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In this paper a multiplicative two-level precomaliing algorithm for second order elliptic boundarglue problems is
considered, where the discretization is done ud$Ramnacher-Turek non-conforming rotated bilineaitdinelements on
quadrilaterals. An important point to make is timathis case the finite element spaces correspgrditiwo successive levels of
mesh refinement are not nested in general. To bahi, a proper two-level basis is required tobdmas to fit the general
framework for the construction of two-level precamhers originally introduced for conforming fieitelements. The proposed
variant of hierarchical two-level splitting is firdefined in a rather general setting. Then, tvelired parameters are studied and
optimized. The major contribution of the paper lig derived uniform estimates of the constant i strengthened CBS
inequality which allow the efficient multilevel ®nsion of the related two-level preconditioners.

Introduction
In this paper we consider the elliptic boundaryuegbroblem

Lu=-00a()0u(x)) = f(x) in Q
u = 0 on I, 1)
@Xx)du(x)) th = 0 on I,

where Q is a convex polygonal domain ilR*> f (X) is a given function inL*(Q), the coefficient matrixa(x) is
symmetric positive definite and uniformly boundied Q, n is the outward unit vector normal to the boundary
=0Q,andl' =T, O I .We assume that the elements of the diffusionficiefit matrix a(X) are a piece-wise
smooth functions on Q. The weak formulation of the above problem reasidofiows: given f [JL° (Q) find
uV =H:(Q) ={vOH*(Q):v=00nT_}, satisfying

Au,v) =(f,v) OvOHL(Q where A(u,v) = jﬂa(x)Du(x) (v(x)dx. )

We assume that the domafd is discretized by the partitiolf,, which is obtained by a proper refinement of a give
coarser partition]’,, . We assume also thdi, is aligned with the discontinuities of the coeffiet a(X) so that over
each elementE T, the coefficientsa(X) of are smooth functions. The variational probléjié then discretized
using the finite element method, i.e., the contiruspaceV is replaced by a finite dimensional subsp&e Then
the finite element formulation is: find,, [JV,,, satisfying

AUy v) = (F,v,) Dy, OV, where A, (Uy,v,) = > [a(e)0u, My, dx. (3)
e,

Herea(e) is a piece-wise constant symmetric positive defimatrix, defined by the integral averaged values
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of a(x) over each element from the coarser triangulafign We note that in this way strong coefficient jungmsoss
the boundaries between adjacent finite elements ffq are allowed. The resulting discrete problem tcsblved is
then a linear system of equatiods, U, = fh, with A and fh being the corresponding global stiffness matrig an

global right hand side, anld being the discretization (meshsize) parametethi@underlying partitionl,, of Q.

The two-level setting. We are concerned with the construction of a twalgweconditionerM for A, ,

such that the spectral condition numbe(V _1Ah) of the preconditioned matrif _lAh is uniformly bounded with

respect to the meshsize paramdterand the possible coefficient jumps. The clasgicabry for constructing optimal
order two-level preconditioners was first developefP, 3], see also [1]. The general frameworkuiegs to define two

nested finite element spacd4, [1V,, that correspond to two consecutive (regular) mesfmements. The well
studied case of conforming linear finite elementthe starting point in the theory of two-level andlti-level methods.
Let T, and T,; be two successive mesh refinements of the donfdinwhich correspond tdV/,;, and V, . Let

{(pf_‘f),k =1,2,--,N,} and{(pf]k),k =1,2,--,N,} be the standard finite element nodal basis funsti®Ve split
the meshpointdN, from T, into two groups: the first group contains the rod¢,, from T,, and the second one

consists of the rest, where the latter are the yadtied node-point®,,, from T, \ T, . Next we define the so-called
hierarchical basis functions

{(-[;ﬂ()’k =1,2,--,N;} :{(T’g)on Ty} D{(Bﬁm)on T AT, 4)

Let then Z\h be the corresponding hierarchical stiffness matdmder the splitting (4) both matriced, and E\h
admit in a natural way a two-by-two block structure

A :|:A11 A12:| }Nh\H ’Z\ — 6\11 ;\12 }Nh\H (5)
" A21 Azz }NH " A

As is well-known, there exists a transformation nmat] = { !

3 } , Which relates the nodal point vectors for the
21 2

standard and the hierarchical basis functions lk®ifs,

Y v V,=V
v=llif=g ¥y TN
Vv, Vv, V,=J, Vv, +V,

Remark 1.1 Clearly, the hierarchical stiffness matri,, is more dense thaA, and therefore its action on a vector
is computationally more expensive. The transforamatnatrix J, however, enables us in practical implementations
work with A, , sinceA, = JA,J".

Two-level preconditioners and the strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality.

