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RECURRENT-AND-PARALLEL GMDH
ALGORITHMS FOR HIGH-PERFORMANCE COMPUTING

The paper presents the conception, theoretical grounds and mathematical tools for designing high-performance searching and it-
erative GMDH algorithms on the basis of recurrent-and-parallel computing for modelling and prediction of complex processes. Its
effectiveness is experimentally tested. Intelligent information technology for inductive modeling of complex processes on the basis

of recurrent-and-parallel computing is constructed.
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Inductive modelling problem

Inductive modeling is a process of mathematical
model generation for an object, process or a system
based on the empirical dataset. The modeling aims
for forecasting, classification, extrapolation, inter-
polation and so on.

Generally, the model generation problem can be
stated as follows. IE is necessary to find the optimal
model ¥, = /" (X,0, ) in a given set of models ¥ by
minimization of a given criterion CR as the solu-
tion of the discrete optimization task:

/" =argmin CR(y, /(X,0,). (1)

where parameters estimation vector (:)f,
dim®, =s, x1 | for each function X, ®) e ¥ is
the solution of the following continuous optimiza-
tion task:

©, =argmin OR(y, /(X,6,)) 2
where QR(-) is a criterion that estimates the qua-
lity of the solution for the parameter estimation
problem; and CR(-) is a criterion that estimates the
quality of the solution of the optimal model selec-
tion problem (1).

Group Method of Data Handling (GMDH)
is one of the most effective methods for resolving
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problems (1, 2). GMDH-based model generation
process is based on the following principles: 1) suc-
cessive complication of model structures; 2) “exter-
nal supplement” [1]; and 3) non-final decisions [2].

The successive model structure complication
principle is based on a self-organization concept of
finding the optimal (adequate) model complexity
for the modeling object in terms of minimization of
the criterion CR. The model structure generation
algorithm performs a set of consequent stages or ite-
rations (=1, 2, ...). Each iteration generates a set
of models (solutions) having more complex struc-
tures than the models at the previous iteration. The
iterations are performed while criterion CR value is
decreasing (CR <CR ) or the difference CR —CR_|
approaches a given ¢ — the accuracy of the prob-
lem solution. It is assumed that if CR>CR | then
the structure of the model at r iteration is overfitted
and the iteration process should be stopped.

The external supplement principle is based on the
Godel’s incompleteness theorem [3]. According to
that principle, the criteria should be utilized in (1)
that are based on involving new information and
have a minimum in the model complexity increa-
sing process.

The principle of non-final decisions states that
not the best model but several best models (solu-
tions) are selected and passed to the next iteration of
the algorithm. This allows increasing the probability
to find the global minimum of the criterion CR.

The problem (1—2) in terms of GMDH may be
specified as follows.

Let x, i=1,m are input variables or factors
that are observed. First of all, we specify the set
¥ (model structure class), ¥ ={/f(X,0 )} .,
which frequently is described by the following
polynomial:

f(xpox,, ©) =0,+30x +330,

i=l =i

+iz ZAeijkxixixh-}_ . (3)

Assume that the polynomial (3) is limited by
the maximal power p, then the number of terms
in (3)is/= C":p. Let us denote variables after the

coefficients 0, Gij, e,.jk, e, A8 Z, and the correspon-

ding vectorsas z, j=1,/, Z =(z, 2,z

Let us give a definition of model structure in the
form (3). Structural vector is an_/-dimension bi-
nary vector di = (du,..., di), k=1,2" that is com-
posed of s, unities where dkj = 1 in the vector mani-
fests presence the corresponding variables z. in the
model structure (3), s, < /. The number s, is called
the complexity of the model (3). Consequently, the
number of all structures of the model (3) and the
power of the set ¥ is 2/,

The vector of unknown parameters G)dk ,
dim( ®dk ) = s,, we define as a vector composed
of non-zero components of the vector diag(d,) ©
where diag(v) is a diagonal matrix with elements
of the vector v. Then a matrix Z; is defined as a
matrix composed of the vector-columns zjof the
matrix Z for which the corresponding elements
of the vector d. kT are equal to 1. Then the function
fi(Z4,.04 )=2Z, 0, with unknown parameters
Oy, is called a model structure.

Let D is a set that holds all possible structural
vectors d,, k = 1,2', and some unimodal criterion
OR(»,f(Z,,9,)) is given. Then the problem (2)
becomes as follows:

®, =argmin OR(y,/(Z,,0,)) , Vd,cD (4)

a,
and the problem (1) takes the form:
[ =argminCR(,f(Z,.0,) . (5)

In forecasting, classification and extrapo-
lation problems being solved using GMDH
in the class of polynomial functions (3) being
linear in parameters, the residual sum of

squares RSS , =||y,—Z (:)A’dk ||2 is used as the

Ad,
QR criterion, and the regularity criterion
AR, éARM =y, —ZM(:)M ||2 is used as the CR
criterion.

Indices A and B indicate training and festing
datasets, ANB =, Au B =W .Wisthe initial
dataset of observations or a set of vector-columns
of the matrix (Z:y).

All the variety of GMDH algorithms can be
classified into searching and iterative algorithms [4]
based on specifics of the model structure genera-
tion process, Fig. 1.

The problem (1) is similar to a discrete program-
ming problem and can be resolved using exhaus-
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| GMDH aigorithms |

‘ Searching ‘

‘ lterative ‘

Exhaustive search ‘ ‘ Successive search ‘ ‘

Relaxational ‘ ‘ Multilayered

Fig. 1. GMDH algorithms classification

tive or successive search algorithms [4]. The basic
searching GMDH algorithm is the combinatorial
algorithm COMBI [5—8]. In order to speed up the
algorithm, paper [6] proposes to utilize a recurrent
procedure to estimate the parameters (bordering
method [9]) and a special method for generation
of model structures. This allows decreasing by a
factor of ten the computational complexity of the
parameters estimation procedure comparing to the
Gaussian method [10].

