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In this paper a multiplicative two-level  preconditioning algorithm for second order elliptic boundary value problems is 
considered, where the discretization is done using Rannacher-Turek non-conforming rotated bilinear finite elements on 
quadrilaterals. An important point to make is that in this case the finite element spaces corresponding to two successive levels of 
mesh refinement are not nested in general. To handle this, a proper two-level basis is required to enable us to fit the general 
framework for the construction of two-level preconditioners originally introduced for conforming finite elements. The proposed 
variant of hierarchical two-level splitting is first defined in a rather general setting. Then, the involved parameters are studied and 
optimized. The major contribution of the paper is the derived uniform estimates of the constant  in the strengthened CBS 
inequality which  allow the efficient multilevel extension of the related two-level preconditioners. 

Introduction 
In this paper we consider the elliptic boundary value problem  
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 where Ω  is a convex polygonal domain in, 2R  )(xf  is a given function in )(2 ΩL , the coefficient matrix )(xa  is 

symmetric positive definite and  uniformly bounded in Ω , n  is the outward unit vector normal to the boundary 

Ω∂Γ = , and ND ΓΓ=Γ ∪ . We assume that the elements of the diffusion coefficient matrix )(xa  are a piece-wise 

smooth functions on    Ω . The weak formulation of the above problem reads as follows: given )(2 Ω∈ Lf  find   

}on  0=:)({=)( D
11 ΓΩ∈Ω≡∈ vHvHVu D , satisfying 
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We assume that the domain Ω  is discretized by the partition hΤ  which is obtained by a proper refinement of a given 

coarser partition HΤ . We assume also that HT  is aligned with the discontinuities of the coefficient )(xa so that over 

each element HTE ∈  the coefficients )(xa  of are smooth functions. The variational problem (2) is then discretized 

using the finite element method, i.e., the continuous space V  is replaced by a finite dimensional subspace hV . Then 

the finite element formulation is: find hh Vu ∈ , satisfying   
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  Here )(ea  is a piece-wise constant symmetric positive definite matrix, defined by the integral averaged values 
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of )(xa  over each element from the coarser triangulation hT . We note that in this way strong coefficient jumps across 

the boundaries between adjacent finite elements from hT  are allowed. The resulting discrete problem to be solved is 

then a linear system of equations hhh =A fu , with A  and hf  being the corresponding global stiffness matrix and 

global right hand side, and h  being the discretization (meshsize) parameter for the underlying partition hT  of Ω . 

The two-level setting. We are concerned with the construction of a two-level preconditioner M  for hA , 

such that the spectral condition number )AM( h
1−

κ  of the preconditioned matrix h
1AM −  is uniformly bounded with 

respect to the meshsize parameter h , and the possible coefficient jumps. The classical theory for constructing optimal 
order two-level preconditioners was first developed in [2, 3], see also [1]. The general framework requires to define two 

nested finite element spaces hH VV ⊂ , that correspond to two consecutive (regular) mesh refinements. The well 

studied case of conforming linear finite elements is the starting point in the theory of two-level and multi-level methods. 

Let hT  and HT  be two successive mesh refinements of the domain Ω , which correspond to HV  and hV . Let 

},1,2,=k,φ{ (k)
H HNL  and },1,2,=k,φ{ h

(k)
h NL  be the standard finite element nodal basis functions. We split 

the meshpoints hN  from hT  into two groups: the first group contains the nodes HN  from HT  and the second one 

consists of the rest, where the latter are the newly added node-points H\hN  from Hh \ TT . Next we define the so-called 

hierarchical basis functions 
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Let then hA
~

 be the corresponding hierarchical stiffness matrix. Under the splitting (4) both matrices hA  and hA
~

 

admit in a natural way a two-by-two block structure  
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As is well-known, there exists a transformation matrix 







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=J , which relates the nodal point vectors for the 

standard and the hierarchical basis functions as follows,  
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Remark 1.1 Clearly, the hierarchical stiffness matrix hA
~

 is more dense than hA  and therefore its action on a vector 

is computationally more expensive. The transformation matrix J , however, enables us in practical implementations to 

work with hA , since T
hh JJA=A

~
.   

