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1. Introduction. In our last paper [1], we have established the existence of regular solutions of the 
Dirichlet problem for the quasilinear Poisson equation

( ) ( ) ( ( ))U z h z f U zΔ = ⋅   (1)

in the unit disk { : | | 1}z z= ∈ <D  with continuous boundary values. We assumed that :h →D  
is in ( )pL D , 1,p >  and :f →  is continuous and ( ) / 0f t t →  as t →∞ .

This result and the theory of quasiconformal mappings (see, e.g., [2]), give a base for the study 
of the semilinear equations 

div [ ( ) ( )] ( ( ))A z u z f u z∇ =   (2)

describing many physical phenomena in anisotropic and inhomogeneous media.
Given a simply connected domain D  in the complex plane , denote, by 2 2( )KM D× , the class 

of all 2 2×  symmetric matrix functions ( ) { ( )}jkA z a z=  with measurable real-valued entries and 
det ( ) =1,A z  satisfying the uniform ellipticity condition

2 21
| | ( ) , | | . .A z K a e in D

K
ξ 〈 ξ ξ〉 ξ� �   (3)
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for every 2ξ ∈ , where 1 K < ∞� .
Equations (2) are closely relevant to the so-called Beltrami equations. Let : Dμ →  be a 

measurable function with | ( ) | 1zμ <  a.e. The equation

( )z zzω = μ ⋅ω ,  (4)

where ( ) / 2z x yiω = ω + ω , ( ) / 2z x yiω = ω − ω , z x iy= + , xω  and yω  are partial derivatives of 
the function ω  with respect to x  and y , is said to be a Beltrami equation. Equation (4) is said 
to be nondegenerate, if || || 1∞μ < . Homeomorphic solutions of the nondegenerate equations (4) 
with the first generalized derivatives by Sobolev are called quasiconformal mappings (see, e.g., [2]).

We say that a quasiconformal mapping ω  satisfying (4) is agreed with 2 2( )KA M D×∈ , if

22 11 12( ) ( ) 2 ( )
( )

det( ( ))
a z a z ia z

z
I A z

− −
μ =

+
,  (5)

where I  is the unit 2 2×  matrix. Condition (3) is now written as

1
| ( ) | . . .

1
K

z a e in D
K
−μ
+

�  (6)

Vice versa, given a measurable function : Dμ → , satisfying (6), one can invert the algebraic 

system (5) to obtain the matrix function 2 2( )KA M D×∈ :

2

2 2

2

2 2

|1 | 2Im

1 | | 1 | |
( ) .

2Im |1 |

1 | | 1 | |

A z

⎛ ⎞−μ − μ
⎜ ⎟− μ − μ⎜ ⎟= ⎜ ⎟
− μ + μ⎜ ⎟
⎜ ⎟− μ − μ⎝ ⎠

  (7)

Note that, by the known existence theorem for the Beltrami equations (see, e.g., Theorem 
V.1.3 in [2]), any 2 2( )KA M D×∈  with condition (3) in a simply connected domain D  generates 
a quasiconfomal mapping : Dω →D  through Eq. (4) with μ  given by (5), where D  is the unit 
disk in .

2. Some definitions and preliminary remarks. Following [3], under a weak solution of 
Eq. (2), we understand a function 1, 2

loc ( )u C W∈ ∩ Ω  such that, for all 1, 2
0 ( )C W Dη∈ ∩ ,

( ) ( ), ( ) ( ) ( ( )) ( ) ( ) 0.
D D

A z u z z dm z f u z z dm z〈 ∇ ∇η 〉 + η =∫ ∫   (8)