The aim of successive search algorithms is to find
the optimal solution obtained via exhaustive search
algorithms. An example of such successive search
algorithm is the algorithm MULTI [4] based on the
principle of non-final decisions.

Anumberofiterative GMDH algorithms are well-
known however the fastest among them is as for
now the GRIA (Generalize Relaxational Iterative
Algorithm) [10]. The computational complexity to
build a model from iteration to iteration is linear in
GRIA due to recurrent procedures for calculating
the model parameters and QR and CR criteria [11].

The attention in this paper is paid to the
development of parallelization methods for COMBI
and GRIA and evaluation of their performance.

Combinatorial
COMBI GMDH algorithm
with recurrent computations

The combinatorial algorithm is designed to
search for a better regression containing the most
informative (effective) subset of input variables
(regressors). It contains the following main blocks
(which correspond to the main stages of the
modelling process) [4]:

1. Data transformation according to the selected
class of model structures linear in parameters.

2. Formation of models of different complexity
(generation of all possible structures and pa-
rameters estimation by the least-squares method
(LSM)).

3. Calculation of the value of external quality
criteria and selection of the best models.

4. Estimation of the predictive quality of the
best models on the third, examination (validation)
sample (if it is given).

Since the same classes of structures and criteria
can be used in any structural identification
algorithm, their difference is determined by
the type of structures generator. Therefore, we
consider the principles of organizing calculations
in a combinatorial generator, where the main
computing costs are concentrated.

The basic operations performed in the block
of models generation are: generating the next
model structure (system of conditional equations);
formation of a corresponding normal system
of equations; solution of the received system
(estimation the model coefficients).

In the case of a linear object with m inputs, the
models of the form

po=xb,v=1,.,2"—1, (6)

are compared in the process of the exhaustive
search. Decimal number corresponds to binary
number d, in (6). Unit elements of d, indicate
inclusion regressors with corresponding numbers in
the model, whereas zero elements signify exclusion.
The parameter estimation problem is the most
time-consuming in the combinatorial algorithm.
Actually the problem is in computational speedup
of linear equations systems solving. The bordering
method is the traditional and effective recurrent
method. The idea of this algorithm consists in step-
by-step improving estimations of parameters using
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Defines model class:
- differential;
1. Initial matrix transformation | - polynomial;
stage - additional-multiplicative;
- exponential;
- and other
Output: matrix Q = (X|Z)

3. Iterations stage

Iteration 1
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Fig. 2. Model generation process in GRIA

recurrent calculation of inverse matrix elements in
an estimation procedure.

Efficient recurrent modifications of classic
Gauss and Gramm-Schmidt algorithms were of-
fered in [20].

Computational complexity of parameter es-
timation is proportional to the square of the model
complexity for any recurrent algorithm and to the
cube for non-recurrent one.

Generalized Relaxational
Iterative GMDH Algorithm
with recurrent computations

The model generation process in GRIA is shown in
the figure 2 [10, 11].

As one can see from the figure above, the process
consists of the three stages:

1. Stage of a transformation of the initial matrix
X. The model class is generated here.

2. Preparation stage. The matrix of normal
equations is generated here.

3. [Iterations stage. Models are generated here.

In this algorithm, F selected models are passed
from iteration to iteration. The algorithm includes
two ways to find the solution of the problem (5):

= anexhaustive search in the given limited set of
models at any iteration. It is performed based on a
model structure generator with exhaustive search;

= successive model search being performed ba-
sed on a model structure generator with a successi-
ve search; this generator reasonably truncates the
exhaustive search in the case of a nonlinear model
generation.

Vector autoregressive models
for prediction of multidimensional
interrelated processes

Vector autoregressive (VAR) model generalizes the
autoregression model to multidimensional case
[21]. It is built by the stationary time series. It is the
system of equations in which every variable (com-
ponent of multidimensional time series) is linear
combination of all variables in the previous time
points lags. The order of such model is determined
by the order of the lags.

In the general case for m time series and k lags,
the model will be the system of m equations and it
matrix form will be of the form:

X(z)=§®/X(r—j), 7)
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where ©, j = 1,k — matrices of model (7) param-
eters of the size mxm .

The COMBI GMDH algorithm may be used for
VAR modelling by exhaustive search of all possible
variants and finding the best model for every time
series containing the most informative subset of
input arguments.

The general models structure in the form of the
system of m difference equations is determined as a
result of the sequence of such operations:

1. Data array of m — k arguments is composed un-
der the number of interrelated processes m and lags .

2. Maximal complexity for restricted search is
defined [22]. COMBI algorithm with sequentially
complicated structures of models on the basis of
recurrent-and-parallel computing is used for mo-
delling. For every time series, the best F (by the
value of the regularity criterion [23]) models are
selected. Overall F'-m models are passed to the
next step.

3. The sorting-out of G = F " variants of model
systems is carried out. The best system model (by
the value of the systemic integral criterion of vector
models quality) is selected. The value of the crite-
rion is calculated on the given part of initial data set
in the prediction mode of the process for the given
steps number 7.

B=32(x, %)’ ®)

=l j=1
where x;, — result of step-by-step integration of the
system of m equations.

