Definition 5.4. Let G be a finitely generated group, acting on a set A. Growth degree of the G-action is the number

$$\gamma = \sup_{w \in A} \limsup_{r \to \infty} \frac{\log |\{g(w) : l(g) \le r\}|}{\log r}$$

where l(g) is the length of a group element with respect to some fixed finite generating set of G.

One can show, in the same way as before, that the growth degree γ does not depend on the choice of the generating set of G.

Proposition 5.10. Suppose that a standard action of a group G on X^* is contracting. Then the growth degree of the action on X^{ω} is not greater than $\frac{\log |X|}{-\log \rho}$, where ρ is the contraction coefficient of the action on X^* .

Proof. The statement is more or less classical. See, for instance the similar statements in [Gro81, BG00, Fra70].

Let ρ_1 be such that $\rho < \rho_1 < 1$. Then there exists C > 0 and $n \in \mathbb{N}$ such that for all $g \in G$ we have $l(g|_{x_1x_2...x_n}) < \rho_1^n \cdot l(g) + C$.

Then cardinality of the set $B(w,r) = \{g(w) : l(g) \leq r\}$, where $w = x_1 x_2 \ldots \in X^{\omega}$ is not greater than

$$|X|^n \cdot |\{B(x_{n+1}x_{n+2}\dots, \rho_1^n \cdot r + C)|,$$

since the map $\sigma^n: x_1x_2 \ldots \mapsto x_{n+1}x_{n+2} \ldots$ maps B(w,r) into

$$B\left(x_{n+1}x_{n+2}\ldots,\rho_1^n\cdot r+C\right)$$

and every point of X^{ω} has exactly $|X|^n$ preimages under σ^n . The map σ^n is the *n*th iteration of the shift map $\sigma(x_1x_2...) = x_2x_3...$

Let $k = \left[\frac{\log r}{-n\log \rho_1}\right] + 1$. Then $\rho_1^{nk} \cdot r < 1$ and the number of the points in the ball B(w,r) is not greater than

$$|X|^{nk} \cdot \left| B\left(\sigma^{nk}\left(w\right), R\right) \right|,$$

where

$$R = \rho_1^{nk} \cdot r + \rho_1^{n(k-1)} \cdot C + \rho_1^{n(k-2)} \cdot C + \dots + \rho_1^n \cdot C + C < 1 + \frac{C}{1 - \rho_1^n}.$$

But |B(u,R)| for all $u \in X^{\omega}$ is less than $K_1 = |S|^R$, where S is the generating set of G (we assume that $S = S^{-1} \ni 1$). Hence,

$$|B(w,r)| < K_1 \cdot |X|^{n\left(\frac{\log r}{-n\log\rho_1} + 1\right)} =$$

$$= K_1 \cdot \exp\left(\frac{\log|X|\log r}{-\log\rho_1} + n\log|X|\right) = K_2 \cdot r^{\frac{\log|X|}{-\log\rho_1}},$$

where $K_2 = K_1 \cdot |X|^n$. Thus, the growth degree is not greater than $\frac{\log |X|}{-\log \rho_1}$ for every $\rho_1 \in (\rho, 1)$, so it is not greater than $\frac{\log |X|}{-\log \rho}$.

Lemma 5.11. Let ϕ be a contracting virtual endomorphism of a ϕ -simple infinite finitely generated group G. Then the contraction coefficient of its standard action is greater or equal to $1/\operatorname{ind} \phi$.

Proof. Consider the standard action on the set X^* for a standard basis X, containing the element $x_0 = \phi(1)1$. Then the parabolic subgroup $P(\phi) = \bigcap_{n\geq 0} \text{Dom } \phi^n$ is the stabilizer of the word $w = x_0x_0x_0 \ldots \in X^{\omega}$. The subgroup $P(\phi)$ has infinite index in G, otherwise $\bigcap_{g\in G} g^{-1}Pg = \mathcal{C}(\phi)$ will have finite index, and G will be not ϕ -simple. Consequently, the G-orbit of w is infinite. Then there exists an infinite sequence of generators s_1, s_2, \ldots of the group G such that the elements of the sequence

$$w, s_1(w), s_2s_1(w), s_3s_2s_1(w), \dots$$

are pairwise different. This implies that the growth degree of the orbit Gw

$$\gamma = \limsup_{r \to \infty} \frac{|\{g(w) : l(g) \le r\}|}{\log r}$$

is greater or equal to 1, thus the growth degree of the action of G on X^{ω} is not less than 1, and by Proposition 5.10, $1 \leq \frac{\log |X|}{-\log \rho}$.

Proposition 5.12. If there exists a faithful contracting action of a finitely-generated group G then for any $\epsilon > 0$ there exists an algorithm of polynomial complexity of degree not greater than $\frac{\log |X|}{-\log \rho} + \epsilon$ solving the word problem in G.

Proof. We assume that the generating set S is symmetric (i.e., that $S = S^{-1}$) and contains all the restrictions of all its elements, so that always $l(g|_v)$ is not greater than l(g).

We will denote by F the free group generated by S and for every $g \in F$ by \hat{g} we denote the canonical image of g in G.

Let $1 > \rho_1 > \rho$. Then $\rho_1 \cdot |X| > 1$, since by Lemma 5.11, $\rho \cdot |X| \ge 1$. There exist n_0 and l_0 such that for every word $v \in X^*$ of the length n_0 and every $g \in G$ of the length $\ge l_0$ we have

$$l\left(g|_{v}\right) < \rho_{1}^{n}l(g).$$

Assume that we know for every $g \in F$ of the length less than l_0 if \hat{g} is trivial or not. Assume also that we know all the relations $g \cdot v = u \cdot h$ for all $g, l(g) \leq l_0$ and $v \in X^{n_0}$.

Then we can compute in $l(\hat{g})$ steps, for any $g \in F$ and $v \in X^n$, the element $h \in F$ and the word $u \in X^{n_0}$ such that $\hat{g} \cdot v = u \cdot \hat{h}$. If $v \neq u$ then we conclude that \hat{g} is not trivial and stop the algorithm. If for all $v \in X^{n_0}$ we have v = u, then \hat{g} is trivial if and only if all the obtained

restrictions $\hat{h} = \hat{g}|_v$ are trivial. We know, whether \hat{h} is trivial if $l(h) < l_0$. We proceed further, applying the above computations for those h, which have the length not less than l_0 .