A fundamental role in the study of the posed problem will play the following factorization 
theorem (see, e.g., [4], Theorem 1, or [3], Theorem 4.1). A function :u D→  is a weak solution of 
(2) in the class 1, 2

loc ( )C W D∩ , iff u U= ω , where : Dω →D  is a quasiconformal mapping agreed 
with A , and U  is a weak solution in the class 1, 2

loc ( )C W∩ D  of the quasilinear Poisson equation

( ) ( ) ( ( )), ,U w J w f U w wΔ = ⋅ ∈D   (9)
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J denotes the Jacobian of the inverse quasiconformal mapping 1 : D−ω →D .
The regularity properties of solutions of Eq. (9) strongly depends on the degree of integrabi-

lity of ( )J w . Note that the mapping * 1: −ω = ω  is extended to a quasiconformal mapping of  
on to itself, if D∂  is the so-called quasicircle (see, e.g., Theorem II.8.3 in [2]). The well-known 
Bojarski result (see, e.g., [5]) says that the generalized derivatives of a quasiconformal map-
ping in the plane are locally integrable with some power 2q > . Note also that the Jac obian 

* 2 * 2( ) | | | |w wJ w = ω − ω . Consequently, in this case, ( )pJ L∈ D  for some 1p > .
Recall that the image of the unit disk D  under a quasiconformal mapping of  onto itself 

is called a quasidisk and its boundary is called a quasicircle or a quasiconformal curve. Recall 
also that a Jordan curve is a continuous one-to-one image of the unit circle in . As known, such 
a smooth ( 1C ) or Lipschitz curve is a quasiconformal curve and, at the same time, quasicon for-
mal curves can be even locally non-rectifiable, as it follows from the well-known Van Koch 
snowflake example (see, e.g., point II.8.10 in [2]).

By Theorem 4.7 in [6], cf. also Theorem 1 and Corollary in [7], the Jacobian of a quasicon-
formal homeomorphism : D∗ω →D  is in ( )pL D , 1p > , iff D  satisfies the quasihyperbolic boun-
dary condition by Gehring—Martio (see [8]), i.e.

0
0

( , )
( , ) ln

( , )D
d z D

k z z a b z D
d z D

∂
⋅ + ∀ ∈

∂
�   (10)

for some constants a  and b  and a fixed point 0z D∈ , where 0( , )Dk z z  is the quasihyperbolic dis-
tance between the points z  and 0z  in the domain D ,

0( , ) : .inf
( , )D

ds
k z z

d Dγ γ

=
ζ ∂∫   (11)

Here, ( , )d Dζ ∂  denotes the Euclidean distance from a point Dζ ∈  to the boundary of D  and 
the infimum is taken over all rectifiable curves γ  joining the points z  and 0z  in D .

Recall that a domain D  in n , 2n� , is called satisfying (A)-condition, if

0 0mes ( , ) mes ( , ) ,D B B D∩ ζ ρ Θ ⋅ ζ ρ ∀ζ ∈∂ ρ ρ� � ,  (12)

for some 0Θ  and 0 (0,1)ρ ∈  (see 1.1.3 in [9]). Recall also that a domain D  in n , 2n� , is said 
to satisfy the outer cone condition, if there is a cone that makes possible to be touched by its top to 
every boundary point of D  from the completion of D  after its suitable rotation and shift. It is 
clear that the outer cone condition implies (A)-condition.

Remark 1. Note that the quasidisks D  satisfy (A)-condition. Indeed, the quasidisks are the 
so-called QED − domains by Gehring–Martio (see, Theorem 2.22 in [10]), and the latter satisfy 
the condition

mes ( , ) mes ( , ) , diaD B B D D∗∩ ζ ρ Θ ⋅ ζ ρ ∀ζ ∈∂ ρ� �   (13)

for some (0,1)∗Θ ∈  (see, Lemma 2.13 in [10]), and the quasidisks (as domains with quasihyper-
bolic boundary) have boundaries of the zero Lebesgue measure (see, e.g., Theorem 2.4 in [6]). 



12 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. № 7

V.Ya. Gutlyanski, O.V. Nesmelova, V.I. Ryazanov

Thus, it remains to note that, by definition, the completions of quasidisks D in the the extended 
complex plane : { }= ∪ ∞  are also quasidisks up to the inversion with respect to a circle in D .

