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Operator splitting is a widely used procedure ie thumerical solution of complex problems. The pambperator splitting is the
replacement of the original model with one in whagipropriately chosen groups of the sub-proces®ssribed by the model, take place
successively in time. This de-coupling proceduteva us to solve a few simpler problems insteathefwhole one. In this paper we
investigate the application of the operator splitmethod to real-life problems from a practicainp@f view, with great emphasis on
long-range air pollution transport. We discussrtfan benefits and drawbacks of this approach.
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Introduction

The operator splitting method (OSM) is a widely diseethod for solving real-life problems. It candpplied
in the numerical modelling process of many différéme-dependent complex physical phenomena. Tignal
continuous mathematical model of such phenomendeatescribed in the form of an abstract Cauchplpro (ACP)
as follows:

" _zl Au(t), tO@OT], 1)
u(0) =u,,

where u denotes the unknown functiah, is a given element which describes the initiaeste the processA; (for i

=1, 2,...n) are given (usually densely defined lieperators.
Frequently, the OSM is applied to the so calledishistretized problem. This means that the origo@ntinuous
problem has already been discretized w.r.t. theespariables. Then (1) denotes the system of orgliddferential

equations obtained in this way. Clearly, for linpesblemsA,; are matrices.

1. An important example: air pollution modelling
The transport of air pollutants is one of the mestely investigated phenomena for which (1) cavees a
mathematical model.

Let C; =C; (X,t) denote the concentration of the j-th air pollutaamd c the vector function of these

functions. Then the time evolution of the veataran be described mathematically by the systenadfagb differential
equations (Zlatev, 1995, Prussov and Dorosenkad3200

@:_D(uc)+D(KDc)+E—ac+ R(c) t0@OT]
ot (2)

¢(x,0) = ¢y (x)

where U =U(X,t) is a vector-function describing the wind velociti{ = K(X,t) is the diffusion coefficient

function, E = E(X,t) is the function of emission] = 0(X,t) describes the deposition and R defines the chemical

reactions of the pollutants. The initial functiogix) is given. Using these notations, the terms in g#gug10) have the
following physical meaning. The first term on thght-hand side describes the transportation dubeovelocity field,
which is calledadvection The second term expressestimbulent diffusionthe third term themissionthe fourth term
describes thdepositionand the last term defines tbleemistryof the pollutants.

Then, using the notation

¢ A c = —[J(uc) - the advection operator
¢ A,c = J(KOCc) - the diffusion operator
3 A,Cc = —0ocC- the deposition operator
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¢ A,C = E - the emission operator
¢ A.c = R(C) - the chemistry operator

the problem (2) can be written in the form (1).

The number of chemical species involved in a mod@rpollution model sometimes reaches 200, or ewere, which
results in a huge system of partial differentiabaipns. The analytical solution of such a problisnmobviously
impossible to find. Hence we have to treat it nuoadly. We note that in case of semi-discretizatisnally the number
of spatial grid points equals many millions. Thisans that the system of ordinary differential eiguatobtained after
spatial discretization is extremely big, henceuke of any numerical method developed for systedn@DdE’s is rather
complicated. Moreover, the model equations contaims that have different physical meanings andlifflerent
mathematical properties (e.g. linear, non-linetff, and non-stiff). Therefore, it is impossible fimd such a universal
numerical method which would perform well when égqbldirectly to the original system. The applicatimf operator
splitting allows us to treat the different physitaims separately.

Operator splitting method (OSM) is a kind of prahldecomposition: we divide the spatial differentpkerator of the
global system into a few simpler operators andesohe corresponding problems one after the otheigomnecting
them through their initial conditions.

The simpler systems which are obtained in thismagnand are sometimes called sub-systems, miglg ha

some special properties that can be exploited énnilamerical solution. The sub-systems are usuabfee to treat
numerically than the whole system.
Splitting can be performed in several ways. We ekfiee method to be accurate as well as efficiantigh. The latter
property depends on the number of computationglemgossibility of performing the computations &rallel. Taking
into account the latter requirement, we made atterigpconstruct a new splitting scheme which dagsequire a lot
of computational work, and is parallelizable on tiperator level.

