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EFFECTS OF ALKALINITY, EXTREMELY LOW CARBON DIOXIDE 

CONCENTRATION AND IRRADIANCE ON SPECTRAL 

PROPERTIES, PHYCOBILISOME, PHOTOSYNTHESIS, 

PHOTOSYSTEMS AND FUNCTIONAL GROUPS OF THE NATIVE 

CYANOBACTERIUM CALOTHRIX SP. ISC 65 

In this research, Calothrix sp. ISC 65 was characterized physiologically by the combination 

of extremely low irradiance (2 μEm-2s-1), different alkalinity (pH 7, 9, 11), and extremely 

limited carbon dioxide concentration (no aeration, no carbon dioxide enrichment). 

Spectroscopical analysis showed that pH 9, after 96 hours, caused a significant increase in 

growth rate, chlorophyll, and phycocyanin production. A lower (pH of 7) caused a decrease 

of phycobilisome production even after 24 hours. Excitation of the light harvesting complex 

and the reaction center of photosystems resulted from a pH of 9. Phycocyanin seems to be 

the main part of phycobilisome but pH 9 caused phycoerythrin and allophycocyanin 

production excitation in the outer part of the photosynthetic antenna as well. A fluorimetric 

and photosynthesis-irradiance curve analysis showed that increasing alkalinity (up to pH 9) 

caused an increase in photosynthesis efficiency and a decrease of non-photochemical 

fluorescence especially after 96 hours. PSII : PSI ratio increased by increasing alkalinity 

from pH 7 to 9 and reached the highest level after 96 hours. Surface response plot analysis 

showed that there is a narrow border line around pH 9 and 96 hours which caused the 

highest PSII : PSI ratio. FTIR analysis showed that alkalinity caused configuration changes 

of the functional groups. The difference of the functional group patterns between pH 7 and 

11 was significant especially after 24 hours. Differences in asymmetric carbon vibration, 

lipid stretching and OH bending of the polysaccharides occurred with both pH 9 and 11 

treatments. pH 9 caused the most physiological activities in Calothrix sp. ISC 65 at 

extremely limited irradiance and carbon dioxide concentration. 

K e y  w o r d s : alkalinity, Calothrix, cyanobacteria, dissolved inorganic carbon, limited 

irradiance 

A b b r e v i a t i o n s : APC  allophycocyanin, CCM  carbon dioxide concentrating mechanism, 

DIC  dissolved inorganic carbon, PBS  phycobilisome, PC  phycocyanin, PE  phycoerythrin, 

PSI, PSII  photosystems I and II 
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Introduction 

Under natural conditions in rice fields and petroleum polluted soils, 

cyanobacteria are exposed to the  combined  influences of several factors such  

as alkalinity, irradiance and dissolved inorganic carbon  fluctuations, which 

may vary even on a daily basis (Shokravi, Soltani, 2011). Growth, 

biochemical and physiological characteristics of cyanobacteria are influenced 

by these environmental factors. Furthermore, widely fluctuating environmental 

parameters, including light level and quality, as well as temperature and 

mineral nutrient availability, interact to influence growth, molecular resource 

allocation, and photosynthesis through complex adaptation strategies. For 

example, Gan et al. (2014) believed that cyanobacteria can alter their total 

Chl. and PBS content; adjust their PSI to PSII ratio; perform non-

photochemical quenching using the orange carotenoid protein; and modify 

their light-harvesting complexes in response to nutrient stresses (S, N, and Fe 

limitation). 

Light is evidently one of the most important factors that determine the 

natural distribution of cyanobacteria. As other photosynthetic organisms, 

cyanobacteria are able to adapt to variations in light intensity; nevertheless, 

little work has been done in this area (Shokravi, Soltani, 2011). Authors 

Baсares-Espaсa et al. (2013) believed that cyanobacteria capable of forming 

surface blooms cannot cope as well with high-light stress as well as green algae 

can. This cyanobacterium acclimated to the light field by changing both its 

size and the number of its photosynthetic units. In rice fields, light reaching 

the floodwater varies both daily and over the crop cycle because of the 

variation in light transmission caused by changes in rice canopy height. In 

Iran, the drop of sunlight in rice-fields seems relatively harder (for example 

measurements at Golestan province at the north of Iran) showed a declining 

rate from 1000 μmol photonm-2s-1 early in the growth of the crop to 2 and 

even 0.5 μmol photonm-2s-1 when the crop was matured, especially on cloudy 

and rainy days. Therefore, the acclimation of cyanobacteria to such an 

extremely low light condition seems important and basic (Shokravi and 

Soltani, 2011). 