But $l(h) < \rho_1^n l(g)$, if $l(g) \ge l_0$. So on each step the length of the elements becomes smaller, and the algorithm stops in not more than $-\log l(g)/\log \rho_1$ steps. On each step the algorithm branches into |X| algorithms. Thus, since $\rho_1 \cdot |X| > 1$, the total time is bounded by

$$\begin{split} &l(g) \left(1 + \rho_1 \cdot |X| + (\rho_1 \cdot |X|)^2 + \dots + (\rho_1 \cdot |X|)^{[-\log l(g)/\log \rho_1]} \right) < \\ &\frac{l(g)}{\rho_1 \cdot |X| - 1} \left((\rho_1 \cdot |X|)^{1 - \log l(g)/\log \rho_1} - 1 \right) = \\ &\frac{l(g)\rho_1 \cdot |X|}{\rho_1 \cdot |X| - 1} \left((\rho_1 \cdot |X|)^{-\log l(g)/\log \rho_1} - (\rho_1 \cdot |X|)^{-1} \right) = \\ &C_1 l(g) \left(\exp \left(\log l(g) \left(\frac{\log |X|}{-\log \rho_1} - 1 \right) \right) - C_2 \right) = \\ &= C_1 l(g)^{-\log |X|/\log \rho_1} - C_1 C_2 l(g), \end{split}$$

where
$$C_1 = \frac{\rho_1 \cdot |X|}{\rho_1 \cdot |X| - 1}$$
 and $C_2 = (\rho_1 \cdot |X|)^{-1}$.

References

- [AB94] N. A'Campo and M. Burger, Réseaux arithmétiques et commensurateur d'après G. A. Margulis, Invent. Math. 116 (1994), no. 1–3, 1–25.
- [Ale83] S. V. Aleshin, A free group of finite automata, Vestn. Mosc. Un. Ser. 1. (1983), no. 4, 12–16, in Russian.
- [BdlH97] M. Burger and P. de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci. 107 (1997), no. 3, 223– 235.
- [BG00] Laurent Bartholdi and Rostislav I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Proceedings of the Steklov Institute of Mathematics 231 (2000), 5–45.
- [BGN02] Laurent Bartholdi, Rostislav I. Grigorchuk, and Volodymyr V. Nekrashevych, From fractal groups to fractal sets, to appear, 2002.
- [BSV99] Andrew M. Brunner, Said N. Sidki, and Ana. C. Vieira, A just-nonsolvable torsion-free group defined on the binary tree, J. Algebra 211 (1999), 99–144.
- [Fra70] John M. Franks, Anosov diffeomorphisms, Global Analysis, Berkeley, 1968, Proc. Symp. Pure Math., vol. 14, Amer. Math. Soc., 1970, pp. 61–93.
- [GNS00] Rostislav I. Grigorchuk, Volodymyr V. Nekrashevich, and Vitaliï I. Sushchanskii, Automata, dynamical systems and groups, Proceedings of the Steklov Institute of Mathematics 231 (2000), 128–203.
- [Gri80] Rostislav I. Grigorchuk, On Burnside's problem on periodic groups, Funtional Anal. Appl. 14 (1980), no. 1, 41–43.
- [Gri83] Rostislav I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983), no. 1, 30–33.
- [Gri00] Rostislav I. Grigorchuk, Just infinite branch groups, New horizons in pro-p groups (Aner Shalev, Marcus P. F. du Sautoy, and Dan Segal, eds.), Progress in Mathematics, vol. 184, Birkhäuser Verlag, Basel, etc., 2000, pp. 121–179.

- [Gro81] Mikhael Gromov, Groups of polynomial growth and expanding maps, Publ. Math. I. H. E. S. 53 (1981), 53–73.
- [GS83a] Narain D. Gupta and Said N. Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385–388.
- [GS83b] Narain D. Gupta and Said N. Sidki, Some infinite p-groups, Algebra i Logika 22 (1983), 584–589.
- [Mar91] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 17. Berlin etc.: Springer-Verlag, 1991.
- [MNS00] Olga Macedońska, Volodymyr V. Nekrashevych, and Vitalii I. Sushchansky, Commensurators of groups and reversible automata, Dopovidi NAN Ukrainy (2000), no. 12, 36–39.
- [Neka] Volodymyr V. Nekrashevych, Cuntz-Pimsner algebras of group actions, submitted.
- [Nekb] Volodymyr V. Nekrashevych, Iterated monodromy groups, preprint, Geneva University, 2002.
- [Nekc] Volodymyr V. Nekrashevych, Limit spaces of self-similar group actions, preprint, Geneva University, 2002.
- [Nek00] Volodymyr V. Nekrashevych, Stabilizers of transitive actions on locally finite graphs, Int. J. of Algebra and Computation 10 (2000), no. 5, 591–602.
- [NS01] Volodymyr V. Nekrashevych and Said N. Sidki, Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms, preprint, 2001.
- [Röv02] Class E. Röver, Commensurators of groups acting on rooted trees, to appear in Geom. Dedicata, 2002.
- [Sid97] Said N. Sidki, A primitive ring associated to a Burnside 3-group, J. London Math. Soc. (2) 55 (1997), 55–64.
- [Sid98] Said N. Sidki, Regular trees and their automorphisms, Monografias de Matematica, vol. 56, IMPA, Rio de Janeiro, 1998.
- [Sid00] Said N. Sidki, Automorphisms of one-rooted trees: growth, circuit structure and acyclicity, J. of Mathematical Sciences (New York) 100 (2000), no. 1, 1925–1943.
- [SW02] S. Sidki and J. S. Wilson, Free subgroups of branch groups, (to appear), 2002.

CONTACT INFORMATION

V. Nekrashevych Kyiv Taras Shevchenko University, Ukraine *E-Mail:* nazaruk@ukrpack.net

Received by the editors: 21.10.2002.

© Journal "Algebra and Discrete Mathematics"

Metrizable ball structures

I.V. Protasov

Communicated by V.M. Usenko

Dedicated to V. V. Kirichenko on the occasion of his 60th birthday

ABSTRACT. A ball structure is a triple (X, P, B), where X, P are nonempty sets and, for any $x \in X$, $\alpha \in P$, $B(x, \alpha)$ is a subset of $X, x \in B(x, \alpha)$, which is called a ball of radius α around x. We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups.

Following [1, 2], by ball structure we mean a triple $\mathbf{B} = (X, P, B)$, where X, P are nonempty sets and, for any $x \in X$, $\alpha \in P$, $B(x, \alpha)$ is a subset of X, which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$.

Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be ball structures, $f: X_1 \to X_2$. We say that f is a \succ -mapping if, for every $\beta \in P_2$, there exists $\alpha \in P_1$ such that

$$B_2(f(x),\beta)\subseteq f(B_1(x,\alpha))$$

for every $x \in X_1$. If there exists a \succ -mapping of X_1 onto X_2 , we write $\mathbf{B}_1 \succ \mathbf{B}_2$.

