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Geometric measure of mixing of quantum state
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We define the geometric measure of mixing of quantum state as a minimal Hilbert-Schmidt distance between
the mixed state and a set of pure states. An explicit expression for the geometric measure is obtained. It is
interesting that this expression corresponds to the squared Euclidian distance between the mixed state and
the pure one in space of eigenvalues of the density matrix. As an example, geometric measure of mixing for
spin-1/2 states is calculated.
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1. Introduction

Pure and mixed states are the key concept in quantum mechanics and in quantum information theory.
Therefore, an important question arises regarding the degree of mixing of a quantum state. In the literature,
von Neumann entropy is often used to answer this question:

S=-Trplnp = —(Inp), (1.1

which is zero for a pure state and has a maximal value for maximally mixed states. The entropy can be
used as a measure of the degree of mixing of a quantum state. To explicitly calculate the von Neumann
entropy, it is necessary to know the eigenvalue of density matrix which is a nontrivial problem. Therefore,
the linear entropy as approximation of von Neumann entropy is also used

np=In[1-(1-pl=~(1-7p). (1.2)
In this approximation, the linear entropy reads
SL=Tr(p—p%) =1-Trp% (1.3)

Linear entropy does not satisfy the properties of von Neumann entropy. However, to calculate the linear
entropy, it is not necessary to know the eigenvalues of a density matrix. In this case, we can directly
calculate the trace of p?. Note that Tr p? is called purity and is used for quantifying the degree of the
purity of state. For pure state 5> = p, and purity takes a maximal value 1 and is less 1 for mixed states.
A review on entropy in quantum information can be found in book [1]] (see also [2]).

Geometric ideas play an important role in quantum mechanics and in quantum information theory
(for review see, for instance, [3]]). In our previous paper [4], we use the geometric characteristics such as
curvature and torsion to study the quantum evolution. The geometry of quantum states in the evolution of
a spin system was studied in [5}6]. In [7]], the distance between quantum states was used for quantifying
the entanglement of pure and mixed states.
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In this paper, we use Hilbert-Schmidt distance in order to measure the degree of mixing of quantum
state. We define the geometric measure of mixing of quantum state as minimal Hilbert-Schmidt distance
between the mixed state and a set of pure states. In section [2] using this definition, we find an explicit
expression for the geometric measure of mixing of quantum state. Conclusions are presented in section 3]

2. Hilbert-Schmidt distance and degree of mixing of quantum state

To define the geometric measure of degree of mixing of quantum state, we use the Hilbert-Schmidt
distance between two mixed states. The squared Hilbert-Schmidt distance reads

d*(pr. p2) = Tt (1 - fa)’, @.1)

where p; and p; are density matrices of the first and the second mixed states. We define geometric
measure of mixing of quantum states as minimal squared Hilbert-Schmidt distance from the given mixed
state to a set of pure states

. A N 2
D= rIIglbl? Tr (p - ppure) > (2.2)

where p is density matrix of the given mixed states,

ﬁpure = |lﬂ)<lﬁ| (2.3)

is density matrix of a pure state described by the state vector |/), and minimization is done over all
possible pure states.
Let us rewrite the geometric measure of mixing of quantum states as follows:

D = min (Tr P+ Tt Pl = 2Te pp p) : 2.4)
W

Three terms in (2.4) can be calculated separately. For the first term, we find

Trp? = Z 22, 2.5)
i

where A; are eigenvalues of density matrix p. For pure state ﬁfmre = Ppure, S0 the second term reads

Tr poure = Tt Ppure = 1. (2.6)

Trace is invariant with respect to choosing the basic vectors. To calculate the third term, we use the

following orthogonal basic vectors |), |¢/1), |¥2), . . . , where the first vector is equal to the state of pure
state in (2.3), (W|yi) =0, (Yily;) =0,i=1,2,...,j=1,2,....Then,

ﬁpure|‘/’> = |lr//>’ (2.7)

ﬁpurell//i> = |¢’><¢’|d/l> =0, i=12,.... (2.8)

As a result, for the third term we have
Trﬁﬁpure = <lﬁ|ﬁ|lﬁ> (29)

Substituting (2.5), 2.6), 2.9) into (2.4), we find

D = min Zi]ﬂ% 1= 2W1ply) |- (2.10)
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This expression reaches a minimal value when |¢) is equal to the eigenvector of density matrix p with
maximal eigenvalue. Thus, finally, for geometric measure of mixing of quantum state we have