Probably, the first example of a simply connected plane domain D  with the quasihyperbolic 
boundary condition, which is not a quasidisk, was constructed in [7], Theorem 2. However, this 
domain satisfieds (A)-condition. Probably, one of the simplest examples of a domain D  with 
the quasihyperbolic boundary condition and without (A)-condition is the union of 3 open disks 
with the radius 1 centered at the points 0  and 1 i± . It is clear that the domain has zero interior 
angle at its boundary point 1  and, consequently, by Remark 1, it is not a quasidisk.

3. Dirichlet problem for semilinear equations.
Theorem 1. Let D  be a Jordan domain in  satisfying the quasihyperbolic boundary condi-

tion, 2 2( )KA M D×∈ , let : Dϕ ∂ →  be a continuous function, and let :f →  be a continuous 
function such that

( )
0.lim

t

f t
t→∞

=   (14)

Then there is a weak solution :u D→  of Eq. (2), which is locally Hölder-continuous in D and con-
tinuous in D with | Du ∂ = ϕ. If, in addition, ϕ  is Hölder-continuous, then u is Hölder-continuous in D.

Proof. By Theorem 1 in [4] (see, also Theorem 4.1 in [3]), if u  is a weak solution of (2), then 
u U= ω , where ω  is a quasiconformal mapping of D  onto the unit disk D  agreed with A , and 
U  is a weak solution of Eq. (9) with h J= , where J  stands for the Jacobian of 1−ω . It is also easy 
to see that if U  is a weak solution of (9) with h J= , then u U= ω  is a weak solution of (2). This 
allows us to reduce the Dirichlet problem for Eq. (2) with a continuous boundary function ϕ  in 
the simply connected Jordan domain D  to the Dirichlet problem for Eq. (9) in the unit disk D  
with the continuous boundary function 1−ψ = ϕ ω . Indeed, ω  is extended to a homeomorphism 
of D  onto D  (see, e.g., Theorem I.8.2 in [2]). Thus, the function ψ  is well defined and really is 
continuous on the unit circle.

It is well-known that the quasiconformal mapping ω  is locally Hölder-continuous in D  
(see Theorem 3.5 in [5]). Taking into account that D  is a Jordan domain in  satisfying a qua-
sihyperbolic boundary condition, we can show that both mappings ω  and 1−ω  are Hölder-con-
tinuous in D  and D , correspondingly. Indeed, Hω = Ω , where Ω  is a conformal (Riemann) 
mapping of D  onto D , and H  is a quasiconformal mapping of D  onto itself. The mappings Ω  and 

1−Ω  are Hölder-continuous in D  and in D , correspondingly, by Theorem 1 and its corollary in 
[7]. Next, by the reflection principle, H  can be extended to a quasiconformal mapping of  onto 
itself (see, e.g., I.8.4 in [2]), and, consequently, H  and 1H −  are also Hölder-continuous in D  (see 
again Theorem 3.5 in [5]). Thus, the Hölder continuity of ω  and 1−ω  in closed domains follows 
immediately.

Finally, it is easy to see that if ϕ  is Hölder-continuous, then ψ  is also so, and all the con-
clusions of Theorem 1 follow from Theorem 3 in [1].

Remark 2. In Theorem 3 of [1], we assumed additionally that | |f  is nondecreasing with 
respect to t . However, setting *

| |
( ) | ( ) |max

t s
f s f t=

�
, : [0, )s +∈ = ∞ , we see that the function 

* :f + +→  is continuous and nondecreasing. Moreover, *( ) / 0f s s→  as s→∞  by (14). Hence, 
all estimates in the proof of Theorem 3 in [1] remain valid without this additional condition after 
the change *f f→ .
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Corollary 1. In particular, under the hypotheses of Theorem 1 on D, ϕ, and f, there is a weak 
solution U  of the quasilinear Poisson equation

( ) ( ( )) . .U z f U z for a e z DΔ = ∈  (15)

which is locally Hölder-continuous in D  and continuous in D  with U | D∂ = ϕ . If, in addition, ϕ  is 
Hölder-continuous, then U  is Hölder-continuous in D .