The exponential dependence of number of system
models G on the number of interrelated processes
m results in a huge amount of variants enumeration
and requires improvement of modelling means.
Therefore, paralleling of computations and
recurrent algorithms of parameters estimation are
reasonable here.

Theoretical grounds for paralleling
of computing in algorithms with
recurrent parameters estimation
The problem of paralleling computations

The problem of parallelization of GMDH algo-
rithms is not a new one. Many foreign and domes-

tic scientists have been solvin git. Combinatorial
algorithms were parallelized in the first place [12,
13] as they are the most time-consuming and suffer
from “curse of dimensionality”. Single-processor
computational systems allow solving combinato-
rial search problem of 20 variables in 10 sec. while
generating 2% = 1048576 models. Parallelization
allows increasing the number of generated models
proportionally to the number of processor cores,
i.e., build 2% = 67108864 models in the same time
using 64 cores.

The major problem in parallelization of combi-
natorial algorithms is approaching uniform load of
all available cores, as the time to generate a model
substantially depends on the number of variables
(terms) included to the model. Paper [12] suggests
using inverse structural vectors, in other words, a
core computes a model whose structural vector is
(1101110) and, in addition, computes its inverse
version (0010001). This technique allows obtaining
the cores load at 96% regardless of their number.

Paper [13] offers using a structural vector gene-
ration method with a consecutive complication.
This allowed approaching almost maximal load of
the cores on the level 0of 99,8%.

Methods and principles of parallelization of
GMDH algorithms were considered in [14, 15].
Paper [14] proposes a parallelized version of GAME
which is a GMDH-type neural network with diffe-
rent types of neurons and interlayer links based on
symmetric multiprocessor (SMP) architecture that
allows several cores to access to a single shared me-
mory. Since each neuron is calculated independent-
ly and the time to create a thread is considerably less
than the time to calculate a neuron, the algorithm
computes each neuron in a single thread. However,
the performance of such parallelization is turned
out to be fairly low: if we get 1,7 speed up for 2 cores,
then the algorithm performs only 3,5 times faster
than its sequential version in the case of 8 cores.

Paper [15] considers three different type of
speeding up:

1) parallelization tasks using threads,

2) vector parallel processing (vectorization) us-
ing an extended set of processor commands (SSE —
Streaming SI/MD Extensions),

3) using the 64-bit operating system.
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The author suggests performing low-level com-
putations (simple loops) using vectorization and
more complex procedures (initialization functions,
data manipulations, reading/writing data) in pa-
rallel in separated threads. The effectiveness of the
proposed principles is turned out to be fairly high
and has almost linear speed up function: 2 cores —
2x speed up, 8 cores — 7,4x speed up.

Libraries for parallelization

The most well-known libraries are: Message
Passing Interface (MPI), Open Multi-Processing
(OpenMP) and Threading Building Blocks (TBB).

MPI is an API developed for message transfer-
ring thatallow exchange messages between pro-
cesses which perform one task. Primarily the
interface designed for parallelizing of tasks betwe-
en CPUs but not threads, therefore creating, dele-
ting, synchronizing and message transfer betwe-
en threads shoulder a programmer. That is the rea-
son the interface is a quite low-level and complex,
and isn’t easy to master in a short term.

OpenMP is an open standard for program pa-
rallelization describing a set of compiler direc-
tives, library procedures and environment variab-
les which purposed for creating multithread ap-
plications based on shared memory multiproces-
sor systems. The standard is implemented in the
majority of well-known compilers (GCC, Microsoft
Visual Studio, Intel, IBM, Oracle) and allows writ-
ing parallel applications easily just by parallelizing
local code segments adding minimum changes to
the original code.

TBB is a C++ template library for paralle-
lism undertaking thread management that al-
low (as OpenMP) directly specify the section of
code which should be parallelized. A programmer
should think in terms of tasks, not threads when
applying the library.

The advantages of TBB over OpenMP are:

= any data type support;

= ready to use class templates, allowing me-
mory access from several threads simultaneously;

= automatic detection and creation the opti-
mal number of working threads in runtime.

The decision about using the TBB library for
parallelization the GRIA was made, taking in-

to account the advantages of the TBB mention-
ed above.

Parallelization of recurrent

computations in iterative GMDH algorithms

Paper [16] offers a parallelized version of GRIA
with recurrent computations based on SMP archi-
tecture [17] considered in [14].

The model generation process in GRIA consists
of three stages:

1) transformation of the initial matrix,

2) calculation of the normal equations matrix,

3) iterations stage where models are built.

When building models, it is necessary to calcu-
late standard error measures at different parts of
the dataset. If the number of models and observa-
tions is big enough, this post-process stage could
be time-consuming. Taking into account that the
first stage does not take long, we should parallelize
the last two stages of the algorithm and the post-
process stage where error measures are calculated.

The preparation stage calculates matrices
XX, XpX,. XNy . XGyp by imple-
menting a double loop. To approach the uniform
load of cores, it is offered [16] to create tasks in the
following way. Each task should execute the body of
the internal loop for two values of the variable i of
the external loop that are equidistant from n/2 (for
example,i=0andi=n—1;i=landi=n-—2;...),
where 7 is the initial dataset length. Then, having k&
cores (n is even), each of them executes:

N, =n/(2k)tasks,if N, —int
N =X first Ln/(2k)Jc0resexecute (n/(Zk)—|+1,
the rest —(n/(2k)—|

where L J denotes a remainder, f —| denotes integer
result of the division.