The alkalinity of the soils is one of the most important problems in both 

north and south Iran (Amirlatifi et al., 2013). We have no special information 

about behaviors of different strains of native Rivulariaceae to alkalinity 

fluctuations other than what (at species level) has been reported for other 

cyanobacteria. For example, Padhi et al. (2011) have studied the effect of 

alkalinity on the biomass of different species of Anabaena and have shown 

special behaviors of each species. Authors Shokravi et al. (2010), studying 
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acclimation of the native cyanobacterium Haplosiphon sp. FS 44 to combined 

effects of carbon dioxide concentration, acidity, and alkalinity showed that 

differences of growth rates seemed insignificant between acidic and alkaline 

conditions but carbon dioxide enrichments caused a significant increase in the 

growth rate. Phycobilisome system of this strain lack phycoerythrin, however 

it may complete its structure both at the core and the rode at alkaline 

conditions. However, it seems that most of the cyanobacteria including 

Rivulariaceae prefer neutral to alkaline environments (Poza-Carriуn et al., 

2001; Soltani et al., 2006). Preliminary tests showed that the strain of 

Calothrix is similar to another cyanobacterium studied from the northern 

paddy-fields of Iran, resembled an alkalophile strain. Microscopic observations 

showed that with pH 5, at the end of the first week, most of the filaments 

degenerated, and their colors changed to yellow. Irradiance and DIC 

fluctuations had no effect on this (Abbasi et al., unpublished data). This was 

compatible with our previous results as well (Soltani et al., 2007; Shokravi et 

al., 2014; Safaie et al., 2015). Regarding the above, we avoided using acidic 

conditions in spite of the previous papers (Soltani et al., 2007; Iranshahi et 

al., 2014; Shokravi et al., 2014). 

Fast and high amplitude changes in light happen in the context of a 

variable environmental Ci concentration, influenced by water temperature, 

pH, exchange with the atmosphere, photosynthetic and respiratory activities of 

the plankton and benthos, and import from terrestrial sources (Cole et al., 

1994). To maintain a high intracellular Ci concentration across variable 

environmental Ci concentrations, cyanobacteria can induce powerful carbon 

concentrating mechanisms (CCM) to actively concentrate sparse environ-

mental Ci into the cell using energy from photosynthesis, and then release 

internal Ci as CO2 near Rubisco at concentrations sufficient for efficient 

assimilation into organic form by the Calvin cycle (Tyler et al., 2004). 

The aim of this work was to establish the combined influence of alkalinity 

and DIC limitation on growth, photosynthesis, and photosynthetic pigmentation, 

of the new collected, and identified cyanobacterium Calothrix sp. strain ISC 

65 which for the first time, was isolated from oil polluted soils of Iran (Soltani 

et al., 2012) and has been recently collected and determined (but not 

reported) from paddy fields of Iran at different alkalinities, extremely limited 

DIC, and with irradiance more or less similar to natural rice-field of Golestan 

province when maturing of the crop takes place (2 μmol photonm-2s-1). We 

focused on extreme representative alkalinity values in Iranian rice fields (pH 

7, 9 and rarely 11). In addition, we added time as an important factor, 

especially for the influence of irradiance. Authors Soltani et al. (2007) showed 
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that the longtime photosynthesis differed completely at combinations of 

alkalinity and irradiance after 24 and especially 96 hours. 

Materials and Methods 

Isolation of strain 

Calothrix sp. was isolated for the first time from endaphic and epilithic forms 

in Khuzestan province (Khark Island, south of Iran and near the Persian 

Gulf). Recently we collected and identified such a strain from paddy-fields of 

Golestan Province as well. The complete descriptions of the stations and their 

geographical and environmental conditions have been reported in Soltani et 

al. (2012). The collected sampleswere culturedby ordinary methods (Kaushik, 

1987). After colonization and isolation, the cyanobacteria Calothrix sp. ISC 65 

was purified and became axenic (Kaushik, 1987). Morphologically 

identification and determination were done according to Desikachary (1959), 

Prescott (1962), Tiffany and Britton (1971), Komárek and Anagnostidis 

(1989), and John et al. (2003). Molecular identification was done by 16S 

rDNA according to Dezfulian et al. (2010). PCR-identification of Calothrix 

sp. ISC 65 was isolated from south of Iran. NCBI: GU591756.  