Consider a general matrif , which is assumed to be symmetric positive dedinitd partitioned as in (5). The quality
of this partitioning is characterized by the cop@sding CBS inequality constant:

T
Vl A12V2

V= sup , (6)
v,OR™ "2 v, [IR" (VIAllvl)l/2 (V;AZZVZ)M

wheren;, = N, andn, = N, . Let us assume also that
A sCus(+9)Ay andA,, <Cyp, < (146,)A,,. @)

The inequalities (7) are in a positive semidefirsense whereC,; and C,, are symmetric and positive definite
matrices for some positive constamfs, i =1,2. The multiplicative preconditioner is then of tieem
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M — |:C11 O :||:|1 CJTZ:II.-A12j| (8)
F .
A21 C22 O |2
Then
-1 1 2 2
k(MZA) < =/ {1+ 0.5[5l +3, +4/(3, - 5,)% + 46,0,y ]} )

WhenC,, = A, andC,, = A, then estimate (9) reduces tok (M -*A) < 1/(1- ) . Detailed proof of (9) is
found, for instance, in [1]. In the hierarchicalsba contex), andV, are subspaces of the finite element sp¥e

spanned, respectively, by the basis functionseantw nodedN,,,, and by the basis functions at the old nofés .
For the strengthened CBS inequality constant, thelds that

’ ) A, (u,v)
- LV, =
y =cosW,,V,) qulls,u?/D\/z JA WA, (v,V)

where Ah(Dm is the bilinear form which appears in the variasib formulation of the original problem. When

(10)

VvV, nV, ={0} , the constany is strictly less than one. As shown in [2], it d@estimated locally over each finite
element (macro-elemenfx L1 T,, , which means thay = maxy,, where
E

_ < A (u,V)
E~ P
UV, (E), VOV, (E)  Ae (U U) A (v, V)
The spaces V, (E) above contain the functions fromV, restricted toE and A (U,V) corresponds tdA, (u,V)

, V% const.

restricted over the elemeiit of T,; (see also [5]). Using the local estimates, itdsgible to obtain uniform estimates
for y. In the case of linear conforming finite elemeritsis known that )y does not depend ol and on any
discontinuities of the coefficients of the bilindarm A, (CDI, as long as they do not occur within any elemérhe
coarse triangulation used. THe-independence means that if we have a hierarchgfisements of the domain which
preserve the properties of the initial triangulati¢refinement by congruent triangles, for examphléen ) is
independent of the level of the refinement as wedl certain implementations, it is shown thatis independent of
anisotropy. Hence, as long as the rate of convemenbounded by some function @f, it is independent of various

problem and discretization parameters, such asrtke mentioned above.
We stress here, that the above technique is oligirdeveloped and straightforwardly applicable for

conforming finite elements and nested finite elenspaces, i.e., wheX,, UV, .

1 Rannacher-Turek finite elements

Nonconforming finite elements based atated multilinear shape functions were introduced by famer
and Turek [6] as a class of simple elements for Skekes problem. More generally, the recent a@wiin the
development of efficient solution methods for nammorming finite element systems are inspired sirtlattractive
properties as a stable discretization tool fooitiditioned problems.

The unit square[—l,l]2 is used as a reference eleménto define the isoparametric rotated bilinear eleme

edT,. Let ¢, : € — e be the corresponding bilinear one-to-one transftion, and let the nodal basis functions be
determined by the relation

11

4 4

T}
1 2| 4 /\
1 1 1
2

3

-1 3

Fig. 1. Rotated bilinear finite element.
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{(pi}i‘l:l ={o O\V_l}i“:l’ {9} Ospan{1, x,, x* -y’
For the variant MP (mid point{,(f)i}le are found by the point-wise interpolation conditio
6, (b)) =3,

Whereb,.j , ] =1,4 are the midpoints of the edges of the quadrilatéraThen,

Br(xy) = %(1—2x+ =y, Gp(xy)= %(1+2x+ (2 - y?)),

G:06Y) =3 (A-2y= (¢ =y, Bu(0y) =2 142y (¢ -y,
The variant MV (mid value) corresponds to integmeitivalue interpolation conditions. Left, = U?:lréj. Then
{®,} 1, are determined by the equality
T [ 6drd =g,
which leads to ;

Br(xy) = %(2—4x+3<x2 YD) Gk y) = %(2+4x+3<x2 -y?)),

$3(%Y) =§(2—4y—3(x2 V), Ga(xy) =§(2+4y—3<x2 -y?)).

2 Hierarchical two-level splitting by differences and aggregates (DA)
Let us consider two consecutive discretizatiohs and T, . Figure 2 illustrates a macro-element obtained

after one regular mesh-refinement step. We searthhis caseV,, and V| are not nested.