D:Zﬁ%ﬂ—zam:(l—am)% Z A2, 2.11)
i Ai <Amax
For the pure state Anax = 1 and all other eigenvalues are zero. Thus, for the pure state D = 0 as it
should really be. It is interesting to note that is a squared Euclidian distance in the eigenvalue
space between the mixed state with eigenvalues of density matrix Apyqax, ... 4; ... and pure state with
eigenvalues 1,...0,....
One can easily find that D is maximal when all eigenvalues of the density matrix are the same

A; = 1/n,i = 1,2,...n, where n is a dimension of the quantum system. So, the maximal value of
geometric measure of mixing of quantum state in this case is D = 1 — 1/n and density matrix reads

R 1.

Pmax = ;1 (2.12)

and can be referred to as the maximally mixed state.
The distance between the maximally mixed (2.12) state and the arbitrary pure (2.3)) one is

2
R R R A2 1 1 1
dz(pmax, ppure) =Tr (pmax - ,Dpure) = (1 - _) +(n— 1)_2 =1--. (2.13)
n n n
where to calculate Tr we use the orthogonal basic vectors [y), [¥1), [¥2), ..., where the first vector

corresponds to the pure state in (2.3). Note that this distance is the same between the maximally mixed
state and the arbitrary pure one.

At the end of this section, let us consider an explicit example of using the obtained result for calculation
of geometric measure of mixing of quantum state presented by (2.1T). We consider the mixed state of
spin-1/2 described by the density matrix

1
p= 5+ @), (2.14)
where a is Bloch vector, o = (07, 07, 0%;) are Pauli matrices. Eigenvalues of this matrix are
1 1
A =§(1+a), /12=§(1—a), (2.15)

where a = |a| < 1 is the length of Bloch vector. Note that A; corresponds here to Apax. Then, according
to (2.T1), the geometric measure in this case reads

D= %(1 -a). (2.16)

At a = 1, which corresponds to pure states (Bloch sphere) as we see D = 0 and the mixed state is
maximally mixed D = 1/2 ata = 0.

3. Conclusions

We define the geometric measure of mixing of quantum state as minimal Hilbert-Schmidt distance
between the given mixed state and a set of pure states. The main problem in this definition is the procedure
of minimization over pure states. It is important that it is possible to perform this procedure and get an
explicit expression for geometric measure of mixing of the quantum state presented by (2.11)). This is the
main result of the present paper. It is interesting to note that (2.T1) is the squared Euclidian distance in
space of eigenvalues of the density matrix between the mixed state and the pure one. Finally, we would
like to note that similarly to the calculation of von Neumann entropy of mixed states, to calculate the
geometric measure of mixing of state, it is necessary to know the eigenvalues of the density matrix. So,
from this point of view, the difficulties of calculation of geometric measure of mixing of states is similar
to the difficulties of calculation of the entropy measure of mixing of state. However, definition of degree
of mixing of state presented in this paper is of geometric origin and is intuitively understandable. We
hope that this result provides a new inside into the problem under consideration.
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FeomeTpnyHa Mipa 3MiLLLAHOCTi KBAHTOBOrO CTaHy
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L Kadeapa npuknagHoi ¢isukm i HaHomaTepiano3HaBcTBa, HalioHanbHW yHiBepcuTeT "/IbBiBCbKa NoniTexHika",
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Mu 03HaYaEMO reoMeTpMYHYy Mipy 3MiLLAaHOCTi KBAHTOBAro CTaHy sik MiHiManbHy BiacTaHb linbbepTa-LLUmiaTa
MiX 3MiLLaHUM CTaHOM Ta HabopPOM YNCTKX CTaHiB. OTPMMaHO SBHWIA BMPa3 A/19 FeOMeTPUYHOT Mipy 3MiLlaHo-
cTi. LikaBMM € Te, WO Lieid BMpa3 BiANOBiAa€e KBaApaTy eBKNiA0BOI BiACTaHi MiX 3MilLaHVMM Ta YACTUM CTaHaMM
y MPOCTOPi BAACHUX 3HAaYeHb MaTPULi TYCTUHW. K Npuknag, 064ncneHo reoMeTpUYHY Mipy 3MilLaHOCTi CTaHiB
cniHa 1/2.

KnrouoBi cnoBa: 3miLuaHi ctaHy, MaTpuys ryctuHy, BigctaHs liabbepra-LUmigTa
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