Stock cultures were grown in N-free medium. BG110 solid medium was 

used for culturing (materials for BG110 medium: MgSO4 · 7H2O, 0.3 mM; 

CaCl2 · 2H2O, 0.25 mM; K2HPO4 · 3H2O, 0.18 mM; Na2Mg · EDTA,             

0.003 mM, Citrate ferric 0.02 mM; Acid Citric, 0.029 mM; Na2CO3 ·            

0.188 mM; microelements 1 mL · L-1). The pH was then raised to 7.2 by 

adding of NaOH, and the solution was autoclaved. Purification and the axenic 

culture method were controlled microscopically (Shokravi, Soltani, 2011). 

 

Incubation conditions and treatments 

Stock cultures were grown in the BG110 culture medium. Temperature 

was maintained at 30 °C and cultures were incubated under a constant light 

intensity of 60 μmol photonm-2s-1 supplied by three fluorescent lamps (Poza-

Carrion et al., 2001). Cells in the logarithmic phase of growth were collected 

from stock cultures and used as inoculate for experiments. Cells from the 

stock culture were inoculated in 300 mL of BG110 medium in 500 mL 

Erlenmeyer flasks stoppered with cotton plugs. Cultures were illuminated via 

different numbers of nets between light source and flasks. Illumination was 

supplied with 40 W cool white fluorescent tubes to attain a desired low 

irradiance (2 μmol photonm-2 · s-1). Light measurements were made with 

Licor LI-1000 Datalogger equipped with a quantum sensor. Aliquots were 

taken and used for determinations when cells adapted to the light regime in 
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logarithmic phase. Finally, we compared cultures without supplementary 

aeration or stirring (standing condition, extremely DIC limitation) (Shokravi 

et al., 2014). Alkalinity treatments were made using NaOH at three ranges 

(pH 7, 9, and 11) which were prepared in different flasks. 

 

Analytical methods 

Growth measurements, pigment composition, and PBS system were 

analyzed spectroscopically after 24, 48, 72, and 96 hours of alkalinity 

treatments according to Fraser et al. (2013). Photosystem ratios and 

characteristics were done spectrofluorimetrically according to Zorz et al. 

(2015) and Inoue-Kashino et al. (2005). For absorption spectra of intact cells; 

after harvesting the cells, the pellets were suspended in 3 mL of reaction 

buffer. This cell suspension was taken for scanning the absorption spectra 

from 360 nm to 800 nm. The absorption spectra of intact cell suspension were 

taken using a Hitachi-557 double beam spectrophotometer. At 750 nm the 

absorption of the cell suspension was adjusted to give approximately the same 

reading. Room temperature fluorescence emission spectra of the cells were 

recorded on a Perkin-Elmer LS-5 spectrofluorimeter following Tiwari and 

Mohanty (1996). PSII : PSI ratio analysis was done by spectrofluorimetry 

according to Gan et al. (2014), and Amirlatifi et al. (2018). The fluorimetric 

analysis was operated using Marvizadeh et al. (2013). For FTIR analysis,  

1.5 mL from the suspension was centrifuged at 10000 rpm for 10 min. The 

pellet was dried using lyophilization and the 100 mg were mixed with 1000 mg 

KBr the disc was prepared and the total fatty acids were evaluated using FTIR 

(Ray leight-510) (Kiaei et al., 2013). 

Statistical analysis 

Data are the means and standard deviation of at least four replicates. 

Statistical analyseswere examined using Designs-Expert Ver.7 and 10. One 

factor and multifactor RSP analysis were done according to Ghobadian et al. 

(2015). 

Results and Discussion 

The growth of Calothrix sp. ISC 65 continued at neutral (pH 7) and alkaline 

(pH 9) conditions in log phase to 96 hours (Table 1). The biomass production 

rate was influenced by alkalinity under both conditions. The rate of 

chlorophyll production seemed compatible with the growth at extreme 

conditions. This was not true for chlorophyll contents per cell and the peak of 

chlorophyll absorption. Despite this; the effect on PBS (normalized to 

chlorophyll) seemed more outstanding. DIC limitation could not change the 
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pattern of biomass production in Calothrix sp. ISC 65. Alkaline condition  

(pH 9) and limited irradiance, caused the maximum biomass production and 

growth rate. The role of alkalinity was more outstanding than irradiance 

because pH 7 caused the decline in biomass production under the same 

conditions of DIC and irradiance. Comparing optical densities at 750 nm 

after 24 hours showed that cyanobacterium had a better ability for acclimation 

at pH 9. This is in agreement with Soltani et al. (2007). Results for the 

response of the toxic cyanobacterium Dolichospermum sp. to lowered pH (−0.4 

units by adding CO2) and elevated temperature (+4 °C) in an experimental 

set-up were examined. Growth rate, microcystin concentration and oxidative 

stress were measured. The growth rate and intracellular toxin concentration 

increased significantly as a response to temperature. When Dolichospermum 

was exposed to the combination of elevated temperature and high CO2/low 

pH, lipid peroxidation increased and antioxidant levels decreased (Brutemark 

et al., 2015). 

