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Operator splitting is a widely used procedure in the numerical solution of complex problems. The point in operator splitting is the 
replacement of the original model with one in which appropriately chosen groups of the sub-processes, described by the model, take place 
successively in time. This de-coupling procedure allows us to solve a few simpler problems instead of the whole one. In this paper we 
investigate the application of the operator splitting method to real-life problems from a practical point of view, with great emphasis on 
long-range air pollution transport. We discuss the main benefits and drawbacks of this approach. 
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Introduction 

 The operator splitting method (OSM) is a widely used method for solving real-life problems. It can be applied 
in the numerical modelling process of many different time-dependent complex physical phenomena.  The original 
continuous mathematical model of such phenomena can be described in the form of an abstract Cauchy problem (ACP) 
as follows: 
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where u denotes the unknown function, 0u  is a given element which describes the initial state of the process; iA  (for i 

= 1, 2,…n) are given (usually densely defined linear) operators.  
Frequently, the OSM is applied to the so called semi-discretized problem.  This means that the original continuous 
problem has already been discretized w.r.t. the space variables. Then (1) denotes the system of ordinary differential 

equations obtained in this way. Clearly, for linear problems iA  are matrices.  

1. An important example: air pollution modelling 
 The transport of air pollutants is one of the most widely investigated phenomena for which (1) can serve as a 
mathematical model.  

 Let ),( tcc jj x=  denote the concentration of the j-th air pollutant, and c the vector function of these 

functions. Then the time evolution of the vector c can be described mathematically by the system of partial differential 
equations (Zlatev, 1995, Prussov and Dorosenko, 2003) 
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where ),( txuu =  is a vector-function describing the wind velocity, ),( tKK x=  is the diffusion coefficient 

function, ),( tEE x=  is the function of emission, ),( txσσ = describes the deposition and R defines the chemical 

reactions of the pollutants. The initial function c0(x) is given. Using these notations, the terms in equation (10) have the 
following physical meaning. The first term on the right-hand side describes the transportation due to the velocity field, 
which is called advection. The second term expresses the turbulent diffusion, the third term the emission, the fourth term 
describes the deposition and the last term defines the chemistry of the pollutants.  
Then, using the notation 

♦ )(1 ccA u−∇= - the advection operator 

♦ )(2 cKcA ∇∇= - the diffusion operator 

♦ ccA σ−=3 - the deposition operator 



Прикладне програмне забезпечення 

 655 

♦ EcA =4 - the emission operator 

♦ )(5 cRcA = - the chemistry operator 

the problem (2) can be written in the form (1).  
The number of chemical species involved in a modern air pollution model sometimes reaches 200, or even more, which 
results in a huge system of partial differential equations. The analytical solution of such a problem is obviously 
impossible to find. Hence we have to treat it numerically. We note that in case of semi-discretization usually the number 
of spatial grid points equals many millions. This means that the system of ordinary differential equations obtained after 
spatial discretization is extremely big, hence the use of any numerical method developed for systems of ODE’s is rather 
complicated. Moreover, the model equations contain terms that have different physical meanings and so different 
mathematical properties (e.g. linear, non-linear, stiff and non-stiff). Therefore, it is impossible to find such a universal 
numerical method which would perform well when applied directly to the original system. The application of operator 
splitting allows us to treat the different physical terms separately.  
Operator splitting method (OSM) is a kind of problem decomposition: we divide the spatial differential operator of the 
global system into a few simpler operators and solve the corresponding problems one after the other, by connecting 
them through their initial conditions. 
 The simpler systems which are obtained in this manner, and are sometimes called sub-systems, might have 
some special properties that can be exploited in the numerical solution. The sub-systems are usually easier to treat 
numerically than the whole system.  
Splitting can be performed in several ways. We expect the method to be accurate as well as efficient enough. The latter 
property depends on the number of computations and the possibility of performing the computations in parallel. Taking 
into account the latter requirement, we made attempts to construct a new splitting scheme which does not require a lot 
of computational work, and is parallelizable on the operator level.  
 There are different kinds of OSM which can be applied to such problems. For their description and study we 
refer to the literature. (See. e.g. Hundsdorfer and Verwer, 2003, Zlatev, 1995, and Dimov et al., 2003 and 2005.) In the 
following we give an overview about the general benefits and drawbacks of the OSM. We emphasize that these 
properties are independent of the concrete OSM which was chosen. 

2. Benefits of the operator splitting process 

 In this section we list those properties of the OSM which make it attractive during the mathematical modelling 
process of complex physical phenomena. 