There are different kinds of OSM which can be gggpto such problems. For their description and\stwe
refer to the literature. (See. e.g. Hundsdorfer dedver, 2003, Zlatev, 1995, and Dimov et al., 2@@8 2005.) In the
following we give an overview about the general éféa and drawbacks of the OSM. We emphasize theset
properties are independent of the concrete OSMiwivies chosen.

2. Benefits of the operator splitting process

In this section we list those properties of the O8Mch make it attractive during the mathematicaldeiling
process of complex physical phenomena.

2.1 Easier theoretical investigation of the convergence. In fact, the OSM can be viewed as a one-step time-
discretization method. Hence, it is quite natucataise the question: if the different sub-probleans solved exactly,
under which conditions is the split (discretizedjusion convergent to the exact solution when tligcr@tization
parameter tends to zero? The answer is based dartimis Lax equivalence theorem, which roughly kimgameans
that the consistency and stability together imply ¢onvergence. This means that we should chegktlomlabove two
simpler properties.

To do it for the globally discretized unsplit prebi is a very difficult (usually hopeless) task.

Since the consistency is very close to the lochitisyy error order with p > 0, therefore in prasiwe only have to
check the stability. This latter property meang tha norm of the split solution at any time legahnot be bigger than
the norm of the initial function multiplied by soneenstant independent of (C.f. Havasi (2001).) This constant is
called stability constant and it clearly cannotless than one. When it is equal to one, then ththadeis called
contractive.

The stability: if both sub-problems are stabledaes not yield the stability of the whole splitditization method.
However, when the sub-problems are contractivey the total OSM is also contractive, and hencelstab

2.2 Choice of a suitable numerical method. The use of the OSM results in a sequence of soblgms,
which also represent Cauchy problems, but with EBmpperators. However, these problems cannot bed@xactly,
either. So, we should apply numerical methods ¢cstib-problems. The benefit of the OSM is that are use different
numerical methods to the different sub-problemsading to the special features of the problemseAdtefining the
numerical methods to each sub-problems, we candemthe global numerical algorithm as a discrétimamethod to
the original unsplit continuous model (1). This egaxch gives possibility to derive some well-knowamerical
schemes or create new methods. (See Faragé, (RU0%.approach makes it possible to increase ffiwency of the
global algorithm.

2.3 Applicability of the existing software products. When we divide the original problem into a sequesice
sub-problems, it is fairly reasonable to do it ircls a way that the split tasks were standard prable which the
already existing software products (e.g. MATLABréby tool-boxes) are directly applicable. For imst, in the air
pollution modelling the sub-problems, defined bg thperators given in Section 3, are standard andobeaused by
using library program routines. We note that theMO@ves high flexibility in choosing the sub-opeyeg. In the
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choosing process the "standardization" requiremfemtaulated above should coincide with some otleguirements,
too (see later).

2.4 Increase of the computational efficiency. The choice of the time-discretization parameteplays a
crucial role in the efficiency of the applied numat method. Usually, due to some stability comdi, we cannot
choose it arbitrarily and there is an upper boutowever, our aim is to avoid this restriction besma too smatt
usually results in a lot of difficulties. (In ordtr get the numerical solution on some fixed tiexel T we should solve
the sub-problems on Ttime levels, which may get extremely big.) Busthtter fact causes some troubles:

3 the computational work increases significantly,
3 for stiff problems the numerical implementatioraisiost impossible,
3 due to the big number of the arithmetic operatitims,computational errors may increase dramatically

Hence, our aim is to get rid of the too strict rietibn and to allow to chooseas large as possible.
We show that the OSM is a powerful method to inseghe discretization parameter