Spectroscopical analysis showed that the effect of alkalinity on 

phycobilisome production was outstanding especially after 96 hours (Table 1). 

After 24 hours, the difference between the effect of pH 7 and 9 was not 

significant. After 96 hours, the high alkaline condition caused excitation of 

phycobilisome production. This was not true under neutral condition. The 

production of phycobilisomes depended on the alkalinity under long periods 

and not for short periods. The role of time seemed more outstanding than 

DIC and irradiance (Fig. 1).  

Table 1 

Spectral characteristics of Calothrix sp. ISC 65 over 24 and 96 hours alkalinity treatments 

pH 9 pH 7 Time, hours Spectral characteristics 

-1.78 -1.46 24 

-1.35 -1.23 96 

ln (A750) 

-3.25 -3.78 24 

-2.24 -3.69 96 

ln (A680-A750) 

0.23 0.10 24 

0.19 0.17 96 

(A680-A750)/A750 

685 685 24 

688 686 96 

Chl (λmax) 

1.28 1.21 24 (A630-A750)/(A680-A750) 
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Fig. 1. RSP-analysis of PBS in Calothrix sp. ISC 65 at different alkalinities and time 

treatments 

 

Collectively, we can say, the effect of alkalinity in the growth rate and 

phycobilisome production in this strain seemed essential and this did not 

depend on extremely limited DIC and irradiance. This was not true for 

Fischerella sp. FS 18 (Soltani et al., 2007) and Hapalosiphon sp. FS 44 

(Shokravi et al., 2014) collected from the same region. 

Table 2 shows the effect of alkalinity on pigment composition of Calothrix 

sp. ISC 65. Results emphasized that alkalinity treatments caused excitation of 

both light-harvesting complex and phycobilisome system. Pigmentation is the 

main phenotypic difference within the similarly sized, planktonic freshwater 

picocyanobacteria. 

Table 2 

Absorption ratios of Calothrix sp. ISC 65 after 24 and 96 hours alkalinity treatments  

time course 

Absorption ratio of Calothrix pH 

440/680 480/680 621/680 

24  96  24  96  24  96  

7 

1.308 1.370 1.367 1.160 1.031 1.943 

9 1.379 1.395  1.422 1.315 1.054  1.945 
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Red PE-rich picocyanobacteria use phycoerythrin, and green PC-rich 

picocyanobacteria use phycocyanin as major light-harvesting pigments (Moser 

et al., 2009). The number of carotenoids and phycocyanin increased under 

alkaline conditions, especially after 96 hours. This was true for chlorophyll 

especially in the red region which forms essential parts of the main 

photosynthetic reaction center and light harvesting system. Phycocyanin 

contents appeared as the main part of phycobilisome and were more stable 

during time and alkalinity fluctuations. It was interesting that alkalinity at 

limited DIC and irradiance treatments excited phyco-biliproteins and 

carotenoid production. Phycocyanin was the most concentrated under the 

extreme values of the treatments comparing the other parts of phycobilisome 

system: phycoerythrin and allophycocyanin. The highest rates of alkalinity, 

especially after long periods of time, caused the highest rates of phycocyanin 

production but the difference between short and long time periods was not 

significant (Table 2).  

Synechocystis sp. strain PCC 6803 grows photoatrophically across a broad 

pH range (Summerfield et al., 2013). The mutant of this strain cannot tolerate 

pH 7 (Summerfield et al., 2013). In spite of Calothrix sp. ISC 65, the 

sensitivity of growth, pigment production and photosynthetic apparatus in 

Fischerella sp. FS 18 (Soltani et al., 2011) and Hapalosiphon sp. FS 44 and 56 

(Shokravi et al., 2012, 2014) collected from the same region to extremely 

limited irradiance was noticeable. In Soltani et al. (2007) the amount of 

chlorophyll production at relatively limited DIC (aeration condition) was 

about 11.99 µgmg dw-1 (at 3 μEm-2s-1) and 8.32 µgmg dw-1 (at 300μE 
m-2s-1). Decreasing irradiance to 2 (instead of 3 μEm-2s-1) and limitation of 

DIC to non-aeration conditions caused different amounts of chlorophyll 

production especially under alkaline conditions (pH 9). Safaie et al. (2015) 

showed that in Fischerella sp. the higher amount of chlorophyll production 

at pH 9 belonged to 2 μEm-2s-1 when DIC was not limited but to 300 

μEm-2s-1 when DIC was extremely limited. In the case of Nostoc sp. 