The DA splitting is easily described for one maetement. If¢,,...,¢,, are the standard nodal basis functions for
the macro-element, then we define

V(E) = span{g,,...,0,,}=V,(E) OV, (E),
Vl(E) = Span{(Pl'(PZ’(PS'(p4’(p5 T 05,09 TP10:P7 T PgiPyy _(Plz}
V,(E) = Span{(l)s"'q)e"'Zalj(Pju(Pg"'(”m"'zazj(Pjn

j=1.4 j=14
¢; gt zasjq)j Py TP + za4j(pj}'
j=14 j=14

Using the related transformation matr.il»%,

7 1 8 3
(&) One macro-element (b) One element

Figure 2: Uniform refinement on a general mesh.
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2
2
2
2
1 -1
1 1 -1
JE=5 L -1 , (11)
1 -1
app dp 013 94 11
Uy Gpp p3 Gpq 11
a3y d3p 033 QO34 11
11

the vector of the macro-element basis functioq]>%={(pi}ilfl is transformed to a new hierarchical basis

¢*E={(~pi}ilfl=JE¢E. Accordingly, J¢ transforms the macro-element stiffness matrix antaerarchical form
~ Acy Acp,| 0 OV(E
AE=‘]EAE‘]-|£= ~E,11 ~E,12 :.pl 1( ) (12)
¢; DV, (E)

E21 A E,22

Following the local definitions, for the whole fiaielement spac¥, with the standard nodal finite element

basiscp:{(pﬂ)}iN:? we can similarly construct the new hierarchicalis@ :{ﬂ')}:\i? and the corresponding splitting
V.=V, 0OV,. (13)

The transformationd such that@ = J@, can be used for transformation of the stiffnesgrimaA , to

hierarchical form,&h =JAhJT, which allows preconditioning by the two-level poeditioners based on the splitting

(13). Now, we are in a position to analyze the tmmsy=COS(Vl,V2) for the splitting (13). Again, as in the previous

section, we would like to perform this analysisdlbg, by considering the corresponding problemsracro-elements.
For this purpose we need to have satisfied theitond

(1) ker(A ,,) = ker(A,), which is equivalent ) - a; =1, j 0{1,2,3,4}.

There are obviously various DA splittings satistyithe condition(i). When the two-level algorithm is recursively
generalized to the multilevel case, it is useful if

(1) Ag 5, is proportional toA, .
Such a property holds in a very general settingtferDA splitting of the Crouzeix-Raviart finiteeghent space, see [4].
Unfortunately, it seems to be rather complicatetintd a parameter matrika; ], which satisfies the conditio(ii) in

the general case of Rannacher-Turek finite elements

3. Uniform estimates of the CBS constant

We study in this section the isotropic model prablehere all element@l1T,, are squares, and the uniform
refinement is as shown in Figure 3. Both variant &hd MV of rotated bilinear finite elements, aoasidered.

Due to the symmetry of the problem, the down-lédthk of the transformation matrid. can be simplified to
the form

b ¢c a a

b

c a a (14)
aabc

aacb

698



Ilpuknaone npozpamne 3abe3neuennsn

The condition (i) is equivalent to2a+b+C=1. Let us write the conditior{ii) in the form A ,, = pA,. Then,
(i1) is reduced to a system of two nonlinear equationssay, (b, C) , with a parameterp . It appears, that the system

for (b,C) has a solution ifp [ p,, ) . In such a case, we can optimize the param@terso that the related CBS
constant is minimal.

Variant MP:
11 v 12 4
5¢ *4 » 10
I . . il le » 2
1 2
6e 3 » 9
7 I 8 3
(a) One macro-element (b) One element

Figure 3: Uniform refinement on a square mesh.

.. 3
Lemma 4.1 There exists a two-level splitting satisfying the condition (ii) , if and only if, p = —. Then, the solutions for
7

1
(b,c) areinvariant with respect to the local CBS constant )2 =1-——, and for the related optimal splitting
4p
Vo <= (15)
MP = 12
Although the statements of Lemma 4.1. look verypymthe midterm derivations are rather techniedlich is
just illustrated by the following expressions okasf the similarly looking solutions fofb, C) :

- -1 . j
b= 24786- 7616 26 -728
70(-729+ 2240p)( 4786- 761600 + 2658/ () - 7200p\/0(p) + ™(P)
¢ = o~ atn)

70

where @(p) = ~1329+ 3640p — 140,63 32p + 420p2 .
Variant MV: The same approach is applied to get the estinhatesv.

.. 2
Lemma 4.2 There exists a two-level splitting satisfying the condition (ii) , if and only if, p = —. Then, the solutions for
5

1
(b,c) areinvariant with respect to the local CBS constant )2 =1-——, and for the related optimal splitting
4p

2

Vw < (16)

o | w
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