In the following we consider the following example:

ou(t 0°u(t
at() (10° +s nxt) (), td(0,T)
When we use the above problem with the expllcmEmethod, then the condition of stability is
4 1 _
< = 050107°,

h? ~ max2(0° +sinxt)

which means that = 0.510%h?. This yields that the choice h = 0.01 resultsin 0.510*° for the upper bound.
(When T = 1, then20"*time steps are required.) If we use the sequespiiting

ouy(t) _ . ¢ 0°uy(t) _
S =10 O (k=D k)
90 _ sineey 2 “2(), t0((k -7, k)
ot ox?

which are connected via the initial conditions,rtlvée can observe that the first sub-problem casabeed by spectral
method, which does not require any mesh. Henceneesl to construct the mesh only for the secondpsoblem.
Applying the explicit Euler method to this probletine stability bound turns into

T 1
—<

S—F—<
h2 = 2[maxsin(xt)
This means that for the same fixed space-disctitizparameter h we can select &-fithes bigger splitting step size
within the stability condition.

2.5 Use of numerical-analytical methods. In certain cases, even if the original problem carire solved
analytically, after splitting one of the sub-prabte can be solved analytically. Hence the possibtéce of the time-
discretization paramete&rcan be enlarged again. This is demonstrated ifotlwaving example.

ou(t : ou(t
A = (]_06 +smxt)£,
ot 0x
u(x,0)= Uy (x)
for t > 0, X00O, where y(x) is a given function. Using the explicit Eulénife difference scheme, the well-known CFL
condition implies the bound
r 1
—<—.
h 10°
Applying the sequential splitting we get the subkpems

ou,(t) _ . 6 0uy(t) _
S =10 o tO((k -1)7,kr])

ou,(t)
ot

connected again via the initial conditions.

As one can see, the first sub-problem can be sohralytically by using the D'Alambert formula, basa the
coefficient in the elliptic part is constant. Aetkame time, using the explicit Euler method tosteeond sub-problem,
for the bound of the method we obtain
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T
h

This means that for some fixédve could increase the possible choice dff-times bigger.

<1

2.6 Preservation of the main qualitative properties. As we have already mentioned, the original physical
phenomenon has a lot of basic qualitative propgriidich are inherent to the physical process aiginate from the
physics of the process. The adequate continuousemeattical model also has these properties. Thergtds natural to
require that the "good" discrete model also hagdlikerete analogue of the above qualitative progerf{For instance,
such properties are the non-negativity preservatiotine initial data, contractivity in time, maximmuprinciple, shape
preservation of the initial function, etc.) For sestandard models and discretization methodslfeaj.equation, wave
propagation with finite difference and finite elemhemethod) this theory has been developed, and meavkthe
conditions under which the models are qualitatirapprty preserving.

However, when we discretize the original unsplibigem with some numerical method, then the obthine
discrete model is not standard, and hence to ctieckalidity of the discrete qualitative propertissa very difficult
task.

Clearly, when we use some operator splitting me¢tied such numerical methods for the sub-problehmishw
preserve the qualitative properties, then the dlabscretization method is also qualitative propepreserving.
Therefore, when we split the unsplit problem intsegiuence of "standard" sub-problems, we can giuee ssufficient
conditions under which the qualitative properties preserved.

3. Drawbacks of the operator splitting process
In the previous section we listed some advantag#seooperator splitting approach. However, in opmion,
this method has some disadvantages, too. In theniolg we list those problems which arise by uséhefOSM.

3.1. The suitable choice of the sub-operators. The original complex physical problem consists iffiedent -
usually simpler- processes. In fact, when we cardige problem (1), then our mathematical model is

. Au(t), tO(O,T], (1a)
u(0) =u,,

where the operator A describes the whole complessiphl process. The partition of the operator Aitite sum A =
>A;is not always natural. The choice of suitable spbrators might be difficult. For instance, for thie pollution
modelling the choice of the sub-operators, giveBeation 2 is not unique. We can decompose theatper

Au=-[(uc) + 0(KOc) + E-ogc+ R(c)

5
also as the sunAu = Au(t) ,where now
i=1
2
* Ac= —Zai (u; ) - the horizontal advection operator,
i=1
2
* AcC= Zai (k,0,c) - the horizontal diffusion operator,
i=1
. A,C = —ocC- the deposition operator,
¢ A,c = E + R(C) - the emission and chemistry operator,
¢ A.C =0,(u,C) + 0,(k;0,C) - the vertical transport operator.

