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The magnetic properties of the mixed spin-% and spin-% Ising model with a crystal-field in a longitudinal mag-
netic field are investigated on the Bethe lattice using exact recursion relations. The ground-state phase dia-
gram is constructed. The temperature-dependent one is displayed in the case of uniform crystal-field on the
(ksT/|J|, D/|J|) plane in the absence of the external constraint for lattice coordination numbers z = 3,4, 6.
The order parameters and corresponding response functions as well as the internal energy are calculated and
examined in detail in order to feature the real nature of phase boundaries and corresponding temperatures.
The thermal variations of the average magnetization are classified according to the Néel nomenclature.
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1. Introduction

The investigation of mixed Ising systems has been of great interest in statistical mechanics during the
past decades [[1H4]. This is due to the revelation of novel critical magnetic properties not detected during
studies of their single-spin counterparts. These systems are used to model ferrimagnetic materials whose
properties are often needed in modern sophisticated technologies, such as magnetic recording, storage
and reading devices [SH11].

Theoretically, such systems have been studied by several statistical mechanical methods: renorma-
lization-group technique [12, [13]], mean-field approximation [[14H18]], effective-field theory [19-24],
Monte Carlo simulations [25H29]]. Recently, Jiang and Bai [30] have studied the influence of an ex-
ternal longitudinal magnetic field on the magnetic properties of a mixed spin-1/2 and spin-3/2 Ising
ferromagnetic/ferrimagnetic bilayer system. By means of the effective-field theory, Essaoudi et al. [31]]
also studied the same model using a probability distribution technique. This investigation revealed a
remarkable influence of the field strength on the magnetic properties of this system. Few exactly solved
mixed-Ising models exist in the literature. For recent review on the subject, the reader should refer to
references [32H41]. Experimentally, the investigation of such systems has been performed for many years
and has shown strong effects of the external constraint on the physical properties of the system [42}43]].
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In this paper, the Bethe lattice (BL) approach is used to examine the magnetic properties of the mixed
spin—% and spin—% Ising model with equal crystal-field in the presence of a longitudinal magnetic field.
The exact recursion relations are calculated considering contribution to the total partition function of the
system from sites deep inside the lattice [44]]. This work aims at the study of the effects on the phase
boundaries of the competition between the two parameters of the system: the magnetic field and the
crystal-field strengths.

The remainder of this paper is arranged as follows. In section [2] the formulation of the model on the
BL is clarified. Also, the order-parameters, the corresponding response functions, the internal energy and
free energy are expressed in terms of recursion relations. In section 3| we discuss in detail the numerical
results. Finally, in the last section we conclude.

2. Formulation of the model on the BL

The mixed-spin system on the BL is shown in figure [I] It consists of two sublattices A and B. Sites

of the sublattice A are occupied by atoms of spins s; = +1. Those of the sublattice B are occupied by

2
atoms of spins o = i%, i%, i%, i%. The BL is arranged such that the central spin is spin-l, and the next

generation spin is spin—% and so on to infinity. The Ising Hamiltonian of the model may be written as:
H:—JZS,U'J-—DZsz—h(Zsi+ZGj), (1)
() J i J

where J < 0 is the bilinear exchange coupling interaction strength; D and & are, respectively, the
crystal-field and the longitudinal magnetic field acting on the spins.
In order to formulate the problem on the BL, the partition function is calculated. Its expression reads:

Z:Zexp{ﬂ[]Z s,-a'j+DZO'j2+h(Zsi+ZO'j)”. 2)
<i,j> J i J

If the BL is cut at the central spin sy, it splits into z disconnected pieces. Then, the partition function
can be written as:

Z= Z exp | B(s0)]| g (s0), 3)