Two-level preconditioners and the strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality. 
Consider a general matrix A , which is assumed to be symmetric positive definite and partitioned as in  (5). The quality 
of this partitioning is characterized by the corresponding CBS inequality constant:  
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where hNn =1  and HNn =2 . Let us assume also that  

 

.A)(1CAA)(1CA 22222221111111 and δδ +≤≤+≤≤  (7) 

 

The inequalities (7) are in a positive semidefinite sense where 11C  and 22C  are symmetric and positive definite 

matrices for some positive constants iδ , 1,2=i . The multiplicative preconditioner is then of the form  
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Then  

[ ]{ }.4)(5.01
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When 1111 A=C  and 2222 A=C , then estimate  (9) reduces to )1/(1)AM( 21
F γκ −≤− . Detailed proof of  (9) is 

found, for instance, in [1]. In the hierarchical bases context 1V  and 2V are subspaces of the finite element space hV  

spanned, respectively, by the basis functions at the new nodes H\hN  and by the basis functions at the old nodes HN . 

For the strengthened CBS inequality constant, there holds that 

),(),(

),(
sup
,

),cos(=
hh

h

21

21
vvAuuA

vuA

VvVu
VV

∈∈
=γ  (10) 

where ),(h ⋅⋅A  is the bilinear form which appears in the variational formulation of the original problem. When 

{0}=21 VV ∩ , the constant γ  is strictly less than one. As shown in [2], it can be estimated locally over each finite 

element (macro-element) HTE ∈ , which means that ,max= E
E

γγ  where 
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The spaces )(EVk  above contain the functions from kV  restricted to E  and ),( vuAE  corresponds to ),(h vuA  

restricted over the element E  of HT  (see also [5]). Using the local estimates, it is possible to obtain uniform estimates 

for γ . In the case of linear conforming finite elements, it is known that γ  does not depend on h  and on any 

discontinuities of the coefficients of the bilinear form ),(h ⋅⋅A , as long as they do not occur within any element of the 

coarse triangulation used. The h -independence means that if we have a hierarchy of refinements of the domain which 
preserve the properties of the initial triangulation (refinement by congruent triangles, for example), then γ  is 

independent of the level of the refinement as well. For certain implementations, it is shown that γ  is independent of 

anisotropy. Hence, as long as the rate of convergence is bounded by some function of γ , it is independent of various 

problem and discretization parameters, such as the ones mentioned above. 
We stress here, that the above technique is originally developed and straightforwardly applicable for 

conforming finite elements and nested finite element spaces, i.e., when hH VV ⊂ . 

1 Rannacher-Turek finite elements 
Nonconforming finite elements based on rotated multilinear shape functions were introduced by Rannacher 

and Turek [6] as a class of simple elements for the Stokes problem. More generally, the recent activities in the 
development of efficient solution methods for non-conforming finite element systems are inspired by their attractive 
properties as a stable discretization tool for illconditioned problems. 

The unit square 21,1][−  is used as a reference element ê  to define the isoparametric rotated bilinear element 

hTe ∈ . Let eee →ˆ:ψ  be the corresponding bilinear one-to-one transformation, and let the nodal basis functions be 

determined by the relation  

 
Fig. 1. Rotated bilinear finite element. 
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For the variant MP (mid point), 4
1=}φ̂{ ii  are found by the point-wise interpolation condition  
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The variant MV (mid value) corresponds to integral midvalue interpolation conditions. Let j
eje ˆ

4

1=ˆ = ΓΓ U . Then 

4
1=}φ̂{ ii  are determined by the equality 
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2 Hierarchical two-level splitting by differences and aggregates (DA) 
Let us consider two consecutive discretizations HT  and hT . Figure 2 illustrates a macro-element obtained 

after one regular mesh-refinement step. We see that in this case HV  and hV  are not nested.  