This kind of decomposition is used in the DanisHeHan Model (DEM) and is called DEM decompositiorhe
decomposition given in Section 2 is called phystetomposition.

The main advantage of the DEM decomposition idiiggh flexibility for 2D problems because only thast operator
contains the vertical part.

3.2 Local splitting error. Replacing the original problem (1) with one of &f®ove listed split models usually
results in a new kind of error.
Let us denote the exact solution of the problembidl(t), andby ug(nt) the exact solution of the chosen split
problem, respectively. Their difference at the pom< is called local splitting error, i.e.,

Erre,(7) =u(7) —ug, (7). (4)
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When Errg(t) = Ot P*1) "then the splitting method is called p-th ordern&ally, the increase of the order of the
splitting results in a more accurate split solutidherefore the quality of a splitting can be clhtgdsed by its order,
too. For the above discussed splitting method®tters can be computed directly and they are

. for the sequential splitting one,

. for the Strang-Marchuk splittig two;

. for the symmetrically weighted sequential splittimgp,
. for the additive splitting one;

. for the iterated splitting 2m+1.
Since the split sub-problems cannot be solved Bxage should apply numerical methods to their 8ofu Hence, the
obtained numerical result includes two kinds obesr the local splitting error and the error of themerical methods.
The analysis of the interaction of these two erisrgsually a very complicated task. Hence, theremnalysis for the
numerical solution obtained by use of some numkenethod to the unsplit problem, is simpler andcaa control it
more easily than for the split models.
We note that under some condition the splittingremay disappear (for some splittings in case afrooitativity of the
operators) but these conditions are mostly untéalis real-life applications.

3.3. Handling the boundary conditions. When using the OSM, a serious problem is handliegltoundary
conditions for the split problems. More precisdlye question is: how to describe the boundary ¢mmd for the
different sub-problems of different type? E.g. #imaplified diffusion-advection model of (1) in 1@a&the form

@=—D(uc)+D(KDc), xO0 Oy, tOOT]
ot (21)

c(x,0) =¢c,(x), xO (0D.

This is a parabolic problem and hence we shoulthedfvo boundary conditions, namely, at the poist& and x = 1.
However, using e.g. the sequential splitting, tingt Sub-problem (advection part) is a first ortigperbolic problem.
For such a problem we can use only one boundargittom, i.e., one of them. Hence the boundary comwliat the
other point will not be satisfied which may causense difficulties.

Acknowledgements.
This work was supported by Hungarian National RedeBounds (OTKA)
N. T043765, T049819 and NATO Collaborative Linka@rant N. 980505.

Dimov, I., Farago, |., Zlatev, Z., 2003, Pafdal®mputations with large-scale air pollution misgdEroblems in Programming, 44-52.
Dimov, I., Faragd, |, Havasi, A., Zlatev, 2006, Different splitting techniques with apptioa to air pollution models, Int. J.
Environmental Pollution(to appear).

Farago, I., 2005, Splitting methods for abst@atichy problemd,ect. Notes Comp. SE401, Springer Verlag, Berlin, 35-45.

Havasi, A., Bartholy, J., Faragg, 1., 2001, Siplj method and its application in air pollutiorodeling.ldgjaras 105, 39-58.

Hundsdorfer, W., Verwer, J. G., 2003, Numersmution of time-dependent advection-diffusion-teatequations. Springer, Berlin.
Prusov, V., Dorosenko, A., 2003, Modelling ancetasting atmospheric pollution over regidnnales Univ. Sci. ELTE6, 27-45.

Zlatev, Z., 1995, Computer treatment of largepallution models. Kluwer, Amsterdam.

456 — 1480

N =

PNOOA~®

658