A mapping $f: X_1 \to X_2$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that

$$f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta)$$

for every $x \in X_1$. If there exists an injective \prec -mapping of X_1 into X_2 , we write $\mathbf{B}_1 \prec \mathbf{B}_2$.

A bijection $f: X_1 \to X_2$ is called an *isomorphism* between \mathbf{B}_1 and \mathbf{B}_2 if f is a \succ -mapping and f is a \prec -mapping.

Key words and phrases: ball structure, ball isomorphism, metrizability. 2001 Mathematics Subject Classification 54E35, 05C75.

We say that a property \mathbf{P} of ball structures is a *ball property* if a ball structure \mathbf{B} has a property \mathbf{P} provided that \mathbf{B} is isomorphic to some ball structure with property \mathbf{P} .

Example 1. Let (X, d) be a metric space, $\mathbf{R}^+ = \{x \in \mathbf{R} : x \geq 0\}$. Given any $x \in X$, $r \in \mathbf{R}^+$, put

$$B_d(x,r) = \{ y \in X : d(x,y) \le r \}.$$

A ball structure (X, \mathbf{R}^+, B_d) is denoted by $\mathbf{B}(X, d)$.

We say that a ball structure **B** is *metrizable* if **B** is isomorphic to $\mathbf{B}(X,d)$ for some metric space (X,d).

To obtain a characterization (Theorem 1) of metrizable ball structures, we need some definitions and technical results.

A ball structure $\mathbf{B} = (X, P, B)$ is called *connected* if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$, $x \in B(y, \alpha)$.

Lemma 1. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be ball structures and let f be a \prec -mapping of X_1 onto X_2 . If \mathbf{B}_1 is connected, then \mathbf{B}_2 is connected.

Proof. Given any $y, z \in X_1$, choose $\alpha \in P_1$ such that $y \in B_1(z, \alpha)$, $z \in B_1(y, \alpha)$. Since f is a \prec -mapping, then there exists $\beta \in P_2$ such that $f(B_1(x, \alpha)) \subseteq B_2(f(x), \beta)$ for every $x \in X_1$. Hence, $f(y) \in B_2(f(z), \beta)$ and $f(z) \in B_2(f(y), \beta)$. Since $f(X_1) = X_2$, then \mathbf{B}_2 is connected. \square

Lemma 2. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be ball structures and let f be an injective \succ -mapping of X_1 into X_2 . If \mathbf{B}_2 is connected, then \mathbf{B}_1 is connected.

Proof. Given any $y, z \in X_1$, choose $\beta \in P_2$ such that $f(y) \in B_2(f(z), \beta)$ and $f(z) \in B_2(f(y), \beta)$. Since f is a \succ -mapping, then there exists $\alpha \in P_1$ such that $B_2(f(x), \beta) \subseteq f(B_1(x, \alpha))$ for every $x \in X_1$. Since f is injective, then $z \in B_1(y, \alpha)$ and $y \in B_1(z, \alpha)$. Hence, \mathbf{B}_1 is connected.

Let $\mathbf{B} = (X, P, B)$ be a ball structure. For all $x \in X$, $\alpha \in P$, put

$$B^*(x,\alpha) = \{ y \in X : x \in B(y,\alpha) \}.$$

A ball structure $\mathbf{B}^* = (X, P, B^*)$ is called *dual* to \mathbf{B} . Note that $\mathbf{B}^{**} = \mathbf{B}$.

A ball structure **B** is called *symmetric* if the identity mapping $i: X \to X$ is an isomorphism between **B** and **B***. In other words, **B** is symmetric if, for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x, \alpha) \subseteq B^*(x, \beta)$ for every $x \in X$, and vice versa.

Lemma 3. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be ball structures, $f: X_1 \to X_2$. If f is a \prec -mapping of \mathbf{B}_1 to \mathbf{B}_2 , then f is a \prec -mapping of \mathbf{B}_1^* to \mathbf{B}_2^* . If f is an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 , then f is an isomorphism between \mathbf{B}_1^* and \mathbf{B}_2^* .

Proof. Let f be a \prec -mapping of \mathbf{B}_1 to \mathbf{B}_2 and let $\alpha \in P_1$. Choose $\beta \in P_2$ such that $f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta)$ for every $x \in X_1$. Take any element $y \in B_1^*(x,\alpha)$. Then $x \in B_1(y,\alpha)$ and $f(x) \in B_2(f(y),\beta)$. Hence, $f(y) \in B_2^*(f(x),\beta)$ and $f(B_1^*(x,\alpha)) \subseteq B_2^*(f(x),\beta)$. It means that f is a \prec -mapping of \mathbf{B}_1^* to \mathbf{B}_2^* .

Suppose that f is an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . By the first statement, f is a \prec -mapping of \mathbf{B}_1^* to \mathbf{B}_2^* and f^{-1} is a \prec -mapping of \mathbf{B}_2^* to \mathbf{B}_1^* . It follows that f is an isomorphism between \mathbf{B}_1^* and \mathbf{B}_2^* .

Lemma 4. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be isomorphic ball structures. If \mathbf{B}_1 is symmetric, then \mathbf{B}_2 is symmetric.

Proof. Let $f: X_1 \to X_2$ be an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . Denote by $i_1: X_1 \to X_1$ and $i_2: X_2 \to X_2$ the identity mappings. Clearly, f^{-1} is an isomorphism between \mathbf{B}_2 and \mathbf{B}_1 . By Lemma 3, f is an isomorphism between \mathbf{B}_1^* and \mathbf{B}_2^* . By assumption, i_1 is an isomorphism between \mathbf{B}_1 and \mathbf{B}_1^* . Since $i_2 = fi_1f^{-1}$, then i_2 is an isomorphism between \mathbf{B}_2 and \mathbf{B}_2^* .

A ball structure $\mathbf{B} = (X, P, B)$ is called *multiplicative* if, for any $\alpha, \beta \in P$, there exists $\gamma(\alpha, \beta) \in P$ such that

$$B(B(x,\alpha),\beta)\subseteq B(x,\gamma(\alpha,\beta))$$

for every $x \in X$. Here, $B(A, \alpha) = \bigcup_{a \in A} B(a, \alpha)$ for any $A \subseteq X$, $\alpha \in P$.

Lemma 5. If a ball structure $\mathbf{B} = (X, P, B)$ is multiplicative, then \mathbf{B}^* is multiplicative.