Figure 1. Schematic representation of the Bethe lattice with coordination number z = 3. It consists of two
interpenetrating sublattices A and B with spin variables s; = 1/2 and o = 7/2, respectively.
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where s is the central spin value of the lattice, g, (so) is the partition function of an individual branch
and the suffix n represents the fact that the sub-tree has 7 shells, i.e., n steps from the root to the boundary
sites. If one continues to cut the BL on spins o7} and s, which are respectively the nearest and next-nearest
neighbors of the central spin sg, the recurrence relations for g,,(s¢) and g,-1(o) read:

gn(s0) = Y exp [B(Isoers + Dt + ho)] [gn-r(o)] ™, “
{o1}
gn-1(0) = ) exp [B(J520m + hsa)] [gn-a(s2)] . 8)

{s2}
Explicit relations for some g, (so) and g, (o) are given in the following:

dn (i%) = Z exp [ﬁ( + %o-l + Dol + hm)} [%—1(0'1)]2_1

= ool 2ol ()]

+ exp-ﬁ(¢¥+?D—%h):-gnl( %)}

+ exp B(i¥+§D+§h): In— 1(;”

+ exp ,B(J—riTJ+24—5D—§h)—gnl( g)]

+ exp _,8( + %TJ + ZD + %h) :gn_l (%) ]Z_l

+ exp »,8( F ZZTJ + %D - %h) :gn_l (—%) ]Z_l

+ exp ,8( + % + %D + %h)} :gn_l (%) r—l

+ exp >,8( ¥ % + %D - %h)} :gnl (—%) ]Z_], (6)

Gn—1 (i%) = Zexp [IB +—S2+hS2 ] In— 2(S2)
{s2}
7J h 1
- exp[ﬂ(if 2 [W(EH
+ exp[ﬂ(wT%J g”gnz( %)] ’ 7

H
(STRV)]

S —
l

In-1 (

eXP [,3 + —Sz + hsz)] [gn- 2(S2)]
{s2}

- eols(+7 +3) [g(;)]
e eolpl=5 -5 faa 3] .
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gn-1 (ig) Z exp [,3( + %Jsz + hsz)] [gnfz(sz)]z_]
{s2}

= oo+ 2+ )} ]
v ewlp(x 32| (5] ©

gn-1 (i%) [,3( + ¥S2 + hSz)] [gn—z(sz)]kl
{s2}

(i)
e R P (0

After calculating all the g,,(so) and g;,—1 (071 ), the recursion relations for the spin-% are defined as:

Il
¢}
>

o

- onlof=4)

1
Yo = g"(Z)l (11)
gn( - 3)
and for the spin—% as:
7 7
In-1\+ 3 In-1\ — 3
UL f), By = 2! f), (12)
gnfl( - §) gnfl( - j)
5 5
In-1{ + 35 In-1\ — 3
Coot = = ( f), Dyt = = ( ?), (13)
gn-1(=3) gn-1( - 3)
3 3
In-1(3 gn-1(— 3
E,1= ‘ 1(2)1 s Fo1 = - 1( ?),
gn-1(-3) gn-1( - 3)
1
gn-1(+3)
Gp1 = 2.
gn-1(-3)

For the numerical investigation of the model, the magnetization M and the corresponding quadrupolar
moment Q are quantities of interest. For the sublattice A, the sublattice magnetization M), is defined

by:

My = Zi)y > s0exp (Bhso)gs (o). (14)
{so}

After some mathematical manipulations, the sublattice magnetization M, is explicitly given by:

h h
exp (7)Y —exp (- )
My = B on T (15)
2[exp ()% +exp (- )]
In the same way, the two order-parameters for the sublattice B are calculated as follows:
MI Ql
7/2 7/2
Mip=—2  0p=-12 (16)
M7/2 Q7/2
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where
/ 7\ .. 7 \..
i = oo s oo .|
seol ol ol S |
+ 3exp (%BD) [exp (%ﬂh)E;_l —exp (—%ﬁh)Fj_l]

exp (%ﬁh)Gfl_l — exp (—%,Bh)], 17)