Model generation process in GRIA is the itera-
tive one [10]. Each model can be calculated inde-
pendently of others at any iteration. The algorithm
passes a given number F of best models from itera-
tion to iteration. It is calculated m new models at
the current iteration based on every model that was
passed from the previous iteration. Thus, the total
number of tasks (models that must be built) at every
iteration of the algorithm is Fm. Articles [18, 26]

ISSN 2706-8145, Control systems and computers, 2019, N° 3 43



V.S. Stepashko, S.M. Yefimenko, A.V. Pavlov

suggest the following scheme for the tasks paral-
lelization (k is the number of cores):

1. Fm < k. Fm cores perform one task, the rest
(k — Fm) are free.

2. Fm = k. All the cores perform one task.

3. Fm > k. The first | Fm/k | cores perform
| Fm/ k| + 1 tasks and the rest [ Fm / k| tasks.

It is also offered to have the threads number
equal to the number of cores in order to avoid de-
lays due to switching between the threads.

Parallelization of recurrent
computations in COMBI GMDH algorithm

The scheme of the combinatorial algorithm pa-
rallelization with the standard binary generator of
structural vectors and the recurrent parameters es-
timation using the modified Gauss algorithm for
solving linear equation systems developed in [24].
In this scheme, the change of states of binary struc-
tural vector with elements 0 or 1 is organized on the
basis of the binary counter.

Table 1 shows the approximate modeling time
using this scheme. Already for more than 50 argu-
ments, an exhaustive search (in acceptable mode-
ling time) becomes impossible even for cluster sys-
tem containing one hundred processors.

The scheme with sequential binary counter
uses such sequence of binary numbers gene-

Table 1. Approximate time of the exhaustive search

Arguments Models Time
1 proc. 100 proc.
20 1048 575 Is 0,01s
21 2097 151 2s 0,02
40 1,1E+12 ~ 12 days ~ 3 hours
50 1,1E+15 ~ 34 days | ~ 124 hours

Table 2. Approximate time of the restricted search

Arguments | Complexity | Models Time, hours
1 proc. 100 proc.
50 15 3,7E+12 984 ~10
100 9 2,1E+12 558 ~6

ration when all combinations with one unit in
structural vector appears first of all, then with
two units, and so on to complete model com-
prising all arguments.

This scheme allows to partially solve the prob-
lem of exhaustive search when arguments number
exceeds capability of the algorithm with a stan-
dard binary generator. In this case it is advisable to
execute an exhaustive search not among all pos-
sible models but only for models of the restricted
complexity.

Table 2 shows approximate modeling time of
COMBI with successive complication of model
structures of complexity no more than 15 out of
the total 50 arguments, when all models with 50-
elements binary structural vectors containing from
1 to 15 units are built [22].

Paralleling the recurrent
computations in VAR modeling

To build models of vector autoregression, the
combinatorial COMBI GMDH algorithm (with
sequential complication of model structures), re-
current parameters estimation (with the use of the
modified Gauss algorithm) and computations para-
lleling is used. Linear models are compared for each
of the m interrelated processes with g = m - k argu-
ments (inputs).

The scheme of algorithm with sequential com-
plication of structures for building VAR models is
chosen because it allows partially solving the prob-
lem of exhaustive search in the case when it be-
comes impossible even with parallelization. In this
case, it is advisable to perform exhaustive search not
among all possible models, but only models of limi-
ted complexity.

Another reason for applying the restriction on
complexity may be the insufficient number of
points in the training part of the sample n, when the
search is performed among the complexity models
no more than n,. Since the modeling time is actu-
ally determined by the time of the search of variants
for the systems of models, the efficiency of paral-
lelization of this stage of the algorithm will be even
more important than the efficiency of paralleling
the stage of constructing the F best models for each
of the m outputs (time series).
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Fig. 3. Scalability of the GRIA algorithm stages using Intel Core i3

The investigation of the paralleling
effectiveness

The effectiveness of the constructed modeling tools
was calculated according to the following criteria:
= the acceleration of modeling time;
= the percentage of the computers load.

Performance evaluation
of the parallelized GRIA algorithm

Evaluation of the performance of the paralleli-
zed GRIA was carried out using two different pro-
cessors [16]:

= 4-core processor Intel Core i3 M 350 2.27
GHz (2 physical and 2 logical cores);

= 8-coreprocessorIntel Corei74700 HQ2.4 GHz
(4 physical and 4 logical cores).

The initial matrix held 4000 observations, 10
true variables and 990 false variables. The dataset
was generated using a pseudo-random genera-
tor Mersenne twister [19]. The matrix values were
generated using the uniform distribution law in
the interval [0; 1]. The initial dataset was divided
into an examination (500 records), learning (3000
records), and validation (500 records) sets. The
values for the algorithm’s parameters were the fol-
lowing: choice of freedom F = 400, the iteration
number R = 50.The algorithm should to discovere
the following model:

y = 629447 + 9,37736x, + 8,26752x, —
—8,04919x,,+8,11584x, — 7,46026x,— 7,29046x, +
+6,70017x,— 5,57932x, — 3,83666x, + 2,64719x, .

1,5
Parallel 8 cores ij M Errors
1
H Normal
Parallel 4 cores 16 ;
Parallel 2 cores : 6
8,5
| 6,4
Parallel 1 core 4,5
15,3
| 6,4
Serial 4.7
15,4
0 5seconds 10 15

Fig. 4. Scalability of the algorithm stages using Intel Core i7

The algorithm has built the following model:

y = 629447 + 937736x, + 8,26752x,—
—8,04919x, + 8,11584x, — 7,46026x, — 7,29046x, +
+6,70017x, — 5,57932x, — 3,83666x, + 2,64719x,,
+3,510%x ,,+ 1.4 10%x,,.