UAM205, it has been reported that the maximum growth rate was at pH 9 

and increased with increasing light intensity at this pH (Fernández-Valiente 

and Leganés, 1989).  

But results of experiments with Nostoc sp. UAM 206 showed that the 

effect of pH and light intensity depended on the availability of DIC, in such a 

way that under conditions of DIC limitation growth increased with pH but 

light conditions had no effect; on the contrary, when DIC was available 

growth increased with increasing light but not effect of pH was observed 

(Poza-Carriуn et al., 2001). Therefore, apparently the effects of irradiance and 

alkalinity significantly depend on the species studied and, on growth 

conditions (Soltani et al., 2007). It may be species-specific characteristics of 
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photosynthetic apparatus helping dominance of the strain at DIC 

concentration tensions, especially at different environmental conditions 

include light and alkalinity (Deblois et al., 2013). Tyler et al. (2004) showed 

that Synechococcus elongatus cells grown bubbled with air (approximately 370 

mmol CO2 mol) induced a high-affinity CCM with a Km of 14 mmol Ci, 

which maintained growth rates nearly as high as S. elongatus cells grown 

bubbled with 50,000 mmol CO2 mol-1 air, which had a Km of 281 mmol Ci. 

Thus, synthesis and maintenance of the CCM required significant investments 

and rearrangements for cells growing in low-Ci environments, but 

nonetheless, under steady light and nutrient supplies, low-Ci cells could 

maintain photosynthesis and growth at levels comparable to high-Ci cells 

without the same energetic and metabolic constraints of the induced CCM. 

They hypothesized that the induced CCM in low-Ci cells would, however, 

constrain the rate and amplitude of light acclimation (Tyler et al., 2004). 

In the opposite of Fischerella sp. FS 18 (Soltani et al., 2007), the amounts 

of PE and APC seemed high in Calothrix sp. ISC 65. The complete structure 

of the core and rode parts of PBS, and the ratio between two parts depended 

on the alkalinity (Table 3). But the effect of alkalinity was not significant. It 

seemed that under neutral conditions (pH 7), the production of PE was high 

and even more than PC. It was in dependent on the time. Only high alkalinity 

for long periods could excite PC production and increase the PC : PE ratio. 

This was nearly the same for APC. Alkalinity especially for long intervals 

caused excitation of PC production which seemed compatible with the 

findings of Amirlatifi et al. (2013) and Iranshahi et al. (2014). 

Table 3 

Absorption ratios of the rode and core parts of the phycobilisome of Calothrix sp. ISC 65 

after 24 and 96 hours of alkalinity treatments at specific time intervals 

Absorption ratio of Calothrix 

(PC+PE)/APC PC/APC PC/PE 
Time, hour pH 

2.28 1.06 0.87 24 

2.11 0.92 0.78 96 

 

7 

2.10 1.04 0.99 24 

2.27 1.54 1.24 96 

 

9 

 

In Soltani et al. (2007), Fischerella sp. FS 18 had no APC at pH 7 and 

limited carbon dioxide concentration. In Iranshahi et al. (2014), Shokravi et 

al. (2014), and Safaie et al. (2015), this strain (and Hapalosiphon sp. FS 44) 

had a large amount of APC. This must be related to irradiance and carbon 

dioxide concentration. In Soltani et al. (2007) there was no limitation of 
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irradiance and carbon dioxide concentration and this possibly caused new 

pattern of PBS behaviors. The distribution pattern of PBS (Fig. 1), showed 

that except for a narrow border around combined pH 9 and 96 hours, the 

distribution pattern of PBS seemed nearly uniform. We can suggest that PBS 

production in such a strain is sensitive to the combination of time and 

alkalinity at pH 9 under DIC and light limitation. From the applied point of 

view, application of exact amount of alkalinity (pH 9) and time (96 hours) for 

cultivation of this strain may significantly increase PBS production. This 

coincides with Abbasi et al. (unpublished data) on Fischerella sp. 