 2.1 Easier theoretical investigation of the convergence. In fact, the OSM can be viewed as a one-step time-
discretization method. Hence, it is quite natural to raise the question: if the different sub-problems are solved exactly, 
under which conditions is the split (discretized) solution convergent to the exact solution when the discretization 
parameter tends to zero? The answer is based on the famous Lax equivalence theorem, which roughly speaking means 
that the consistency and stability together imply the convergence. This means that we should check only the above two 
simpler properties.  
To do it for the globally discretized unsplit problem is a very difficult (usually hopeless) task. 
Since the consistency is very close to the local splitting error order with p > 0, therefore in practice we only have to 
check the stability. This latter property means that the norm of the split solution at any time level cannot be bigger than 
the norm of the initial function multiplied by some constant independent of τ. (C.f. Havasi (2001).) This constant is 
called stability constant and it clearly cannot be less than one. When it is equal to one, then the method is called 
contractive.  
The stability: if both sub-problems are stable, it does not yield the stability of the whole split discretization method. 
However, when the sub-problems are contractive, then the total OSM is also contractive, and hence stable.  

 2.2 Choice of a suitable numerical method. The use of the OSM results in a sequence of sub-problems, 
which also represent Cauchy problems, but with simpler operators. However, these problems cannot be solved exactly, 
either. So, we should apply numerical methods to the sub-problems. The benefit of the OSM is that we can use different 
numerical methods to the different sub-problems according to the special features of the problems. After defining the 
numerical methods to each sub-problems, we can consider the global numerical algorithm as a discretization method to 
the original unsplit continuous model (1). This approach gives possibility to derive some well-known numerical 
schemes or create new methods. (See Faragó, (2005).) This approach makes it possible to increase the efficiency of the 
global algorithm.  

 2.3 Applicability of the existing software products. When we divide the original problem into a sequence of 
sub-problems, it is fairly reasonable to do it in such a way that the split tasks were standard problems to which the 
already existing software products (e.g. MATLAB library tool-boxes) are directly applicable. For instance, in the air 
pollution modelling the sub-problems, defined by the operators given in Section 3, are standard and can be used by 
using library program routines. We note that the OSM gives high flexibility in choosing the sub-operators. In the 
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choosing process the "standardization" requirements formulated above should coincide with some other requirements, 
too (see later). 

 2.4 Increase of the computational efficiency. The choice of the time-discretization parameter τ plays a 
crucial role in the efficiency of the applied numerical method. Usually, due to some stability conditions, we cannot 
choose it arbitrarily and there is an upper bound. However, our aim is to avoid this restriction because a too small τ 
usually results in a lot of difficulties. (In order to get the numerical solution on some fixed time level T we should solve 
the sub-problems on T/τ time levels, which may get extremely big.) But this latter fact causes some troubles: 

♦ the computational work increases significantly,  
♦ for stiff problems the numerical implementation is almost impossible, 
♦ due to the big number of the arithmetic operations, the computational errors may increase dramatically.  

Hence, our aim is to get rid of the too strict restriction and to allow to choose τ as large as possible. 
We show that the OSM is a powerful method to increase the discretization parameter τ. 
 
In the following we consider the following example:  
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When we use the above problem with the explicit Euler method, then the condition of stability is  
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which means that  τ ≈ 0.5⋅10-6⋅h2.. This yields that the choice h = 0.01 results in  τ ≈ 0.5⋅10-10  for the upper bound. 
(When T = 1, then 2⋅1011 time steps are required.) If we use the sequential splitting 
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which are connected via the initial conditions, then we can observe that the first sub-problem can be solved by spectral 
method, which does not require any mesh. Hence, we need to construct the mesh only for the second sub-problem. 
Applying the explicit Euler method to this problem, the stability bound turns into  
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This means that for the same fixed space-discretization parameter h we can select a 106-times bigger splitting step size τ 
within the stability condition.  

 2.5 Use of numerical-analytical methods. In certain cases, even if the original problem cannot be solved 
analytically, after splitting one of the sub-problems can be solved analytically. Hence the possible choice of the time-
discretization parameter τ can be enlarged again. This is demonstrated in the following example. 
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for t > 0, x∈ℜ, where u0(x) is a given function. Using the explicit Euler finite difference scheme, the well-known CFL 
condition implies the bound 
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Applying the sequential splitting we get the sub-problems 
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connected again via the initial conditions.  
As one can see, the first sub-problem can be solved analytically by using the D'Alambert formula, because the 
coefficient in the elliptic part is constant. At the same time, using the explicit Euler method to the second sub-problem, 
for the bound of the method we obtain  
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This means that for some fixed h we could increase the possible choice of τ 106-times bigger. 