M), = 2exp (?ﬁD) [exp (%ﬁh)Afll + exp (—%ﬁh)Bfll]

o 2esp (2200 e Son)e., o -San)o. |

N L P AR e

+ 2exp(}lﬁD)[exp(%Bh)Gi_l+exp(—%ﬂh)}, (18)
0, = 49exp(?ﬁD)[exp(%ﬁh)Ai_l+exp(—%ﬁh)BZ_l]

o 2sexn(Z0)| oo S, +eso o) |

+ 9exp (%ﬁD) [ exp (%,Bh)Efl_l + exp (—%Bh)F;_l]
1 1
[exp (Eﬂh)Gi_l + exp (_Eﬁh)]’ (19)

7 7
Q(7)/2 = 4dexp exp(iﬁh)Afl_l+exp(—§,8h)Bfl_l]

NN

exp (gﬁh)Cfll + exp (—;ﬁh)Dfll]

+
N
o
>
g

1]
N
o
>
o
—_———

1o

,BD) exp (%ﬁh)Efl_l + exp (—%ﬁh)F;_l}
+ dexp (%ﬁD)[exp (%ﬁh)Gfl_l + exp (—%,Bh)]. (20)

In order to determine the compensation temperature, one should define the global magnetization My,
of the model which is given by:
M+ M7
—

To really study the model in detail and single out the influence of the crystal-field and the applied magnetic
field on the magnetic properties of the model, we have also examined the thermal variations of the response
functions i.e., the susceptibilities, the specific heat and the internal energy defined respectively by:

oM ) Mz
= + = + 2
XTotal = X1/2 + X772 ( oh ), oh h:o, .

Mpe, = (21)
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9 (=BF’)

_ 2

C=—p— (23)
A

N~ ke g7 (kBT)’ @)

where F” is the free energy of the model.

In order to classify the order of the phase transitions, i.e., whether the second- or the first-order, the
free energy expression is also needed in addition to the order-parameters. It can be calculated in terms of
recurrence relations by using the definition F’ = —kT In(Z) in the thermodynamic limit, i.e., n — co :

. _é(;:iln{exp ﬁ(—£+§) Y;“+exp[ﬁ(£‘§)”)
- pfferls (g on -2

1 1 7J 49D 7h
- ,3(2— ln{exp[ﬁ( X 2)]14Zl

o owlp( 5 |

+ exp »ﬁ(—%J+2?TD+%)]C§_}+exp [ﬁ(¥+ZSTD—%)]D;_i
I

T :ﬁ(é*%%) Gy +exp [ﬁ(£+§—§)]}). (25)

3. Numerical results and discussions

In this section, we present and discuss the results we obtained for the temperature phase diagrams of
the model, the thermal variations of the order-parameters, the response functions and the internal energy.
To this end, we first construct the phase diagram at 7 = 0.

3.1. Ground-state phase diagrams

The ground-state phase diagram of the model is obtained by comparing the values of the energy Ey
for different spin configurations which can be expressed as:

Ey = so - ﬁ [Do- + h(s + 0')] (26)
Only eight possible pairs of spins due to the ferrimagnetic coupling J and positive field (A > 0) are
found. Calculations of these energies in the (k/z|J|, D/z|J|) plane yield the ground-state phase diagram
displayed in figure 2] The model has a usual spin-flip symmetry. Thus, all ground-states for negative field
(h < 0) can be obtained from the corresponding ones at a positive field, simply by reversing all spin
orientations. Some key features of the model are revealed in the diagram, in particular, the existence of
seven multicritical points (A1, Ay, - - - , A7) and coexistence lines where spin pair energies of some phases
are equal. In the absence of the magnetic field, for a given values of z and D/z|J|, M7/, shows seven
saturation values whereas for M >, _2 are the two saturation values. Hence, we get the ferrimagnetic

phases: F(F 2,_%) F(+;,ig) F(+é,ig) F(TL;,_Z) and at the borders of these phases, three hybrid
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4 \ \ ‘ \
+1/2, +7/2
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D/z|J|

Figure 2. Ground-state phase diagram of the mixed spin-% and spin-% Ising ferrimagnetic model with
the crystal-field D applied one sublattice in the (h/z|J|, D/z|J|) plane. There exist eight stable phases.
Along the D/z|J|-axis and for all values of z, three hybrid phases may appear at the multicritical points
A5, A() and A7.

phases: F(F %, +1),F(F %, +2),F(F %, +3) at the multicritical points As, Ag and A, respectively. These
hybrid phases should correspond to cases where the sublattice B is half-half covered by spins of the two

neighboring phases.