Proof. Given any $\alpha, \beta \in P$, choose $\gamma(\alpha, \beta)$ such that $B(B(x, \alpha), \beta) \subseteq B(x, \gamma(\alpha, \beta))$. Take any element $z \in B^*(B^*(x, \alpha), \beta)$ and pick $y \in B^*(x, \alpha)$ such that $z \in B^*(y, \beta)$. Then $x \in B(y, \alpha)$ and $y \in B(z, \beta)$, so $x \in B(B(z, \beta), \alpha)$. Since $B(B(z, \beta), \alpha) \subseteq B(z, \gamma(\beta, \alpha))$, then $x \in B(z, \gamma(\beta, \alpha))$. Hence, $B^*(B^*(x, \alpha), \beta) \subseteq B^*(x, \gamma(\beta, \alpha))$ and B^* is multiplicative. \square

Lemma 6. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be isomorphic ball structures. If \mathbf{B}_1 is multiplicative, then \mathbf{B}_2 is multiplicative.

Proof. Denote by $f_1: X_1 \to X_2$ the isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . Fix any $\beta_1, \beta_2 \in P_2$. Since f is a bijection, it suffices to prove that there exists $\beta \in P_2$ such that

$$B_2(B_2(f(x),\beta_1),\beta_2) \subseteq B_2(f(x),\beta)$$

for every $x \in X_1$.

Since f is a \succ -mapping, then there exist $\alpha_1, \alpha_2 \in P_1$ such that

$$B_2(f(x), \beta_1) \subseteq f(B_1(x, \alpha_1)), B_2(f(x), \beta_2) \subseteq f(B_1(x, \alpha_2))$$

for every $x \in X_1$.

Since \mathbf{B}_1 is multiplicative, then there exists $\alpha \in P_1$ such that

$$B_1(B_1(x,\alpha_1),\alpha_2) \subseteq B_1(x,\alpha)$$

for every $x \in X_1$.

Since f is a \prec -mapping, then there exists $\beta \in P_2$ such that

$$f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta)$$

for every $x \in X_1$.

Now fix $x \in X_1$ and take any element $f(z) \in B_2(B_2(f(x), \beta_1), \beta_2)$. Pick $f(y) \in B_2(f(x), \beta_1)$ with $f(z) \in B_2(f(y), \beta_2)$. Then $y \in B_1(x, \alpha_1)$, $z \in B_1(y, \alpha_2)$ and $z \in B_1(B_1(x, \alpha_1), \alpha_2)$. Hence, $z \in B_1(x, \alpha)$ and $f(z) \in B_2(f(x), \beta)$.

For an arbitrary ball structure $\mathbf{B} = (X, P, B)$, we define a preodering \leq on the set P by the rule

$$\alpha \leq \beta$$
 if and only if $B(x, \alpha) \subseteq B(x, \beta)$

for every $x \in X$. A subset P' of P is called *cofinal* if, for every $\alpha \in P$, there exists $\beta \in P'$ such that $\alpha \leq \beta$. A *cofinality cf* \mathbf{B} of \mathbf{B} is a minimum of cardinalities of cofinal subsets of P. Thus, $cf\mathbf{B} \leq \aleph_0$ if and only if there exists a cofinal sequence $<\alpha_n>_{n\in\omega}$ in P such that $\alpha_0 \leq \alpha_1 \leq \ldots \leq \alpha_n \leq \ldots$

Lemma 7. If the ball structures $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ are isomorphic, then $cf\mathbf{B}_1 = cf\mathbf{B}_2$.

Proof. Let $f: X_1 \to X_2$ be an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 and let P_1' be a cofinal subset of P_1 . Since f is a \succ -mapping, then there exists a mapping $h_1: P_2 \to P_1'$ such that $B_2(f(x), \beta) \subseteq f(B_1(x, h_1(\beta)))$ for any $x \in X_1, \beta \in P_2$. Since f is a \prec -mapping, then there exists a mapping $h_2: P_1' \to P_2$ such that $f(B_1(x, \alpha)) \subseteq B_2(f(x), h_2(\alpha))$ for any $x \in X_1$, $\alpha \in P_1'$. From the construction of h_1, h_2 we conclude that $h_2(P_1')$ is a cofinal subset of P_2 . Hence, $cf\mathbf{B}_2 \leq cf\mathbf{B}_1$.

Theorem 1. A ball structure $\mathbf{B} = (X, P, B)$ is metrizable if and only if \mathbf{B} is connected symmetric multiplicative and $cf\mathbf{B} \leq \aleph_0$.

Proof. First suppose that **B** is isomorphic to $\mathbf{B}(X,d)$ for an appropriate metric space (X,d). Obviously, $\mathbf{B}(X,d)$ is connected symmetric multiplicative and $cf\mathbf{B} \leq \aleph_0$. By Lemma 1, 4, 6, 7 **B** has the same properties.

Now assume that **B** is connected symmetric multiplicative and cf **B** \leq \aleph_0 . Let $<\alpha_n>_{n\in\omega}$ be a cofinal sequence in P. Put $\beta_0=\alpha_0$ and choose $\beta_1\in P$ such that $\beta_1\geq\alpha_1,\ \beta_1\geq\beta_0,\ \beta_1\geq\gamma(\beta_0,\beta_0)$, where γ is a function from definition of multiplicativity. Suppose that the elements $\beta_0,\beta_1,\ldots,\beta_n$ have been chosen. Take $\beta_{n+1}\in P$ such that

$$\beta_{n+1} \ge \alpha_{n+1}, \beta_{n+1} \ge \beta_n, \beta_{n+1} \ge \gamma(\beta_i, \beta_i)$$

for all $i, j \in \{0, 1, ..., n\}$. Then $<\beta_n>_{n\in\omega}$ is a nondecreasing cofinal sequence in P and $B(B(x, \beta_n), \beta_m) \subseteq B(x, \beta_{n+m})$ for all $x \in X$, $n, m \in \mathbb{N}$.

Define a mapping $d: X \times X \to \omega$ by the rule d(x,x) = 0 and

$$d(x,y) = min\{n \in \mathbf{N} : y \in B(x,\beta_n), x \in B(y,\beta_n)\}\$$

for all distinct elements $x, y \in X$. Since the sequence $\langle \beta_n \rangle_{n \in \omega}$ is cofinal in P and \mathbf{B} is connected, then the mapping d is well defined. To show that d is a metric we have only to check a triangle inequality. Let x, y, z be distinct elements of X and let d(x, y) = n, d(y, z) = m. Since $y \in B(x, \beta_n)$ and $z \in B(y, \beta_m)$, then $z \in B(B(x, \beta_n), \beta_m) \subseteq B(x, \beta_{n+m})$. Since $y \in B(z, \beta_m)$ and $x \in B(y, \beta_n)$, then $x \in B(B(z, \beta_m), \beta_n) \subseteq B(z, \beta_{n+m})$. Hence, $d(x, z) \leq n + m$.