The sensitivity of pigment production and photosynthesis apparatus to 

extremely limited irradiance was noticeable. Results (Table 4) showed that 

although maximum photosynthesis normalized to chlorophyll was higher 

under an alkaline (pH 9) condition, the degree of adaptation with limited 

irradiance and consumed energy needed reaching to maximum photosynthesis 

decreased at extremely high alkalinity (pH 11).  

Table 4 

Photosynthesis-irradiance curve parameters at different alkalinities in  

Calothrix sp. ISC 65 

pH Pmax (μmol O2 mg chl-1h-1)  α Ik (μmol O2 mg chl-1h-1) 

7 89 ± 8.23 1.3 ± 0.39 76 ± 12.23 

9 227.99 ± 37.33 2.85 ± 0.18 48 ± 6.21 

11 114.99 ± 17.39 1.35 ± 0.38 82.56 ± 9.11 

 

Studies per biomass (not shown) revealed similar results in that the degree 

of adaptation to limited irradiances (reaching the highest degree of 

photosynthesis) was higher under alkaline conditions (pH 9). It seemed that 

the efficiency of photosynthesis increased with alkalinity.  

We could not observe photoinhibition even at extremely high light 

intensities (more than 2000 μEm-2s-1) at pH 9. But treatment with both pH 7 

and 11, caused photoinhibition below 1000 μEm-2s-1. This was the same as 

relatively “limited and no limited” DIC concentration conditions at different 

pH levels, irradiances and even nitrogen sources (Soltani et al., 2007, 2009). 

Moser et al. (2009) studied freshwater picocyanobacteria acclimation to 

irradiances from low (6 μEm-2s-1) to high (1500 μEm-2s-1), which showed 

photoinhibition at high irradiance. The photosynthetic parameters varied 

widely, both among the light acclimation treatments of each strain and 

between the strains; Pmax of the LL (low light) culture from 4 to 19 times 

higher than Pmax of the PC-rich cultures acclimated to LL. The initial slope of 
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the P/E curve was highest and the saturation light intensity (Ik) was lowest in 

the LL culture of BO8801. All cultures had significantly higher cell-specific 

chlorophyll content in the LL than in the ML (mid-light intensity) 

treatments. However, we can say alkalinity, up to pH 9, caused the maximum 

photosynthesis of Calothrix sp. ISC 65, besides the higher quantum yield and 

shade-adapted capacity and was another proof for increasing photosynthesis 

and carbon dioxide concentration mechanism activity under this condition. 

Alkalinity at the higher (pH 11) not only caused lower amounts of oxygen 

liberation but also caused sensitivity to photoinhibition. It seemed that under 

limitation of carbon dioxide concentration and irradiance, pH 9 treatments 

caused the resistance of the photosynthetic apparatus against damages caused 

by high number of irradiances. 

In our study a light intensity of 2 μmol photonm-2s-1 was used, which is 

lower than the one used by Lu and Vonshak (1999, 2002), Poza-Carrion et al. 

(2001), Dhiab et al. (2007), Soltani et al. (2005), Soltani et al. (2007), and 

many other papers. Strain Nostoc sp. UAM 205 and 206 have been 

characterized at extremely limited carbon dioxide concentration but 60 μmol 

photonm-2s-1 (Fernandez-Valiente, Leganes, 1989; Zeng, Vonshak, 1998; 

Poza-Carrion et al., 2001) showed that at a higher light intensity, growing 

cells had lower photosynthesis activity after photoinhibition under salinity 

stress, compared with cells growing under lower light intensity condition 

(Dhiab et al., 2007). However, the carbon dioxide conditions were not 

considered in this research. The size of phycobilisomes and the relationship 

between PSII and PSI (Yamanaka, Glazer, 1981; Poza-Carriуn et al., 2001; 

Soltani et al., 2006) supported this but not completely. However, it was 

obvious that the highest amount of PSII : PSI ratio and phycobilisome size 

may be seen at pH 9. The high PSI : PSII (low PSII : PSI) ratio in 

cyanobacteria caused the higher efficiency of energy transfer from PSII to 

plastoquinone and then to PSI. In cyanobacteria there is usually more PSI for 

each PSII. For example results revealed 2.3 in Synechococcus sp. and 2.5 for 

Synechocystis sp. before iron starvation but decreased to 0.4 (Synechococcus 

sp.) and 1.1 (Synechocystis sp.) after iron depletion (Gan et al., 2014). Ogawa, 

Sonoike (2016) studying photosystem ratios in Synechocystis sp. PCC 6803, at 

nitrogen deficiency, emphasized that photosystem stoichiometry was more or 

less constant regardless of the change in growth media. PSI : PSII fluctuated 

in this strain from nearly 3.5 to 4.5.  