3.2. Finite-temperature phase diagrams

In this subsection, we show some typical results for the mixed spin—% and spin—% Ising model on the
BL with a crystal field at zero longitudinal magnetic field. First, we present phase diagrams of the model
in the (D/|J|, kgT/|J]) plane for z = 3,4 and 6. Therein, solid lines indicate a second-order transition.
The three filled circles As, A and A7 in figure 3] are the multicritical points found in the ground-state
phase diagram.

From this figure, some interesting properties of the system emerge. Indeed, for all values of the
coordination number z, from panel (a) to panel (c), transition lines are only of the second-order type and
separate the ferrimagnetic phase (F) which is a mixture of five different ferrimagnetic phases from the
paramagnetic phase (P). They become constant for D/[J| < —. One observes that for D/|J| > -, the
second-order phase transition turns from ferrimagnetic phase F( %, i%) to the disordered paramagnetic

phase P. For —% < D/|J| < -, the second-order phase transition is from the ferrimagnetic F( ¥ %, i%)
to the paramagnetic phase P. When —% < D/|J| < —§, the second-order phase transition is from the
ferrimagnetic F( ¥ %, i%) to the paramagnetic phase P. In the case where D/|J| < —%, the second-
order phase transition is from the ferrimagnetic phase F( + %, ¢%) to the paramagnetic phase P. For
D/|J| = =, (respectively D/|J| = —§ and D/|J| = —% ), the second-order transition phase is from the
hybrid phase F(F 1, +3) [respectively the hybrid phase F(F 3, +2) and F(F 4, +1)] to the paramagnetic
phase P.

It is important to mention that figure [3] presents some resemblances with results from references
[24] 36} [40] concerning the second-order transition lines. Also, by increasing the value of the coordination
number z, the ferrimagnetic domain F becomes important.
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Figure 3. Phase diagrams of the model in the (D/|J|, kgT/|J|) plane. The black circles on the D/|J|-axis
correspond to the As, Ag and A7 multicritical points obtained in the ground-state phase diagram and
the solid line indicates the second-order transition line. Panel (a): z = 3; panel (b): z = 4 and panel (c):
z = 6. Here, the model only presents second-order transition for all values of z. The multicritical points
As, Ag and A7 which respectively indicate the positions of the hybrid phases F( ¥ %, £3), F(F

and F(F 1 +1) respectively, separate the ferrimagnetic phases F( ¥ %, i%), F(+ %, i%), F(=F

3.3. Thermal variations of the order-parameters, the response functions and the in-
ternal energy

As itis explained above, the thermal variations of the order-parameters, the response functions and the
internal energy for the model were calculated in terms of recursion relations. The thermal variations of
the order-parameters are crucial for obtaining the temperature dependence phase diagrams of the model.
In fact, when the magnetization curves go to zero continuously, one gets a second-order phase transition.
In the case of a jump in the magnetizations curves followed by a discontinuity of the first derivative of the
free-energy F”’, a first-order transition temperature is got. Besides these two temperatures, there is another
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temperature called compensation temperature defined as the temperature where the global magnetization
becomes zero before the critical temperature. Therefore, in order to identify transition and compensation
lines, one needs to study the thermal behaviours of the considered thermodynamical quantities of the
model. Now, we present some results on the thermal behaviours of the order-parameters, the response
functions and the internal energy in the the absence of the magnetic field # when z = 3,4 and 6.