Consider the ball structure $\mathbf{B}(X,d)$ and note that

$$B_d(x,n) = B(x,\beta_n) \bigcap B^*(x,\beta_n).$$

Since **B** is symmetric, then the identity mapping of X is an isomorphism between **B** and $\mathbf{B}(X,d)$.

Remark 1. A metric d on a set X is called integer if d(x,y) is an integer number for all $x, y \in X$. It follows from the proof of Theorem 1 that, for every metrizable ball structure $\mathbf{B} = (X, P, B)$, there exists an integer metric d on X such that \mathbf{B} and $\mathbf{B}(X,d)$ are isomorphic.

Remark 2. Let $\mathbf{B} = (X, P, B)$ be an arbitrary ball structure. Consider a metric d on X defined by the rule d(x, x) = 0 and d(x, y) = 1 for all distinct elements of X. Then the identity mapping $i: X \to X$ is a \prec -mapping of \mathbf{B} onto $\mathbf{B}(X, d)$. In particular, for every ball structure \mathbf{B} , there exists a metric space (X, d) such that $\mathbf{B} \prec \mathbf{B}(X, d)$.

Remark 3. Let $\mathbf{B} = (X, P, B)$ be a connected multiplicative ball structure, $cf\mathbf{B} \leq \aleph_0$. Repeating arguments of Theorem 1, we can prove that there exists a metric d on X such that the identity mapping $i: X \to X$ is $a \prec$ -mapping of $\mathbf{B}(X, d)$ onto \mathbf{B} .

Question 1. Characterize the ball structure $\mathbf{B} = (X, P, B)$, which admit a metric d on X such that the identity mapping $i: X \to X$ is a \prec -mapping of $\mathbf{B}(X, d)$ onto \mathbf{B} .

By Remark 2, every ball structure can be strengthened to some mertizable ball structure, so Question 1 asks about ball structure, which can be weekened to metrizable.

Example 2. Let Gr = (V, E) be a connected graph with a set of vertices V and a set of edges E, $E \subseteq V \times V$. Endow V with a path metric d, where d(x,y), $x,y \in V$ is a length of the shortest path between x and y. Denote by $\mathbf{B}(Gr)$ the ball structure $\mathbf{B}(V,d)$. Obviously, $\mathbf{B}(Gr)$ is metrizable.

Our next target is a description of the ball structures, isomorphic to $\mathbf{B}(Gr)$ for an appropriate graph Gr.

Let $\mathbf{B} = (X, P, B)$ be an arbitrary ball structure, $\alpha \in P$. We say that a finite sequence x_0, x_1, \ldots, x_n of elements of X is an α -path of length n if $x_{i-1} \in B(x_i, \alpha)$, $x_i \in B(x_{i-1}, \alpha)$ for every $i \in \{1, 2, \ldots, n\}$. A ball structure \mathbf{B} is called an α -path connected if, for every $\beta \in P$, there exists $\mu(\beta) \in \omega$ such that $x \in B(y, \beta)$, $y \in B(x, \beta)$ imply that there exists an α -path of length $\leq \mu(\beta)$ between x and y. Note that $\mathbf{B}(Gr)$ is 1-path connected for every connected graph Gr.

A ball structure $\mathbf{B} = (X, P, B)$ is called *path connected* if \mathbf{B} is α -path connected for some $\alpha \in P$.

Lemma 8. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be isomorphic ball structures. If \mathbf{B}_1 is path connected, then \mathbf{B}_2 path connected.

Proof. Let $f: X_1 \to X_2$ be an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . Choose $\alpha \in P_1$ such that \mathbf{B}_1 is α -path connected and fix a corresponding mapping $\mu: P_1 \to \omega$. Since f is a \prec -mapping, then there exists $\beta \in P_2$ such that

$$f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta)$$

for every $x \in X_1$. Since f is a \succ -mapping, then there exists a mapping $h: P_2 \to P_1$ such that

$$B_2(f(x),\lambda) \subseteq f(B_1(x,h(\lambda)))$$

for any $x \in X_1, \lambda \in P_2$.

Fix any $\lambda \in P_2$ and suppose that

$$f(x) \in B_2(f(y), \lambda), f(y) \in B_2(f(x), \lambda).$$

Since f is a bijection, then $x \in B_1(y, h(\lambda))$, $y \in B_1(x, h(\lambda))$. Since \mathbf{B}_1 is α -path connected, then there exists an α -path $x = x_0, x_1, \ldots, x_m = y$ of length $\leq \mu(h(\lambda))$. Then $f(x) = f(x_0), f(x_1), \ldots, f(x_m) = f(y)$ is a β -path of length $\leq \mu(h(\lambda))$ between f(x) and f(y).

Theorem 2. For every ball structure \mathbf{B} , the following statements are equivalent

- (i) **B** is metrizable and path connected;
- (ii) **B** is isomorphic to a ball structure $\mathbf{B}(Gr)$ for some connected graph Gr.
- *Proof.* (ii) \Rightarrow (i). Clearly, $\mathbf{B}(Gr)$ is metrizable and path connected. Hence, \mathbf{B} is metrizable and path connected by Lemma 8.
- (i) \Rightarrow (ii). Fix a path connected metric space (X,d) such that **B** is isomorphic to $\mathbf{B}(X,d)$. Then there exists $m \in \omega$ such that (X,d) is m-path connected. Consider a graph Gr = (X,E) with the set E of edges defined by the rule

$$(x,y) \in E \text{ if and only if } x \neq y \text{ and } d(x,y) \leq m.$$

Since $\mathbf{B}(X,d)$ is path connected, then the graph Gr is connected.

Let d' be a path metric on the graph Gr. By assumption, for every $n \in \omega$, there exists $\mu(n) \in \omega$ such that $d(x,y) \leq n$ implies that there exists a m-path of length $\leq \mu(n)$ in (X,d) between x and y. Hence, $d(x,y) \leq n$ implies $d'(x,y) \leq \mu(n)$. On the other side, $d'(x,y) \leq k$ implies that $d(x,y) \leq km$. Therefore, the identity mapping of X is an isomorphism between the ball structures $\mathbf{B}(X,d)$ and $\mathbf{B}(Gr)$.