In Calothrix sp. FS 65, the highest rate of PSII : PSI, or the lowest 

PSI : PSII, resulted under pH 9 after 96 hours (Table 5). Fluorimetric 

analysis (Table 5) seemed compatible with photosynthesis efficiency (as a 

whole) and photosystem ratios (as a special basic factor). A neutral condition 
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caused a sharp decline in PSII : PSI ratio and a decreased energy transfer 

photochemically. Collectively, neutrality caused a decrease of energy in 

photosynthesis and increased fluorescence. The relative fluorescence of PSI 

chlorophyll (FPSI) of the mutant strains of Synechocystis PCC 6803 under 

alkaline conditions (pH 8.2) was significantly lower than that of the wild-type 

when normalized at 685 nm (Wang et al., 2008). We measured for pH 11 

(data not shown) and the results were nearly the same but just like P-I curve 

parameters, it seemed that neutrality (pH 7) caused more inefficiency 

comparing extreme alkalinity (pH 11). The ratio of photosystems in this strain 

was obviously less than Fischerella spp. (Soltani et al., 2007; Safaie et al., 

2015) Hapalosiphon spp. and Nostoc spp. (Shokravi et al., 2012, 2014; Kiaei et 

al., 2013; Iranshahi et al., 2014). 

Table 5 

Fluorimetry and Photosystem ratio analysis of Calothrix sp. ISC 65 after 24 and 96 hours of 

alkalinity treatments  

Absorption ratio of Calothrix 

PSII : PSI Fv'/Fm' Fv/Fm 

 

pH 

96 24 96 24 96 24 

0.82 1.031 0.467 0.678 0.577 0.424 

 

7 

0.64 1.054 0.521 0.586 0.683 0.491 9 

 

From applied aspects, increasing time (96 hours) and meanwhile 

increasing alkalinity (pH 9) caused the highest ratio of PSII : PSI (Fig. 2). We 

could increase the system’s efficiency simply by using a combination of pH 9 

and 96-hour treatments. This may be the useful result for large-scale 

cultivation in limited light and DIC concentration. PSI and naturally 

reductant production and cyclic electron flow may increase considerably 

more. For special situations which had to increase the activity of cyclic flow 

or reductant pool of the strain, we can increase the time under alkalinity 

conditions. This will provide more water photolysis ability and electron 

transfer (besides energy) from PSII to Cyt.b6f. This coincides with Zorz et al. 

(2015) who suggested that the abundance of Cyt b6f and PSI (besides the 

relatively low level of PSII and Rubisco) are consistent with the increase in 

cyclical electron flow around PSI in Prochlorococcus sp. MIT 9313. 

FTIR spectrum comparison (Figs 1 and 2) showed the effect of alkalinity 

on functional group productions at different times. It was interesting that both 

(alkalinity and time) caused configurational pattern changes, but the influence 

of time was more obvious.  
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Fig. 2. RSP analysis of photosystem ratios in Calothrix sp. ISC 65 at different 

alkalinities and time treatments  

 

Different height of peaks revealed that changes in chemical functional 

groups were caused by the combination of alkalinity and time. The bands 

belong to Amide II groups and OH stretching for proteins and carbohydrates 

showed different length of peaks after 96 hours. pH 11 caused the most 

outstanding configuration changes. We showed differences around asymmetric 

carbon vibration, lipid stretching and OH bending of the polysaccharides at 

different alkalinities as well. Most these differences were revealed under pH 

11. At this time, we cannot discuss the changes at fingerprint borders, 

although the effect of alkalinity at this region seems important. The 

combinations of extremely low irradiance, carbon dioxide concentration, and 

alkalinity fluctuations produced different patterns in functional groups, 

especially with carbohydrates and proteins in this strain in a short amount of 

time. Differences appeared at the fingerprint regions after a long amount of 

time.  