Figure [Zl_f] illustrates some thermal variations of the sublattice magnetizations M7, and M;,, when
z = 3,4 and 6 for selected values of the crystal-field D/|J|. The results are in perfect agreement with
the ground-state phase diagram concerning the saturation values. Indeed, M;, falls from its unique

1

saturation value ¥5 with an increasing temperature whereas M7/, shows seven saturation values. The

behaviours of the sublattice magnetizations M;,, and M7/, are quite similar. Moreover, one can notice

4
D/|J|=0.0 | ‘
712

My

712

- )
M1/2 //

Mz/2

Figure 4. Sublattice magnetizations of the model as functions of the reduced temperature kg7 /|J| for
z = 3,4 and 6 for various values of the crystal-field interactions D. Panel (a): curves are displayed for
z = 3 and selected values of D/|J| are indicated on the curves. Panel (b): curves are displayed for z = 4
and selected values of D/|J| indicated on the curves. Panel (c): curves are displayed for z = 6 and selected
values of D/|J| indicated on the curves. For all values of z, the sublattice magnetization curves are all
continuous.
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that all the curves are continuous and the Curie temperature 7. at which both magnetization curves go to
zero increases with the crystal-field D/|J| and the coordination number z.

In figure [5} we have plotted the thermal variations of the specific heat and the internal energy for
various values of the crystal-field as indicated in the figure. Both the specific heat and the internal energy
rapidly increase with increasing temperature and make peak without jump discontinuities at the same 7.
By increasing the strength of the crystal-field and the coordination number, the value of 7 at which
the transition occurs, increases and this can be easily observed by comparing the results from different
panels of figure[5] The results obtained in this figure confirm that the model only presents second-order
transition for all values of the coordination number z.

In figure [f] we also present the temperature dependences of both sublattice magnetizations and
susceptibilities when z = 3,4, 6 and D/|J| = 1. From this figure, the value of the transition temperature
T, increases with an increasing coordination number z. Here, T, separates the ferrimagnetic phase
F(+ 3, ¥7) from the paramagnetic phase (P) and T../|J| = 3.110 (respectively 7./|J| = 4.644 and 7.313)
for z = 3 (respectively for z = 4 and 6). Furthermore, one remarks that for T — T, x7/2 — +oco whereas
X172 — —oo. For T > T, the susceptibility y1,, rapidly increases whereas the susceptibility x7,, rapidly
decreases when the temperature increases and is very far from the Curie temperature T¢, 7,2, — 0 and
Xi2 — 0.

Let us now discuss the thermal variations of the sublattice magnetizations, the corresponding response
functions and the internal energy of the system in the presence of the longitudinal magnetic field /.

8 ! 3 \ \
hi/|J|= 0.0 | b= 0.0 1.0
z=3 rz=4
2 -
) [3)
[D/JI=-1.0
0
0 1 2 3 4 3
kgT/|J] kg/|J|
(U \ \ = 0
D/|J|=-1.0
-1 -
=) 2 5 -2
-3 _3
(c)
-4 hijJj= 0.0 7] -4 h/|J= 0.0
z=3 z=4
) \ s \ \ \
%0 1 2 3 0 1 2 3 4 5
kg/ld| kel /||

Figure 5. Thermal variations of the specific heat and internal energy are calculated for z = 3,4 and
selected values of the crystal-field D/|J| as shown in the figures from panel (a) to panel (d). Values of the
physical parameters considered are indicated in different panels. Analysis of the data in different panels
shows that the model only exhibits second-order transition for z = 3, 4.
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i X
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| D/JI=1.0
= T z=3

e > |

\ %112 ]

0 2 1 4 6 8
Tkl

D/|J|= 1.0
2+

?f z=4
=

D/|Jj= 1.0
z=6

hep® 1810

Figure 6. The behaviour of the sublattice magnetizations and magnetic susceptibilities as a function of
temperature on the Bethe lattice for z = 3,4 and 6 when D/|J| = 1.0. Values of the physical parameters
considered for the system are indicated in different panels.