Example 3. Let $X = \{2^n : n \in \omega\}$, d(x,y) = |x-y| for any $x, y \in X$. By Theorem 2, there are no connected graphs Gr such that $\mathbf{B}(X,d)$ is isomorphic to $\mathbf{B}(Gr)$.

Example 4. Let d be an euclidean metric on \mathbb{R}^n . By Theorem 2, there exists a connected graph $Gr_n = (\mathbb{R}^n, E_n)$ such that $\mathbf{B}(\mathbb{R}^n, d)$ is isomorphic to $\mathbf{B}(Gr_n)$.

By Remark 2, for every ball structure $\mathbf{B} = (X, P, B)$, there exists a connected graph $Gr = (X, E), E = \{(x, y) : x, y \in X, x \neq y\}$ such that the identity mapping $i : X \to X$ is a \succ -mapping of $\mathbf{B}(Gr)$ onto \mathbf{B} .

Question 2. Characterize the ball structure, which admit a \succ -bijection to the ball structure $\mathbf{B}(Gr)$ for an appropriate graph Gr.

A metric d on a set X is called non-Archimedian if

$$d(x,z) \le \max\{d(x,y),d(y,z)\}$$

for all $x, y, z \in X$. The following definitions will be used to describe the ball structures isomorphic to $\mathbf{B}(X, d)$ for an appropriate non-Archimeian metric space (X, d).

Let $\mathbf{B} = (X, P, B)$ be an arbitrary ball structure, $x \in X$, $\alpha \in P$. We say that a ball $B(x, \alpha)$ is a *cell* if $B(y, \alpha) = B(x, \alpha)$ for every $y \in B(x, \alpha)$. If (X, d) is a non-Archimedian metric space, then each ball B(x, r), $x \in X$, $r \in \mathbf{R}^+$ is a cell.

Given any $x \in X$, $\alpha \in P$, denote

 $B^{c}(x,\alpha) = \{y \in X : \text{ there exists an } \alpha - \text{path between } x \text{ and } y\}.$

A ball structure $\mathbf{B}^c = (X, P, B^c)$ is called a *cellularization* of **B**. Note that each ball $B^c(x, \alpha)$ is a cell.

We say that a ball structure **B** is *cellular* if the identity mapping $i: X \to X$ is an isomorphism between **B** and \mathbf{B}^c . In other words, **B** is cellular if and only if, for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x,\alpha) \subseteq B^c(x,\beta)$ for every $x \in X$ and, for every $\beta \in P$, there exists $\alpha \in P$ such that $B^c(x,\beta) \subseteq B(x,\alpha)$ for every $x \in X$.

A ball structure $\mathbf{B} = (X, P, B)$ is called *directed* if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that $\alpha \leq \gamma, \beta \leq \gamma$.

Lemma 9. If $\mathbf{B} = (X, P, B)$ is a directed symmetric ball structure, then the identity mapping $i: X \to X$ is a \prec -mapping of \mathbf{B} onto \mathbf{B}^c .

Proof. Given any $\alpha \in P$, choose $\beta, \gamma \in P$ such that

$$B(x,\alpha) \subseteq B^*(x,\beta) \subseteq B(x,\gamma)$$

for every $x \in X$. Since **B** is directed, we may assume that $\beta \leq \gamma$. Take any element $y \in B(x, \alpha)$. Then $x \in B(y, \beta) \subseteq B(y, \gamma)$. Thus, $y \in B(x, \gamma)$, $x \in B(y, \gamma)$. Hence, there exists a β -path of length ≤ 1 between x and y. It means that $y \in B^c(x, \gamma)$, so $B(x, \alpha) \subseteq B^c(x, \gamma)$. \square

Lemma 10. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be ball structures. If $f: X_1 \to X_2$ is a \prec -mapping of \mathbf{B}_1 to \mathbf{B}_2 , then f is a \prec -mapping of \mathbf{B}_1^c to \mathbf{B}_2^c . If f is an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 , then f is a isomorphism between \mathbf{B}_1^c and \mathbf{B}_2^c .

Proof. Given any $\alpha \in P_1$, choose $\beta \in P_2$ such that $f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta)$ for every $x \in X$. Take any $y \in B_1^c(x,\alpha)$ and choose an α -path $x = x_0, x_1, \ldots, x_n = y$ between x and y. Then

$$f(x) = f(x_0), f(x_1), \dots, f(x_n) = f(y)$$

is a β -path between f(x) and f(y). Hence, $f(y) \in B_2^c(f(x), \beta)$ and $f(B_1^c(x, \alpha)) \subseteq B_2^c(f(x), \beta)$ for every $x \in X_1$.

Suppose that f is an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . By the first statement, f is a \prec -mapping of \mathbf{B}_1^c to \mathbf{B}_2^c and f^{-1} is a \prec -mapping of \mathbf{B}_2^c to \mathbf{B}_1^c . Hence, f is an isomorphism between \mathbf{B}_1^c and \mathbf{B}_2^c .

Lemma 11. Let $\mathbf{B}_1 = (X_1, P_1, B_1)$ and $\mathbf{B}_2 = (X_2, P_2, B_2)$ be isomorphic ball structures. If \mathbf{B}_1 is cellular, then \mathbf{B}_2 is cellular.

Proof. Let $f: X_1 \to X_2$ be an isomorphism between \mathbf{B}_1 and \mathbf{B}_2 . Denote by $i_1: X_1 \to X_1$ and $i_2: X_2 \to X_2$ the identity mappings. Clearly, f^{-1} is an isomorphism between \mathbf{B}_2 and \mathbf{B}_1 . By the Lemma 10, f is an isomorphism between \mathbf{B}_1^c and \mathbf{B}_2^c . By assumption, i_1 is an isomorphism between \mathbf{B}_1 and \mathbf{B}_1^c . Since $i_2 = fi_1f^{-1}$, then i_2 is an isomorphism between \mathbf{B}_2 and \mathbf{B}_2^c .

Theorem 3. For every ball structure **B**, the following statements are equivalent

- (i) **B** is metrizable and cellular;
- (ii) there exists a non-Archimedian metric space (X,d) such that **B** is isomorphic to $\mathbf{B}(X,d)$.

Proof. (ii) \Rightarrow (i). Clearly, $\mathbf{B}(X, d)$ is metrizable and cellular. Hence, \mathbf{B} is metrizable and cellular by Lemma 11.

(i) \Rightarrow (ii). Fix a metric space (X, d') such that $\mathbf{B}(X, d')$ is cellular and isomorphic to \mathbf{B} . Define a mapping $d: X \times X \to \omega$ by the rule

$$d(x,y)=\min\{m\in\omega:y\in B^c(x,m)\}.$$

Obviously, d(x, x) = 0 and d(x, y) = d(y, x) for all $x, y \in X$.