The figures 3 and 4 show the scalability of the
three mentioned above stages of the algorithm that
were parallelized. The legend description of the fi-
gures: Errors — the post-process stage (errors mea-
sure are calculated), Normal matrix — the prepa-
ration stage, Iterations — the iterations stage.

As one can see from the figures, the paralleliza-
tion allows obtaining the almost equal time of the
serial and the parallel versions using one core, hence
usage of physical cores allow speeding up eve-
ry stage in 2x using 2 cores of Core i3 and in 1,86x
using 2 cores of Core i7. Scalability of the stages
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Fig. 5. Performance of parallelized GRIA

EI‘E!C

33 4.6

o e D T L oy
\\'\'J

20 25 Argumen

Fig. 6. Comparative effectiveness

differ when using 4 cores of Core i7: the iterations
stage has been speeding up in 2,9x, the normal ma-
trix calculation stage — in 3,15x and the errors cal-
culation stage — in 3,55x.

As it may be seen, we have a low scalability when
involving logical cores into computations: usage of
4 processor cores Core i3 gives us only 2,3x speed
up and usage of 8 cores Core i7 — 3.8x at the itera-
tion stage, 4,39x at the normal matrix calculation

Table 3. The performance of the developed application

stage, and 4,26x at the error measures calculation
stage.

Let’s look at the scalability of parallelized GRIA
(see figure 5). The performance of the developed
application is represented in table 3.

As one can see from the table, the parallelized
version allowed obtaining 2,28x speed up at Core
i3 processor and 4x speed up using Core i7 and ap-
proaching uniform load of processor cores that one
can see from the last two columns of the table.

Performance evaluation
of the parallelized COMBI algorithm

The experiment was carried out at the SCIT IC
complex of the National Academy of Sciences of
Ukraine [25] with the use of CPU IntelXeonES5-
2600 2.6 GHz.

The test task was formed as follows: the matrix
X of size 70 x 50 (70 records for 50 arguments) for
the system of conditional equations was generated.
The vector y was formed in the form of a linear
combination of only five arguments:

y= xlO +x20 + x30 + x40 t XSO (9)

The time of exhaustive search with a standard bi-
nary generator based on recurrent computations for
50 arguments would last about 34 years. However,
this task can be solved by using an algorithm with
sequential complication of structures limited to
models of complexity 7. In this case 6 nodes with
24 cores of SCIT-4 computing cluster were used
for modeling.

Model (9) was received by such computing sys-
tem in less than 2 seconds when 118145035 models

Processor Number of cores Performance
Speed up Physical cores load, % Logical cores load, %
Logical cores load, % 1 1x 100 Not used
2 2x 90
4 2,28x 90 99
Core i7 1 1x 100 Not used
2 1,86x 100
4 3x 99
8 4x 99 99
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Fig. 7. Run-time estimation

were built (structures were generated, parameters
were estimated, and the quality criteria were calcu-
lated) among which the best one according to the
regularity criterion was chosen.

The purpose of the next test experiment was to
compute the comparative effectiveness £ of the
parallel algorithm with recurrent parameters esti-
mation versus the parallel algorithm with non-re-
current computations. The effectiveness was deter-
mined as the ratio of the time of execution of the
corresponding programs (for the number of argu-
ments, equal to 20 and 25).

The result of the experiment, presented in figu-
re 6, shows an increase in the value of £ with an
increase in the number of arguments.

Figures 7 and 8 give estimates of the run-time of
the combinatorial algorithm with recurrent com-
putations on single and 100 processors. With the
increase in the arguments number, the efficiency
of recurrent-and-parallel computations increases,
and for 40 arguments the gain reaches by a factor
of a hundred.

Construction of intelligent
information technology

for inductive modeling of complex
processes on the basis of recurrent-
and-parallel computations

Takinginto account mentioned features for GMDH
algorithms as well as schemes of parallel computa-
tions, it is possible to propose intelligent informa-
tion technology of inductive modeling on the basis
of recurrent-and-parallel computations.

The technology in automatic mode takes into
account number of arguments, number of available

Time, hours
257
2
1.5
1 = 100 processors
0.5 ] I
(=

30 31 32 33 34 35 36 37 38 39 40 Arguments

Fig. 8. Run-time estimation
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VAR is used entiticatio
)
| Modeling algorithm choice I
v
‘ COMBI H MULTI H GRIA |
v
‘ Computations paralleling ‘
Multi-core Cluster | _| GPU
computing computing computing
v

Time of exhaustive search estimation (taking
into account computational resources)

Is exhaustive
search possible
for acceptable
time?

The scheme
with exhaustive
search is used

The scheme
with restricted
complexity is used

|

Maximal complexity evaluation (taking
into account computational resources

Result

and acceptable modeling time)

Fig. 9. Flow chart of the intelligent information technology
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computational resources and running time restric-
tion. Figure 9 represents a block-diagram of infor-
mation technology suggested in [27].

Conclusion

The principle of high-performance parallel com-
putations in the problems of inductive modelling

on the basis of searching and iterative GMDH al-
gorithms with recurrent parameters estimation is
developed.

