\frac{|z_{Ck}|\cos\omega_{k}t + \varphi_{Ck}}{\cos(\omega_{k}t + \varphi_{Ck})} - R\right]} =
= R + \frac{1}{\left[\frac{|z_{Ck}|\cos\omega_{k}t}{\cos(\omega_{k}t + \varphi_{Ck})} - R\right]^{-1} + \left[\frac{|z_{Lk}|\cos\omega_{k}t}{\cos(\omega_{k}t - \varphi_{Lk})} - R\right]^{-1}} =
= R + \frac{1}{\left[|z_{Ck}|e^{-j\varphi_{Ck}} - R\right]^{-1} + \left[|z_{Ck}|e^{j\varphi_{Ck}} - R\right]^{-1}} =
= R + \frac{\left(\frac{|z_{Ck}|e^{-j\varphi_{Ck}} - R\right](|z_{Lk}|e^{j\varphi_{Lk}} - R)}{|z_{Ck}|e^{-j\varphi_{Ck}} + |z_{Lk}|e^{j\varphi_{Lk}} - 2R}} =
= R + \frac{\left[|z_{Ck}|(\cos\varphi_{Ck} - j\sin\varphi_{Ck}) - R\right][|z_{Lk}|(\cos\varphi_{Lk} + j\sin\varphi_{Lk}) - R]}{|z_{Ck}|(\cos\varphi_{Ck} - j\sin\varphi_{Ck}) + |z_{Lk}|(\cos\varphi_{Lk} + j\sin\varphi_{Lk}) - 2R}} =
= R + \frac{\left[-j\frac{1}{\omega_{k}C}\right][j\omega_{k}L]}{|z_{Ck}|(c_{Ck})|^{2}} = R + j\frac{L}{C}\frac{1}{\frac{1}{\omega_{k}C}} - \omega_{k}L} = z_{k}.$$
(25)

Проверим правильность полученного выражения из анализа схемы (см. рис. 4)

$$z_k = R + \frac{x_{Lk}x_{Ck}}{x_{Lk} + x_{Ck}} = R + \frac{j\omega_k Lj\left(-\frac{1}{\omega_k C}\right)}{j\omega_k L - j\frac{1}{\omega_k C}} = R + j\frac{L}{C}\frac{1}{\frac{1}{\omega_k C} - \omega_k L}.$$
(26)

Как видно, формулы (25) и (26) одинаковые, что означает правильность вывода формулы (16).

Заметим, что выведенные для z_{Σ} выражения подтверждают тот факт, что переходные процессы в электрических цепях при скачкообразных входных напряжениях, которые, по нашему мнению, разлагаются на несколько затухающих гармоник и одну незатухающую составляющую, увеличивающуюся по амплитуде, вблизи момента включения (t = 0) входного напряжения идут вблизи нулевого уровня и только после полного затухания высших гармоник входного напряжения осуществляется подъем уровня величины тока в RL цепи или напряжения в RC цепи переходного процесса до установившегося значения. Этот факт проверен экспериментально [2–4] и указывает на естественное свойство объектов, каким является и электрическая цепь, заключающееся в наличии некоторой зоны нечувствительности, т. е. при определенной малой длительности входного напряжения (импульса) электроцепь не может войти в переходной процесс и воспроизвести данный импульс. Такие случаи наблюдаются при широтно-импульсном или время-импульсном управлении электродвигателями и другими электромагнитными механизмами.

Таким образом, в работе показано, что полигармоническое входное напряжение цепей с реактивными элементами существенно влияет на изменения структуры (условной) этих

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2007, Nº 2

цепей, и полные сопротивления цепей являются не только функциями параметров цепей, но и функциями гармонических составляющих входного напряжения этих цепей.

- 1. Божско А. Е. Об автоматической реструктуризации электрических цепей с реактивными элементами при полигармонических входных напряжениях // Доп. НАН України. 2002. № 11. С. 101–103.
- 2. Божско А. Е. Новая интерпретация переходных процессов в электрических цепях // Там же. 2004. № 9. С. 83–87.
- 3. *Божко А. Е.* О новой трактовке переходных процессов в электрических цепях переменного тока // Там же. 2005. № 4. С. 81–86.
- 4. Божко А. Е. Эффект от малых значений резисторов в переходном процессе электроцепи с индуктивностью // Там же. 2004. № 12. С. 84–86.
- 5. Белецкий А. Ф. Основы теории линейных электрических цепей. Москва: Связь, 1967. 608 с.

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, Харьков Поступило в редакцию 04.07.2006