FTIR analysis is rarely used in stress physiology (Figs 3 and 4). It is most 

common in the papers on lipid biochemistry and profile especially for biofuel 

application purposes. It's importance in the taxonomy of algae has been 

suggested (Ratledge, Wilkinson, 1988; Cohen et al., 1995; Kenne, van der 

Merwe, 2013; Borah et al., 2016) but further research is needed in the 

taxonomy of cyanobacteria. Borah et al. (2016) believed that ATR-FTIR is 

not  a strong tool  in chemotaxonomy of  cyanobacteria. Bajwa  and  Bishnoi 
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(2015), studying the effect of salinity on the overproduction of lipids in 

Chlorella pyrenoidosa, used FTIR analysis, and showed that 5 to 25 mM 

salinity caused increases in lipid range (from 10 to 45%). They also suggested 

that FTIR results showed high amounts of lipids, carbohydrates, and nucleic 

acid contents in such a strain. Besides the strain, results seemed to confirm 

our results.  

 

 
FIG. 3. FTIR analysis of Calothrix sp. ISC 65 at different alkalinities after 24-hours 

treatments (1 — pH 7; 2 — pH 9; 3 — pH 11) 

 

 

 
Fig. 4. FTIR analysis of Calothrix sp. ISC 65 at different alkalinities after 96-hours 

treatments (1 — pH 7; 2 — pH 9; 3 — pH 11)  

 

 

Kiaei et al. (2013), for the first time, characterized four strain of native 

Iranian cyanobacteria using FTIR analysis for evaluation of lipids in biofuel 

projects.They studied the effect of organic and inorganic nitrogen nutrition in 

lipid (especially fatty acid profiles) production of four cyanobacteria but 

selected Synechococcus as a model strain. They concluded that treatments of 

Synechococcus with different concentration of nitrate changed the profile of 

fatty acids and amino acids. Peaks of the FTIR shifted and changed their 

length at different concentrations of nitrogen sources especially the nitrate 

form. 
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ВЛИЯНИЕ ЩЕЛОЧНОСТИ, СВЕРХНИЗКОЙ КОНЦЕНТРАЦИИ ДИОКСИДА 

УГЛЕРОДА И ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ НА СПЕКТРАЛЬНЫЕ 

СВОЙСТВА, ФИТОБИЛИСОМЫ, ФОТОСИНТЕЗ, ФОТОСИСТЕМЫ И 

ФУНКЦИОНАЛЬНЫЕ ГРУППЫ НАТИВНОЙ ЦИАНОБАКТЕРИИ CALOTHRIX 

SP. ISC 65 

Исследован физиологический ответ штамма Calothrix sp. ISC 65 на культивирование 

в условиях сверхнизкой освещенности (2 μEм-2с-1) при различных значениях рН (7, 

9, 11) и низкой концентрации углекислого газа (без аэрации и обогащения 

углекислым газом). Спектроскопический анализ показал, что через 96 ч 

культивирования при рН 9 значительно увеличивается скорость роста исследуемого 

штамма и выработка им хлорофилла и фикоцианина. Снижение рН до нормального 
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(7) вызывало уменьшение продукции фикобилисомы уже через 24 ч, при рН 9 — 

возбуждение светособирающего комплекса и реакционного центра фотосистем. 

Фикоцианин, по-видимому, являлся основным элементом фикобилисомы, но при 

pH 9 увеличивалось продуцирование фикоэритрина и аллофикоцианина в качестве 

внешней части фотосинтетической антенны. Флуориметрический анализ и анализ 

кривых фотосинтеза и освещенности показали, что повышение щелочности до рН 9 

(не выше 11) вызывает повышение эффективности фотосинтеза и снижение 

нефотохимической флуоресценции, особенно через 96 ч. Соотношение ФС II: ФС I 

увеличивалось при возрастании щелочности от рН 7 до 9 и достигало наивысшего 

уровня через 96 ч. Анализ RSP показал, что вокруг pH 9 и 96 ч существует узкая 

граница с самыми высокими показателями соотношения ФС II : ФС I. По данным 

инфракрасной спектроскопии с преобразованием Фурье (ИК-Фурье), щелочные 

условия вызывали изменения конфигурации функциональных групп. Разница в 

структуре функциональных групп между pH 7 и 11 была совершенно очевидной, 

особенно через 24 ч. Различия между асимметричной вибрацией углерода, 

растяжением липидов и изгибанием ОН полисахаридов отмечались при pH 9 и рН 

11. В целом, при крайне ограниченной освещенности и концентрации углекислого 

газа щелочность pH 9 вызывала у Calothrix sp. ISC 65 наибольшую физиологическую 

активность. 

К л ю ч е в ы е  с л о в а : Calothrix, цианобактерии, щелочность, растворенный 

неорганический углерод, ограниченная освещенность 