4. Some applied corollaries. The interest in this subject is well known both from a purely 
theoretical point of view, due to its deep relations to linear and nonlinear harmonic analysis, and 
because of numerous applications of equations of this type in various areas of physics, differen-
tial geometry, logistic problems, etc. (see, e.g., [11], [12], and the references therein). In parti-
cular, the excellent book by M. Marcus and L. Veron [12] contains a comprehensive analysis of 
the Dirichlet problem for the semilinear equation

( ) ( , ( ))u z f z u zΔ =   (16)

in smooth ( 2C ) domains D  in n , 3n� , with boundary data in 1L . Here, ( , )t f t→ ⋅  is a con-
tinuous mapping from  to a weighted Lebesgue space 1( , )L D ρ , and ( , )z f z→ ⋅  is a nonde-
creasing function for every z D∈ , ( , 0) 0f z ≡ , with

( , )
.lim

t

f z t
t→∞

= ∞   (17)

uniformly with respect to the parameter z  in compact subsets of D .
The mathematical modeling of some reaction-diffusion problems leads to the study of the cor-

responding Dirichlet problem for Eq. (1) with specified right-hand side. Following [13], a nonlin-
ear system can be obtained for the density u  and the temperature T  of a reactant. Upon elimi-
nating T , the system can be reduced to a scalar problem for the concentration

( ),u f uΔ = λ ⋅   (18)

where λ  stands for a positive constant.
It turns out that the reactant density u  may be zero in a closed interior region 0D  called a 

dead core. If, for instance, in Eq. (18), ( ) qf u u= , 0q > , a particularization of the results in Chapter 
1 of [11] shows that a dead core may exist, if and only if 0 1q< <  and λ  is large enough. See also 
the corresponding examples of dead cores in [3]. We have, by Theorem 1, the following:

Theorem 2. Let D  be a Jordan domain in  satisfying the quasihyperbolic boundary condition, 
2 2( )KA M D×∈ , : Dϕ ∂ →  be a continuous function. Then there is a weak solution :u D→  of the 

semilinear equation

div [ ( ) ( )] ( ), 0 1qA z u z u z q∇ = < <   (19)

which is locally Hölder-continuous in D  and continuous in D  with | Du ∂ = ϕ . If, in addition, ϕ  is 
Hölder-continuous, then u  is Hölder-continuous in D .

We have also the following consequence of Corollary 1.
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Corollary 2. Let D  be a smooth Jordan domain in , and let : Dϕ ∂ →  be a continuous fun-
ction. Then there is a weak solution U  of the quasilinear Poisson equation

( ) = ( ) , 0 < <1,qU z U z qΔ  (20)

which is continuous in D  with U | D∂ = ϕ  and 1,
loc ( )U C Dα∩  for all (0,1)α ∈ . If, in addition, ϕ  is 

Hölder-continuous with some order (0,1)β ∈ , then U  is also Hölder-continuous in D  with the 
same order.

Recall also that certain mathematical models of a heated plasma lead to nonlinear equations 
of the type (18). Indeed, it is known that some of them have the form ( ) ( )u f uΔψ =  with 

(0)ψ = +∞′  and ( ) 0uψ >′ , if 0u ≠ , as, for instance, 1( ) | |qu u u−ψ =  under 0 1q< <  (see, e.g., [14] 
and [11, p. 4]). With the replacement of the function ( ) | | signqU u u u= ψ = ⋅ , we have that 

| | signQu U U= ⋅ , 1/Q q= , and, with the choice 
2

( ) | | signqf u u u= ⋅ , we come to the equation 
| | sign ( )qU U U UΔ = ⋅ = ψ .

Corollary 3. Let D  be a smooth Jordan domain in , and let : Dϕ ∂ →  be a continuous func-
tion. Then there is a weak solution U  of the quasilinear Poisson equation

1( ) | ( ) | ( ), 0 1,qU z U z U z q−Δ = < <  (21)

which is continuous in D  with U | D∂ = ϕ  and 1,
loc ( )U C Dα∩  for all (0,1)α ∈ . If, in addition, ϕ  is 

Hölder-continuous with some order (0,1)β ∈ , then U  is also Hölder-continuous in D  with the 
same order.