 

The DA splitting is easily described for one macro-element. If 121 φ,,φ K  are the standard nodal basis functions for 

the macro-element, then we define  
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Using the related transformation matrix ,EJ   

 

                  
       (a) One macro-element                                           (b)  One element 

 
Figure 2: Uniform refinement on a general mesh. 
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the vector of the macro-element basis functions 12
1=E }φ{=φ ii  is transformed to a new hierarchical basis 

.J=}φ~{=~
E

12
1=E Eii ϕϕ  Accordingly, EJ  transforms the macro-element stiffness matrix into a hierarchical form  
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Following the local definitions, for the whole finite element space hV  with the standard nodal finite element 

basis hN

i
i

h 1=
)( }φ{=φ  we can similarly construct the new hierarchical basis hN

i
i

h 1=
)( }~{=~ ϕϕ  and the corresponding splitting  

 

.= 21 VVVh ⊕  (13) 

 

The transformation J  such that ,J=~ ϕϕ  can be used for transformation of the stiffness matrix hA  to 

hierarchical form ,JJA=A
~ T

hh  which allows preconditioning by the two-level preconditioners based on the splitting 

(13). Now, we are in a position to analyze the constant  ),(cos= 21 VVγ  for the splitting (13). Again, as in the previous 

section, we would like to perform this analysis locally, by considering the corresponding problems on macro-elements. 
For this purpose we need to have satisfied the condition 

(I) )(ker=)
~

(ker ,22 eE AA , which is equivalent to 1=
4

1= iji
α∑ , {1,2,3,4}∈j .  

There are obviously various DA splittings satisfying the condition )(i . When the two-level algorithm is recursively 

generalized to the multilevel case, it is useful if   

(II) ,22

~
EA  is proportional to eA .  

Such a property holds in a very general setting for the DA splitting of the Crouzeix-Raviart finite element space, see [4]. 

Unfortunately, it seems to be rather complicated to find a parameter matrix ][ ijα , which satisfies the condition )(ii  in 

the general case of Rannacher-Turek finite elements. 

3. Uniform estimates of the CBS constant 
We study in this section the isotropic model problem where all elements HTe ∈  are squares, and the uniform 

refinement is as shown in Figure 3. Both variants MP and MV of rotated bilinear finite elements, are considered.  

Due to the symmetry of the problem, the down-left block of the transformation matrix EJ  can be simplified to 

the form  
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The condition )(i  is equivalent to 1=2 cba ++ . Let us write the condition )(ii  in the form eE pAA =
~

,22 . Then, 

)(ii  is reduced to a system of two nonlinear equations for, say, ),( cb , with a parameter p . It appears, that the system 

for ),( cb  has a solution if ),[ 0 ∞∈ pp . In such a case, we can optimize the parameter p , so that the related CBS 

constant is minimal. 

Variant MP: 

Lemma 4.1 There exists a two-level splitting satisfying the condition )(ii , if and only if, 
7

3
≥p . Then, the solutions for 

),( cb  are invariant with respect to the local CBS constant 
p

E
4

1
1=2 −γ , and for the related optimal splitting  

.
12

52
MP ≤γ  (15) 

Although the statements of Lemma 4.1. look very simply, the midterm derivations are rather technical, which is 
just illustrated by the following expressions of one of the similarly looking solutions for ),( cb :  
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where 2420326314036401329=)( pppp +−−+−φ . 

Variant MV: The same approach is applied to get the estimates below. 

Lemma 4.2 There exists a two-level splitting satisfying the condition )(ii , if and only if, 
5

2
≥p . Then, the solutions for 

),( cb  are invariant with respect to the local CBS constant 
p

E
4

1
1=2 −γ , and for the related optimal splitting  
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  (a) One macro-element                                                       (b) One element  
  

Figure 3: Uniform refinement on a square mesh. 
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