A project of the intelligent information techno-
logy for inductive modeling of complex processes
on the basis of recurrent-and-parallel computa-
tions is presented.
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PEKYPEHTHO-ITAPAJIEJIBHI AJITOPUTMU MI'YA
AJIA BUCOKOIMPOAYKTUBHUX OBYNUCIIEHDb

Beryn. [HaykTHBHE MOJIETIOBaHHS € ITPOIIECOM TTOOYIOBM MaTeMaTHYHIX MOJIeJIeli 00'€KTiB, MTPOIIECiB Ta CUCTEM Ha OCHOBI
CTaTUCTUYHUX AaHUX. MeToa rpynoBoro ypaxyBaHHs apryMeHTiB (MI'VA) € onHuM 3 HaiiOinbil eeKTUBHUX METOMIB
obuucmoBasibHOTO iHTeNeKTy. [1pouec nmodynosu moaeneit Ha ocHoBi MI'VA 6a3yeTbcs Ha MPUHLMIIAX MOCIiZOBHOTO
YCKJIQIHEHHST CTPYKTYP MOJIeJIeil, «30BHIIIHBOTO JTOTIOBHEHHST» Ta HEOCTAaTOYHUX pillleHb. Bce pi3HOMaHITTS anroputMiB
MI'VA, Buxoasuu 3 ocoOIMBOCTEN Mpoliecy reHepallii CTpyKTyp MOZeJIel, MOXKHA PO3AUTATU Ha MepedipHi Ta iTepalliiiHi
AJITOPUTMU.

Mera 11i€i cTaTTi TIOJIATaE Y pO3pOOJIEHHI METOIiB pO3MapaielioBaHHsI 00UnCcIeHb y iepedbipHomy anroputmi COMBI
Ta y3araJbHEHOMY peJiakcalliiHoMmy itepariitHomy anroputMi GRIA i BU3HaYeHHI OOYMCIIOBATHHOI €(DEKTUBHOCTI
po3napasnentoBaHHS.

Pesyabratu. Y cTarTi onvcaHo po3po0JieHi MPUHIMIIM PO3Mapase/toBaHHs onepailiil y KoMOiHATOPHOMY aJITOPUTMi
COMBI MTI'YA 3 pexypeHTHUM OIiHIOBaHHSIM TlapaMeTpiB Mozeneit. [Ipu po3mapaientoBaHHI BAKOPUCTAHO CXEMU 00-
YHUCJIEHb 31 CTAHAAPTHUM T€HEPATOPOM JBIMiKOBUX YMCEN Ta 3 MOCIiIOBHUM YCKJIAAHEHHSIM CTPYKTYpP MOJENEH, 3riTHO
3 IKMMU KOXEH MPOLIeCOp aBTOHOMHO OOYMCIIIOE MOYATKOBUI NBIMKOBUI CTPYKTYPHUI BEKTOP Ta KiJIbKiCTb MOJEJIEI,
sKi BiH OyayBaTuMe. Takoxk rapaHTyeTbCsl HEITOBTOPIOBAHICTb CTPYKTYP Y Pi3HUX Mpoliecopax. 3aBAsiKW LIbOMY 3HAYHO
MiABUILYETbC €(DEKTUBHICTbh PO3Iapajie/IOBaHHS, OCKIJIbKM HEMA€ BTPAT Yacy Ha MixXITPOLIECOPHY B3a€MOIIO.

Cxema posrapaielioBaHHs 3 TIOCTiMOBHUM YCKJIQTHEHHSIM CTPYKTYP MOJIeNIeli TO3BOJISIE YaCTKOBO PO3B’I3yBaTH 3a-
Jlayy TIOBHOTO Mepedopy y BUMAAKY, KOJIM KiJIbKICTh apryMEHTIB Ui TIepeOopy MepeBUIIYE MOXJIMBOCTI alTOPUTMY 3i
CTAaHJAPTHUM JIBiliIKOBUM T€HEPATOPOM, i TOBHUI mepedip MNOLITbHO BUKOHYBATU HE CEpeJl YCiX MOXJIMBUX MOAEJEN, a
JIUIIE Mojiesielt OOMEKEHOI CKJIaHOCTI.

OrnurcaHo TPUHIUIT PO3TapaielioBaHHsI 00YMClieHb B kKoMmbiHatopHOMy anroputMmi COMBI MI'YA 3 pexkypeHT-
HUM OLIIHIOBAHHSM MapaMeTpiB Mojeieil Mg MoOyloBU AMCKPETHUX IMPOTHO3HUX MOAEIEH OUHAMIKU CKJIaIHUX
06araToBUMipHUX B3a€MO3B’sI3aHMX TpoiieciB. OmrcaHo IPUHIIAIIA Ta CXeMU po3MapajieioBaHHs 00YUCIIEHb B y3araib
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HEeHOMY peJsiakcalliiiHoMy iTepatiitHoMy anroputmi MI'VA GRIA, siki 103BOJISIIOTh 301UIBIIMTA HIBUJKICTh POOOTH aJIro-
PUTMY MTPOTNOPLIIHHO KiJIbKOCTI 00YMCIIIOBAaYiB TPU MaKCUMaJIbHOMY (Malixke piBHOMIpHOMY) iX 3aBaHTaXKEHHi.

BukoHaHo nociimxeHHs: e(peKTUBHOCTI Pi3HUX CXeM po3napaieloBaHHs o0uncieHb B airoput™Mi COMBI ta GRIA 3a
JIOTTIOMOTO0 O0UYUCITIOBAIbHUX €KCIIEPUMEHTIB Ha MEPCOHATIbHOMY KOMIT IOTEpi Ta KJIaCTEPHOMY 0araTornpolecopHOMY
KOMIUIEKCI.

SIK cBimuaTh eKCMEPUMEHTHU 3 TECTYBaHHSI €(EKTUBHOCTI po3napayieftoBaHHs alroputMy GRIA, 1MBUAKICTb POOOTH
PO3pOBJEHUX MPOrPaMHUX 3aC00iB 301IbLIYETHCA JIiHIIHO i3 JOJaBaHHSIM HOBOTO OOUYMCIIIOBATLHOIO eJIeMeHTa (Tpolie-
copa YU siipa Mpolecopa).