In the combustion theory, the following model equation

( , ) 1
, 0, ,uu z t

u e t z D
t

∂ = ⋅Δ + ∈
∂ δ

�   (22)

occupies a special place (see, e.g., [15] and the references therein). Here, 0u�  is the temperature 
of the medium, and δ  is a certain positive parameter. We restrict ourselves by stationary solutions 
of (22) and generalizations in anisotropic and inhomogeneous media, although our approach ma-
kes it possible to consider the parabolic case as well (see [3]). Namely, by Theorem 1, we have:

Theorem 3. Let D  be a Jordan domain in  satisfying the quasihyperbolic boundary condition, 
2 2( )KA M D×∈ , and let : Dϕ ∂ →  be a continuous function. Then there is a weak solution :u D→  

of the semilinear equation

( )div [ ( ) ( )] U zA z U z e−∇ = δ ⋅ , (23)

which is locally Hölder-continuous in D  and continuous in D  with | Du ∂ = ϕ . If, in addition, ϕ  is 
Hölder-continuous, then u  is Hölder-continuous in D .

Finally, we obtain the following consequence of Corollary 1.
Corollary 4. Let D  be a smooth Jordan domain in , and let  : Dϕ ∂ →  be a continuous 

function. Then there is a weak solution U  of the quasilinear Poisson equation

( )( ) U zU z eΔ = δ⋅  (24)
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which is continuous in D  with U | D∂ = ϕ  and 1,
loc ( )U C Dα∩  for all (0,1)α ∈ . If, in addition, ϕ  

is Hölder-continuous with some order (0,1)β ∈ , then U  is also Hölder-continuous in D  with 
the same order.

This work was partially supported by grants of Ministry of Education and Science of Ukraine, 
project number is 0119U100421.
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ПРО НАПІВЛІНІЙНІ РІВНЯННЯ В КОМПЛЕКСНІЙ ПЛОЩИНІ

Досліджено задачу Діріхле для напівлінійних рівнянь в частинних похідних div ( ) ( )A u f u∇ =  в одно-
зв’язних областях D комплексної площини  з неперервними граничними умовами. Доведено існування 
слабких розв’язків u у класі 1, 2

loc ( )C W D∩ , якщо Жорданова область D задовольняє квазігіперболічну гра-
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ничну умову Герінга—Мартіо. Наведено приклад такої області, яка не задовольняє стандартну (А)-умову 
Ладиженської–Уральцевої та відому умову зовнішнього конуса. Також наведено деякі застосування отри-
маних резуль т а тів до різних процесів дифузії та поглинання в анізотропних і неоднорідних середовищах.

Ключові слова: задача Діріхле, напівлінійні еліптичні рівняння, конформні та квазіконформні відображен-
ня, анізотропні та неоднорідні середовища.
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О ПОЛУЛИНЕЙНЫХ УРАВНЕНИЯХ НА КОМПЛЕКСНОЙ ПЛОСКОСТИ

Исследована задача Дирихле для полулинейных уравнений в частных производных div ( ) ( )A u f u∇ =  в 
односвязных областях D комплексной плоскости  с непрерывными граничными условиями. Доказано 
существование слабых решений u  в классе 1, 2

loc ( )C W D∩ , если Жорданова область удовлетворяет квази-
гиперболическому граничному условию Геринга—Мартио. Приведен пример такой области, которая не 
удовлетворяет стандартному (А)-условию Ладыженской—Уральцевой и известному условию внешнего 
конуса. Также приведены некоторые применения полученных результатов к различным процессам диф-
фузии и поглощения в анизотропных и неоднородных средах.

Ключевые слова: задача Дирихле, полулинейные эллиптические уравнения, конформные и квазиконформ-
ные отражения, анизотропные и неоднородные среды.