Figure[7]expresses the effects of an applied magnetic field # on the magnetic properties of the model
when z = 3 and D/|J| = 1.0 for selected values of //|J|. In panel (a), the sublattice magnetizations
continuously decrease from their saturation values to non-zero values when the temperature increases.
The remaining values of the sublattice magnetizations are more important when the value of the applied
magnetic field is high. Thus, one observes that the system does not present any transition when a/|J| # 0.
It is important to indicate that in the case of 4/|J| = 0, the model exhibits the second-order transition
at a Curie temperature 7 /|J| = 3.110, where the two sublattice magnetizations continuously go to zero
after decreasing from their saturation values at 7 = 0. In panels (b), (c) and (d), we have displayed the
temperature dependence of the total susceptibility yr, the internal energy U and the specific heat C,
respectively. One can see from these panels that the response functions and the internal energy indicate
a second-order transition which occurs at the same 7, /|J| as in the case of i/|J| = 0. For i/|J| # 0 and
T > T, the response functions exhibit a maximum and the height of the maximum decreases when the
value of the applied magnetic field increases.
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4 T 2.5 \ \
g D/|J|=1.0
z=3

i L DINI=1.0
z=3

kgT/IJ|
0 [ [ | I T I T
D/|J|=1.0 | D/N=10 |
z=3 4 z=3
-1+
h/|J|= 0.0
2 -
= o
3+
4
-5
0
kgT/|J| kgl/[J|

Figure 7. The temperature dependence of the sublattice magnetizations My, , M7/, [panel (a)], the
total susceptibility yT [panel (b)], the total internal energy U [panel (c)] and the total specific heat C
[panel (d)]. The following values of the parameters are used: D/|J| = 1.0; h/|J|=0.0;0.5; 1.0; 1.5;2.0.

In figure[§] we have presented the thermal variations of the response functions for some values of the
system parameters to show the influence of D/|J| on the system properties for 4/|J| # 0. In the figure,
one observes that the response functions show interesting behaviours. Indeed, the two studied response
functions globally show a maximum at a certain value of the temperature. This temperature increases
with the coordination number and the strength of the crystal-field. It is important to mention that the
height of the maximum of the two response functions also increases with increasing values of the strength
of the crystal-field D/|J| but the opposite holds when the coordination number z increases.

In figure [0} we have investigated the global magnetization as a function of the temperature and
obtained some compensation types of the model. The figure shows temperature dependencies of the
global magnetization M, for selected values of the crystal-field when z = 3. As seen from figure[9] the
model exhibits five types of compensation behaviours, namely R-, S-, P-, Q- and L-type compensation
behaviours as classified in the extended Néel nomenclature [45-48]].

Moreover, we investigate the low-temperature magnetic properties of the model. We plotted the
sublattice magnetizations and the global magnetization at kg7 /|J| = 0.1 for selected values of the
crystal-field as functions of the field & as shown in figure |10} In panel (a) where D/|J| = —1 and z = 3,
M and M7, respectively show five and four step-like magnetization plateaus (Mpe; = 0, %, 1,3 2) and

) z’
(M7, = %, %, %, %) whereas M/, shows two step-like magnetization plateaus (M, = —3, 5). Also, from

11
22
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038 I I I 0.6 I i
(a) hiJl = 0.5 (b) hijJ| = 0.5
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0.4 _
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0.0 z=3 z=4
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Figure 8. Temperature variations of the response functions of the model at selected values of D/|J|
indicated on different curves illustrated for z = 3,4 and h/|J| = 0.5.

panel (b) where D/|J| = 0 and z = 3, only M, and M, present two step-like magnetization plateaus

(Mpee = 3,2) and (My = —1,3). These obtained results are consistent with the ground-state phase
diagram displayed in figure 2 of references [49, [50].

4. Conclusion

In this paper, we have studied the magnetic properties of the mixed spin—% and spin—% Ising ferrimag-
netic model on the BL in the presence of a longitudinal magnetic field by means of the recursion relations
method. All the thermodynamical quantities of interest are calculated as functions of recursion relations.