Po3polsieHi cxemu [03BOJISAIIOTH ICTOTHO MiABUIIMTU €(QEKTUBHICTb airoputMmiB MIYA 1IISIXOM BUKOHaHHS
PEKYPEHTHO-TTapaJIeIbBHUX O0YMCIIEHb.

BpaxoBytoun ocobauBocti anroputMmiB MI'YA Ta cxemu mnapanejibHUX OOYUCIEHb, PO3POOJEHO KOHIEMIIiI0
iHTeJIeKTyaIbHO1 iH(OpMaLliiHOT TEXHOJIOTI1 iHAYKTUBHOTO MOJICJIOBAHHS Ha OCHOBI peKYpPEHTHO-TNapaJleIbHUX 004K C-
JieHb. Taka TexHoJIoTis MpU MoOYyA0Bi MOJieJiell B ABTOMAaTUYHOMY PEXUMi BPaXOBY€E KiJIbKiCTh apIyMEHTIB, KiJIbKiCTb 10-
CTYMHUX 00YUCITIOBAJILHUX PECYPCiB i BCTAHOBJIEHI KOPUCTYBaueM OOMEXEHHS Ha Yac MOJIETIOBAHHS.

BucHoBKku. P0o3p00JieHO TEXHOJIOTiI0 BUCOKOIPOIYKTUBHUX MapajieibHUX OOUKCIIEHb B 3aa4aX iHAYKTUBHOTO MO/Jie-
JIIOBAaHHSI Ha OCHOBI MepebipHUX Ta iTepaliitHux anroputMiB MI'YA 3 peKypeHTHUM OIliHIOBaHHSM IMapaMeTpiB Moje-
Jieli. 3anponoHOBAaHO KOHIEIIiIO iHTEJEeKTyallbHOI iH(opMaIliliHOI TEXHOJIOTIi iHAYKTUBHOTO MOJEIIOBAHHS CKJIATHUX
MPOIIECiB HA OCHOBI PEKYPEHTHO-TapajeIbHUX O0YNCIICHb.

Karowoei caosa: indyxmuene modenroganus, pekypenmuo-napaireavhi oouucaenns, MIYA, COMBI, GRIA, eexmopua
asmopeepecis.
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PEKYPPEHTHO-ITAPAJUIEJIbHBIE AJITOPUTMbBI MI'YA
J1J14 BBICOKOTITPOU3BOJAUTENbHBIX BBIYMCIIEHU

Beenenne. MHIyKTUBHOE MOJEIMPOBAHUE — 3TO IIPOLIECC MOCTPOSHUST MaTeMaTUIECKUX MOJIeJIeil 0O BEKTOB, MPOIIECCOB
M CUCTEM Ha OCHOBE CTaTUCTMUYECKMX JaHHBIX. MeTo rpyrmoBoro yyeta aprymeHToB (MI'YA) — onuH u3 Hanbosee a¢-
(beKTUBHBIX METOJOB BbIUMCIUTEIbHOTO UHTe/UIeKTa. [Tpouecc mocrpoeHust Mmozeneit Ha ocHoBe MI'VA Ga3zupyeTcst Ha
MPUHLIMIIAX MOCIEI0BATEIbHOTO YCJIOXHEHUS CTPYKTYP MOJIENe, «BHEITHEro AOMOTHEHUS» U HEOKOHYATEJIbHBIX pellie-
Huil. Bce MHOrooopasue anroputMoB MI'YA, ncxojst U3 0cOOEHHOCTE Mpoliecca reHepaluy CTPYKTYp MOJeIeit, MOKHO
pasaeuTh Ha MepedopHbIE U UTEPALIMOHHbIE AITOPUTMBI.

Ilean 3TO CTAaTHU COCTOUT B pa3pabOTKe METO/IOB pacrnapaieIMBaHusl BIYUCIEHUI B iepedopHoM aiaropurme COMBI
1 000OIIEHHOM peJIaKCAllMOHHOM UTEpallMOHHOM ajiroput™Me GRIA v onpeliesieHUH BbIYUCIUTETbHON 3 (HeKTUBHOCTH
pacrapasuieuBaHus.

Pesyabratbl. B craThe omucaHbl pazpaboTaHHbIE IPUHIIMITEL paciiapaiieIMBaHKs Ollepaliiii B KOMOMHATOPHOM ajiro-
putMe COMBI MTI'YA ¢ peKyppeHTHBIM OlLIeHUBAaHKEM TapaMeTpoB Mojeseii. [1pu pacnapasieuBaHUM UCITOJIb30BaHbI
CXeMbI BBIUMCIICHUI CO CTAaHIAPTHBIM FeHEPaTOPOM JIBOMYHBIX YKCEIT U ITOCIEI0BATEIbHBIM YCIIOXKHEHUEM CTPYKTYP MO-
JieJield, COrJIaCHO KOTOPBIM KaKIIbIil TTPOLIECCOP aBTOHOMHO BBIYMCIISIET HAYaIbHBIN TBOMYHBINA CTPYKTYPHBIN BEKTOP U
KOJIMYECTBO MOJIeJIeli, KOTOPbIe OH Oy/IeT CTPOUTh. Takske TapaHTUPYETCsI HEITOBTOPSIEMOCTh CTPYKTYP B Pa3IMIHBIX TIPO-
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1eccopax. biarogapsi 3ToMy 3HaYMTEIbHO MOBbIIIAETCS 3G (HEKTUBHOCTD pacnapauieIMBaHusl, TOCKOJIbKY HET MOTEPh
BPEMEHU Ha MEXITPOLIECCOPHOE B3aUMOJIEHCTBUE.