Let $x, y, z \in X$ and let d(x, y) = m, d(y, z) = n, $m \le n$. Then $y \in B^c(x, m)$, $z \in B^c(y, n)$. It follows that there exists a n-path between x and z. Hence, $z \in B^c(x, n)$ and $d(x, z) \le n$. Thus, we have proved that d is a non-Archimedian metric on X.

Since $d(x,y) \leq d'(x,y)$, then the identity mapping $i: X \to X$ is a \prec -mapping of $\mathbf{B}(X,d)$ to $\mathbf{B}(X,d')$. Since $\mathbf{B}(X,d')$ is cellular, then there exists a mapping $h: \omega \to \omega$ such that $B^c(x,m) \subseteq B(x,h(m))$ for all $x \in X, m \in \omega$. Hence, i is a \succ -mapping of $\mathbf{B}(X,d)$ to $\mathbf{B}(X,d')$. Hence, $\mathbf{B}(X,d)$ and $\mathbf{B}(X,d')$ are isomorphic.

By Remark 2, for every ball structure $\mathbf{B} = (X, P, B)$, there exists a non-Archimedian metric d on X such that the identity mapping of X is a \succ -mapping of $\mathbf{B}(X, d)$ to \mathbf{B} .

Lemma 12. For every metric space (X,d), there exists a family $\{\mathcal{P}_n : n \in \omega\}$ of partitions of X with the following properties

- (i) every partition \mathcal{P}_{n+1} is an enlargement of \mathcal{P}_n , i.e. every cell of the partition \mathcal{P}_{n+1} is a union of some cells of the partition \mathcal{P}_n ;
- (ii) there exists a function $f: \omega \to \omega$ such that, for every $C \in \mathcal{P}_n$ and every $x \in C$, $C \subseteq B(x, f(n))$;
- (iii) for any $x, y \in X$, there exists $n \in \omega$ such that x, y are in the same cell of the partition \mathcal{P}_n .

Proof. Fix any well-ordering $\{x_{\alpha}: \alpha < \gamma\}$ of X. Choose a subset $Y_0 \subseteq X$, $x_0 \in Y_0$ such that the family $\{B(y,1): y \in Y_0\}$ is disjoint and maximal. For every $x \in X$, pick a minimal element $f_0(x) \in Y_0$ such that $B(x,1) \cap B(f_0(x),1) \neq \emptyset$. Put $H(x,1) = \{z \in X: f_0(z) = f_0(x)\}$ and note that the family $\{H(y,1): y \in Y_0\}$ is a partition of X. If $x,z \in H(y,1)$, then $d(x,y) \leq 2$, $d(x,z) \leq 2$. Therefore, $H(y,1) \subseteq B(x,4)$ for every $x \in H(y,1)$. Put $\mathcal{P}_0 = \{H(y,1): y \in Y_0\}$, f(0) = 4.

Assume that the partitions $\mathcal{P}_0, \mathcal{P}_1, \ldots, \mathcal{P}_{n-1}$ have been constructed and the values $f(0), f(1), \ldots, f(n-1)$ have been determined. Choose a subset $Y_n \subseteq X$, $x_0 \in Y_n$ such that the family $\{B(y, n+1) : y \in Y_n\}$ is disjoint and maximal. Define a mapping $f_n : X \to Y_n$ inductively such that f_n is constant on each cell of the partition \mathcal{P}_{n-1} . Put $f_n(x) = x_0$ for every $x \in X$ such that $H(x,n) \cap B(x_0,n+1) \neq \emptyset$. Then take the minimal element $x \in X$ such that $f_n(x)$ is not determined. Choose the minimal element $y \in Y_n$ such that $f_n(x)$ is not determined. Choose the minimal element $y \in Y_n$ such that $f_n(x)$ is not determined. Choose the minimal element $f_n(x) = f_n(x)$ and $f_n(x) = f_n(x)$ and $f_n(x) = f_n(x)$. Put $f_n(x) = f_n(x)$ and $f_n(x) = f_n(x)$. Put $f_n(x) = f_n(x)$ is a union of some cells of $f_n(x)$. Thus, (i) is satisfied.

If $z \in H(y, n+1)$, then $d(z, y) \le f(n-1) + 2(n+1)$. Hence, to satisfy (ii), put f(n) = 2(f(n-1) + 2(n+1)).

At last, given any $x, y \in X$, choose $m \in \omega$ such that $d(x_0, x) \leq m + 1$, $d(x_0, y) \leq m + 1$. Thus x, y are in the same cell of the partition \mathcal{P}_m and we have verified (iii).

Theorem 4. For every metric space (X,d), there exists a non-Archimedian metric d on X such that the identity mapping $i: X \to X$ is a \prec -mapping of $\mathbf{B}(X,d')$ to $\mathbf{B}(X,d)$.

Proof. Fix a family $\{\mathcal{P}_n : n \in \omega\}$ of partitions of X, satisfying (i), (ii), (iii) from Lemma 12. Define a mapping $d': X \times X \to \omega$ by the rule

 $d'(x,y) = min\{n : x \text{ and } y \text{ are in the same cell of } \mathcal{P}_n\}.$

By (iii), d' is well defined. By (i), d' is a non-Archimedian metric. By (ii), the identity mapping of X is a \prec -mapping of $\mathbf{B}(X, d')$ onto $\mathbf{B}(X, d)$.

Now we consider non-metrizable versions of Lemma 12 and Theorem 4.

Lemma 13. Let $\mathbf{B} = (X, P, B)$ be a directed symmetric multiplicative ball structure. Then there exists a family $\{\mathcal{P}_{\alpha} : \alpha \in P\}$ of partitions of X such that

(i) for every $\alpha \in P$, there exists $\beta \in P$ such that $C \subseteq B(x,\beta)$ for every $C \in \mathcal{P}_{\alpha}$ and every $x \in C$.

Moreover, if **B** is connected then

(ii) for any $x, y \in X$, there exists $\alpha \in P$ such that x, y are in the same cell of the partition \mathcal{P}_{α} .

Proof. Fix any well-ordering of X and denote by x_0 its minimal element. Fix $\alpha \in P$ and choose a subset $Y \subseteq X$, $x_0 \in Y$ such that the family $\{B(y,\alpha): y \in Y\}$ is disjoint and maximal. For every $x \in X$, pick a minimal element $f(x) \in Y$ such that $B(x,\alpha) \cap B(f(x),\alpha) \neq \emptyset$. Put $H(x,\alpha) = \{z \in X: f(z) = f(x)\}$. Then the family $\mathcal{P}_{\alpha} = \{H(y,\alpha): y \in Y\}$ is a partition of X.