The ground-state phase diagram of the model is displayed as shown in figure 2} From this phase
diagram, we have found eight existing and stable phases and along the D/q|J|-axis, three particular
hybrid phases appear at the three multicritical points As, A¢ and A;. The ground-state phase diagram is
considered and used as a guide for obtaining different temperature phase diagrams. We also investigated
the phase diagrams in the (D/|J|, kgT/|J|) plane, shown in figure 3| Then, in the presence and without
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Figure 9. The Néel nomenclature of average magnetization: (a) R-type for D/|J| = —0.52; (b) S-type for
D/|J| = —0.6; (c) P-type for D/|J| = —0.46; (d) Q-type for D/|J| = —0.5 ; (e) R-type for D/|J| = —1.5.

the longitudinal magnetic field 4, we examined the thermal variations of the sublattice magnetizations,
the global magnetization, the corresponding response functions and the internal energy as reported in
figures GHIO] From these figures, the order-parameters in most cases showed a usual decay with thermal
fluctuations. By using these behaviours and the analysis of the corresponding response functions and
the internal energy, the nature of different phase transitions encountered is identified. The model shows
rich physical properties, namely the second-order transition and multicritical points for all values of the
crystal-field interactions and for all values of the coordination number z.

As a final note, it is useful to mention that different results achieved here are compared to those

reported is some previous works [24} 51] and topological similarities are found.
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Figure 10. Magnetizations M5, M7/, and Mpe plotted as functions of the magnetic field 4 for selected
values of the crystal-field when z = 3 as indicated in different panels.
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AocnipxeHHs meToA0M rpaTku beTe 3millaHoi cnin-1 Ta cnin-2

2 2
mogaeni I3iHra B No34,0BXXHbOMY MarHiTHoMy noni

C. Egparpi M. Kapimy2, A. Pasy® o. rontinitae®, A. bertocced™l
L IHCTMTYT MaTeMaTnkm i GisnuHmx Hayk (IMSP), Pecny6bnika beHiH
2 YHiBepcuTeT Abomeli-Kanasi, ¢isnuHunii dakynbTeT, Pecnybnika beHiH
3 LMPHE, ®akynbTeT NnpMpoAgHnYmMX Hayk, yHiBepcuteT Moxammega V, Pabat, Mapokko
4 Nabopartopis ¢i3nkn maTepianis, GakynbTeT HayK i TeXHONOriNA, yHiBepcuTeT cyntaHa Myne CnimaHa, Mapokko
> BiaineHHs di3vikn, nonigmncumnaiHapHuiiz akynbTeT, yHiBepcuTeT cyntaHa Myne CnimaHa, Mapokko

6 Akagemis Hayk i TexHonoriin XaccaHa II, PabaTt, Mapokko

JocnigKeHo MarHiTHi BAacTUBOCTI 3MilLaHol cniH-% Ta cniH-% mozeni I3iHra 3 KpUCTaniyHMM nosem y noszoB-
XHbOMY MarHiTHOMy Moni Ha rpatui bpaBe 3 BUKOPUCTaHHAM TOUHNX PeKYPCUBHUX CMiBBigHOLEHb. Mobyao-
BaHa $a3oBa fAiarpamMa OCHOBHOrO CTaHy. TemnepaTypHo-3anexHa ¢a3oBa jiarpama NpoAeMOHCTPOBaHa AN
BUNAAKY OAHOPIAHOTO KpucTaniyHoro nons Ha naowmHi (kg7 /|J|, D/|J|) npu BiACyTHOCTI 30BHILLIHBOrO 06Me-
XEHHS AN KoopAnHaLiliHuX uncen z = 3,4, 6. NMapameTp nopsaky, BignoBigHa GYHKLiS BIAFYKY i BHYTPILLHS
eHepris 0buncieHi Ta BUBYEHI AeTanbHO A1 BCTaHOBNEHHS CNPaBXHbOI NPUpoAM $pa3oBrX MeX i BiAnoBigHNX
Temnepatyp. TepMiyHi 3MiHM cepeAHbOT HaMarHiYeHoCTi NpokiacpikoBaHO BiANOBIAHO 40 HOMeHknaTypu He-
ens.

KnrouoBi cnoBsa: mMogens I3iHra, HamarHivyeHicTs, QYHKLYis BIATYKY, BilbHa eHeprisi, $azosa giarpama, nepexij
Apyroro po4y
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