Cxema pacnapasuieJMBaHus ¢ OCIEI0BaTEIbHBIM YCIOXKHEHUEM CTPYKTYP MOJIesiell MO3BOJISIET YACTUYHO penlaTh 3a-
Jady MOJTHOTO rnepebopa B cilydyae, KOrAa KOJIMYECTBO apryMEHTOB ISl Tiepebopa MpeBbIIaeT BO3MOXHOCTH aIrOpUTMa
CO CTaHJApTHBIM IBOMYHBIM F€HEPATOPOM, M MOJIHBII Mepedop 11e1eco00pa3HO BIMOIHSTE HE CPEIU BCEX BO3ZMOXKHBIX
MOJIeJIel, a TOJIbKO Cpear MOJesIell OTPaHUYEHHOM CIIOKHOCTU.

OnucaH NPUHIMIT pacnapajieIMBaHUsI BBIYUCIIEHUI B KOMOMHaTopHOM ajiroputMe COMBI MI'YA ¢ peKyppeHTHbIM
OLIEHUBAaHUEM MMapaMeTPOB MOJIEJEH /ISl TOCTPOECHUST TUCKPETHBIX MMPOTHO3HBIX MOJIeJIei TUHAMUKHU CJIOXHBIX MHOTO-
MEPHBIX B3aUMOCBSI3aHHBIX MTpo1iecCOB. OMUCcaHbl MPUHLIUIIBI U CXEMbI paciapaieIMBaHUs BBIYMCIEHU 00001IEHHOTO
pesnakcalMoHHOro utepaiimoHHoro anroputMa MI'VA GRIA, KoTopble MO3BOJISIOT YBEIUUUTH CKOPOCTh PA0OTHI aJITOPUT-
Ma MPOMOPLIMOHATILHO KOJIMYECTBY BBIUMCIUTENE TP MAKCUMAJIbHON (ITOUYTU PAaBHOMEPHOI) UX 3arpy3Ke.

BeimosniHeHbI uccaenoBaHus 3G (MEKTUBHOCTY Pa3IMYHbIX CXeM pacrnapasuie/uBaHus BelurcaeHuit B anroputme COMBI
U PEeIAaKCAIIMOHHOM UTEPALIMOHHOM QJITOPUTME C TIOMOUIBIO BBIUYMCIUTEIbHBIX KCIIEPUMEHTOB Ha IEPCOHATIBHOM KOM-
MBIOTEPE U KJIIACTEPHOM MHOTONPOLIECCOPHOM KOMILIEKCE.

Kak cBUaETEeNIbCTBYIOT pe3yJIbTaThl SKCIEPUMEHTOB MO TECTUPOBAHUIO 3(PDEKTUBHOCTU pacnapalieIuBaHUS ajlro-
putma GRIA, ckopocTb paboThl pa3paboTaHHBIX TPOrPAMMHBIX CPEACTB YBEJTMYMBAETCS JIMHEWHO C J0OABJIEHUEM HOBOTO
BBIUMCIIUTENBHOTO 3JIEMEHTA (TpoLieccopa WM sIpa PoLEeccopa).

PazpabotaHHbIe CXeMBbI ITO3BOJISIOT CYIIECTBEHHO MOBBICUTh 3 (PeKTUBHOCTD aITOpUTMOB MI'YA myTeM BbITTOTHEHUS
PEKYPPEHTHO-apasIeIbHbIX BEIYUCICHUA.

YuureiBasg 0cobeHHOCTH airopuT™OB MI'YA 1 cxeMbl Tapajijie/IbHbIX BBIYMCICHUH, pa3paboTaHa KOHLEMIMS UHTeI-
JIEKTYaJIbHOW MH(MOPMAIIMOHHOM TEXHOJIOTMU UHAYKTUBHOTO MOJAEIUPOBAHUSI HA OCHOBE PEKYPPEHTHO-MapaUIeIbHbIX
BblYMCIIeHU. Takasi TEXHOJIOTUSI TPU MMOCTPOCHUU MOJIEeil B aBTOMATUYECKOM PEXUME YUYUTHIBAET KOJUUYECTBO apry-
MEHTOB, KOJIMYECTBO JOCTYITHBIX BBIYMCIUTEbHBIX PECYPCOB U YCTAHOBJIEHHBIE MTOJI30BATEIEM OTPAHUYEHUS Ha BpeMsI
MOJICJIUPOBAHMS.

BoiBoapl. PazpaboTaHa TeXHOJIOTHS BBICOKOMPOU3BOAUTENbHbBIX MapaUieIbHbIX BBIYMCICHUM B 3a1a4aX UHIYKTUBHOTO
MOJICJIUPOBAHUSI HA OCHOBE MEPEOOPHBIX U UTEPALIMOHHBIX aJITOpUTMOB MI'YA ¢ peKyppeHTHBIM OLIECHUBAaHUEM MapaMe-
TpoB Mozesieid. [IpemioxeHa KOHLIETIUS UHTEJIEKTyalbHOM NHGOPMALIMOHHON TEXHOJOTUY MHIYKTUBHOTO MOJIEIUPO-
BaHUS CJIOXHBIX MTPOLIECCOB HA OCHOBE PEKYPPEHTHO-TNApaIJIeIbHBIX BBIYUCICHUIA.

Karouesvie caosa: unoykmueroe mooeauposanue, pekyppermuo-napaineavuvie goiuucaenus, MIYA, COMBI, GRIA, éexkmop-
Has asmopezpeccusl.
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