Since **B** is directed and symmetric, then there exists $\alpha' > \alpha$ such that $y \in B(x, \alpha)$ implies $x \in B(y, \alpha')$.

Fix $x \in X$ and take $x' \in B(x,\alpha) \cap B(f(x),\alpha)$. Then x, x', f(x) is an α' -path. Hence, for every $z \in H(x,\alpha)$, we can find an α' -path of length 4 between x and z. Using multiplicativity of \mathbf{B} , choose $\beta \in P$ such that $y_4 \in B(y_0,\beta)$ for every α' -path y_0,y_1,y_2,y_3,y_4 in X. Then $H(x,\alpha) \subseteq B(x,\beta)$.

Suppose that **B** is connected and $x, y \in X$. Since **B** is directed, then there exists $\alpha \in P$ such that $x_0 \in B(x, \alpha), x_0 \in B(y, \alpha)$. Hence, x, y belong to the cell $H(x_0, \alpha)$ of the partition \mathcal{P}_{α} .

Theorem 5. If a ball structure $\mathbf{B} = (X, P, B)$ is directed symmetric and multiplicative, then there exists a cellular ball structure $\mathbf{B}' = (X, P, B')$ such that the identity mapping of X is a \prec -mapping of \mathbf{B}' onto \mathbf{B} . Moreover, if \mathbf{B} is connected, then \mathbf{B}' is connected.

Proof. Use the family of the partitions $\{\mathcal{P}_{\alpha} : \alpha \in P\}$ from Lemma 13 and put $B'(x,\alpha) = H(x,\alpha)$. Clearly, each ball $B'(x,\alpha)$ is a cell. By (i), the identity mapping of X is a \prec -mapping of \mathbf{B}' onto \mathbf{B} . If \mathbf{B} is connected, then \mathbf{B}' is connected by (ii).

Example 5. Let G be a group and let $Fin_e(G)$ be a family of all finite subsets of G containing the identity e. Given any $g \in G$, $F \in Fin_e(G)$, put B(g,F) = Fg. A ball structure $\mathbf{B}(G) = (G,Fin_e(G),B)$ is denoted by $\mathbf{B}(G)$. It is easy to show, that $\mathbf{B}(G)$ is directed connected symmetric and multiplicative.

Now we apply the above results to the ball structures of groups.

Theorem 6. Let G be a group. Then a ball structure $\mathbf{B}(G)$ is metrizable if and only if $|G| \leq \aleph_0$.

Proof.	Apply	Theorem	1.

- **Theorem 7.** For every group G, the following statements are equivalent (i) G is finitely generated;
 - (ii) $\mathbf{B}(G)$ is isomorphic to $\mathbf{B}(Gr)$ for some connected graph Gr
- *Proof.* (i) \Rightarrow (ii). Let S be a finite set of generators of G. Consider a Cayley graph Gr = (G, E) of G determined by S. By definition, $(x, y) \in E$ if and only if $x \neq y$ and x = ty for some $t \in S \cup S^{-1}$. Clearly, the identity mapping of G is an isomorphism between $\mathbf{B}(G)$ and $\mathbf{B}(Gr)$.
- (ii) \Rightarrow (i). By Theorem 2, there exists $F \in Fin$ such that $\mathbf{B}(G)$ is F-path connected. In particular, for every $g \in G$, there exists a F-path between e and g. Hence, F generates G.

A group G is called *locally finite* if every finite subset of G generates a finite subgroup.

Theorem 8. Let G be a group. Then a ball structure $\mathbf{B}(G)$ is cellular if and only if G is locally finite.

Proof. Let G be locally finite. Denote by Fin_s the family of all finite subgroups of G. Then Fin_s is cofinal in Fin and each ball B(g, F), $F \in Fin_s$ is a cell. Hence, $\mathbf{B}(G)$ is cellular.

Assume that $\mathbf{B}(G)$ is cellular. Note that $B^c(e, F) = gpF$ for every $F \in Fin$, where gpF is a subgroup of G generated by F. Since \mathbf{B} is isomorphic to \mathbf{B}^c , then each ball $B^c(g, F)$ is finite. In particular, gpF is finite for every $F \in Fin$.

Remark 4. Let G_1 , G_2 be countable locally finite group. By [2, Theorem 4], $\mathbf{B}(G_1) \succ \mathbf{B}(G_2)$ and $\mathbf{B}(G_1) \prec \mathbf{B}(G_2)$. By [2, Theorem 5], $\mathbf{B}(G_1)$ and $\mathbf{B}(G_2)$ are isomorphic if and only if, for every finite subgroup F of G_1 , there exists a finite subgroup H of G_2 such that |F| is a divisor of |H|, and vice versa. A problem of classification up to an isomorphism of ball structures of uncountable locally finite groups is open.

Theorem 9. For every countable group G, there exists a non-Archimedian metric d on G with the following property

(i) for each $n \in \omega$, there exists $F \in Fin$ such that $d(x,y) \leq n$ implies $x \in Fy$.

Proof. Apply Theorem 6 and Theorem 4.

Theorem 10. For every group G, there exists a cellular ball structure $\mathbf{B}' = (G, Fin, B')$ such that the identity mapping of G is a \prec -mapping of \mathbf{B}' onto $\mathbf{B}(G)$.

Proof. Apply Theorem 5.

Question 3. Characterize the ball structures isomorphic to the ball structures of groups.

M.Zarichnyi has pointed out that Theorem 1 has a counterpart in the asymptotic topology [3]. This theorem answers the Open Question 1 from [4]. The results of this paper was announced in [5].

References

- [1] I.V. Protasov. Combinatorial size of subsets of groups and graphs// Algebraic systems and applications. Proc. Inst. math. NAN Ukraine, 2002.
- [2] I.V. Protasov. Morphisms of ball's structures of groups and graphs// Ukr. Math. J. 53, 2002, 6, 847-855.
- [3] G. Skandalis, J.L.Tu, G.Yu. Coarse Baum Connes conjecture and groupoids// Preprint, 2000.
- [4] N. Nekrashevych. Uniformly bounded spaces// Voprosy algebry, 1999, 14, 47-67.
- [5] I.V. Protasov. On metrizable ball's structures// Intern. Conf. on Funct. Analysis and its Appl. Book of abstracts, Lviv, 2002, 162-164.

CONTACT INFORMATION

I.V. Protasov Kyiv Taras Shevchenko University, Ukraine *E-Mail:* kseniya@profit.net.ua

Received by the editors: 24.09.2002.