 2.6 Preservation of the main qualitative properties. As we have already mentioned, the original physical 
phenomenon has a lot of basic qualitative properties, which are inherent to the physical process and originate from the 
physics of the process. The adequate continuous mathematical model also has these properties. Therefore, it is natural to 
require that the "good" discrete model also has the discrete analogue of the above qualitative properties. (For instance, 
such properties are the non-negativity preservation of the initial data, contractivity in time, maximum principle, shape 
preservation of the initial function, etc.) For some standard models and discretization methods (e.g. heat equation, wave 
propagation with finite difference and finite element method) this theory has been developed, and we know the 
conditions under which the models are qualitative property preserving.  
 However, when we discretize the original unsplit problem with some numerical method, then the obtained 
discrete model is not standard, and hence to check the validity of the discrete qualitative properties is a very difficult 
task.  
 Clearly, when we use some operator splitting method and such numerical methods for the sub-problems which 
preserve the qualitative properties, then the global discretization method is also qualitative property preserving. 
Therefore, when we split the unsplit problem into a sequence of "standard" sub-problems, we can give some sufficient 
conditions under which the qualitative properties are preserved. 

3. Drawbacks of the operator splitting process 
 In the previous section we listed some advantages of the operator splitting approach. However, in our opinion, 
this method has some disadvantages, too. In the following we list those problems which arise by use of the OSM. 

 3.1. The suitable choice of the sub-operators. The original complex physical problem consists of different -
usually simpler- processes. In fact, when we consider the problem (1), then our mathematical model is  
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where the operator A describes the whole complex physical process. The partition of the operator A into the sum A = 
ΣA i is not always natural. The choice of suitable sub-operators might be difficult. For instance, for the air pollution 
modelling the choice of the sub-operators, given in Section 2 is not unique. We can decompose the operator 

)()()( cRcEcKcAu +−+∇∇+−∇= σu  

also as the sum u(t) ,AAu i
i
∑

=

=
5

1

where now 

♦ )(
2

1
1 cucA i

i
i∑

=

∂−= - the horizontal advection operator, 

♦ )(
2

1
2 ckcA ii

i
i ∂∂=∑

=

- the horizontal diffusion operator, 

♦ ccA σ−=3 - the deposition operator, 

♦ )(4 cREcA += - the emission and chemistry operator, 

♦ )()( 333335 ckcucA ∂∂+∂= - the vertical transport operator. 

This kind of decomposition is used in the Danish Eulerian Model (DEM) and is called DEM decomposition. The 
decomposition given in Section 2 is called physical decomposition. 
The main advantage of the DEM decomposition is its high flexibility for 2D problems because only the last operator 
contains the vertical part. 

 3.2 Local splitting error. Replacing the original problem (1) with one of the above listed split models usually 
results in a new kind of error. 
Let us denote the exact solution of the problem (1) by u(t), and by  usp(nτ)  the exact solution of  the chosen split 
problem, respectively. Their difference at the point t = τ is called local splitting error, i.e., 
 

)()()( τττ spsp uuErr −= . (4) 

 



Прикладне програмне забезпечення 

 658 

When Errsp(τ) = O(τ p+1), then the splitting method is called p-th order. Generally, the increase of the order of the 
splitting results in a more accurate split solution. Therefore the quality of a splitting can be characterised by its order, 
too. For the above discussed splitting methods the orders can be computed directly and they are 

♦ for the sequential splitting one, 
♦ for the Strang-Marchuk splittig two; 
♦ for the symmetrically weighted sequential splitting two, 
♦ for the additive splitting one; 
♦ for the iterated splitting 2m+1. 

Since the split sub-problems cannot be solved exactly, we should apply numerical methods to their solution. Hence, the 
obtained numerical result includes two kinds of errors: the local splitting error and the error of the numerical methods. 
The analysis of the interaction of these two errors is usually a very complicated task. Hence, the error analysis for the 
numerical solution obtained by use of some numerical method to the unsplit problem, is simpler and we can control it 
more easily than for the split models.  
We note that under some condition the splitting error may disappear (for some splittings in case of commutativity of the 
operators) but these conditions are mostly unrealistic in real-life applications.  

 3.3. Handling the boundary conditions. When using the OSM, a serious problem is handling the boundary 
conditions for the split problems. More precisely, the question is: how to describe the boundary conditions for the 
different sub-problems of different type? E.g. the simplified diffusion-advection model of (1) in 1D has the form 
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This is a parabolic problem and hence we should define two boundary conditions, namely, at the point x = 0 and x = 1. 
However, using e.g. the sequential splitting, the first sub-problem (advection part) is a first order hyperbolic problem. 
For such a problem we can use only one boundary condition, i.e., one of them. Hence the boundary condition at the 
other point will not be satisfied which may cause some difficulties. 
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