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Using a modified pseudospin model of NH3CH,COOH-H,PO3 ferroelectric taking into account the piezoelec-
tric coupling with strains &;, &4, €5 and gg within Glauber method in two-particle claster approximation, we
have calculated components of dynamic dielectric permittivity tensor and relaxation times of the model. At the
proper set of theory parameters, frequency and temperature dependences of the components of permittivity
and temperature dependences of the relaxation times are studied. A satisfactory agreement of the theoretical
results with experimental data for longitudinal permittivity is obtained.
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1. Introduction

The problem of investigation of physical properties of ferroelectric materials has occupied one of
the central places in condensed matter physics for a long time. The presence of different classes of these
materials with different crystal structure and chemical composition requires elaboration of universal
methods for investigation of phase transition mechanisms. It is also necessary to develop concrete
microscopic theories for them, which could explain the observed experimental data for thermodynamic
and dynamic characteristics and anomalies in the behaviour of these characteristics in the phase transition
region.

Granting this, glycinium phosphite NH3CH,COOH-H;PO3 (GPI) is of special interest due to the
combination of structure elements typical of different classes of ferroelectric crystals. In [[IH3]] basing
on the analysis of structural data [4] it was determined that the main role in the phase transition in GPI
is played by two structurally nonequivalent types of O-H. . .O hydrogen bonds of different length, which
connect phosphite groups HPO3 in the chains along the crystallographic c-axis. As a result, in [1} 3]
there was proposed a model of GPI crystal with proton ordering, within which the main peculiarities
of its dielectric permittivity were explained qualitatively. Later, this model was supplement by taking
into account the piezoelectric coupling of proton and lattice subsystems [5], which made it possible to
calculate thermal, piezoelectric and elastic characteristics of GPI. At the proper set of theory parameters,
a good agreement of the obtained theoretical results with corresponding experimental data for the crystals
of this type was obtained.

In order to better understand the mechanism of phase transition in these crystals and their physical
properties, the effects of transverse electric fields [6] and uniaxial pressures [[7] on the static physical
properties of GPI were calculated within the model proposed in [5]. A good agreement of the obtained
theoretical results with the available experimental data was obtained. This confirms the key role of proton
ordering on the above mentioned bonds. It should be noted that several results obtained in these papers
may be interpreted as predictions which will be a stimulus for further experimental investigations.
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The aim of this paper is to study the relaxation phenomena in GPI and explain the available experi-
mental data [8H11] for longitudinal dynamic characteristics within the proton ordering model proposed
in [5].

2. Model of GPI crystal

The pseudospin model proposed in [5]] considers the system of protons in GPI, localized on O-H. . .O
bonds between phosphite groups HPOs, which form chains along the crystallographic c-axis of the
crystal (figure |1). Dipole moments d 5 = uf are ascribed to the protons on the bonds. Here, ¢ is
a primitive cell index, f = 1,...,4; ;’f are pseudospin variables that describe the changes connected
with reorientation of the dipole moments.
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Figure 1. (Colour online) Orientations of vectors d ¢ in the primitive cell in the ferroelectric phase [5.16].

The Hamiltonian of a proton subsystem of GPI, which takes into account the short-range and long-
range interactions and the applied electric fields E;, E,, E3 along the positive directions of the Cartesian
axes X,Y and Z (X L (b,¢),Y || b, Z || ¢) can be written in such a way:

I:I = NUseed + ﬁshort + Hlong + HEa (2.1)

where N is the total number of primitive cells. The first term in (2.1)) is the “seed” energy, which relates
to the heavy ion sublattice and does not explicitly depend on the configuration of the proton subsystem.
It includes elastic, piezoelectric and dielectric parts expressed in terms of electric fields E; and strains &;:

3
1
EO EO
Useed =V 3 Z c;y (TNeigy + 3 Z (T)a + Z (T)s,ss + c4 (T)eseq
ii'=1
3
0 0 0 0 0 0
— Z ey &b — eysesEy — ey, 84E) — e[ ce6Ey — e3 843 — e3586E3
i=1

1 072 1 072 072 0
~ X EL X0 Es — xR Es — x5 EsEr | 2.2)

2

Parameters cgo(T), e?j, ijo are the so-called “seed” elastic constants, piezoelectric stresses and dielectric
susceptibilities, respectively; v is the volume of a primitive cell.
The second term in (2.1)) is the Hamiltonian of short-range interactions:

Tg1 T, 2 Tg3 Oga
Hghor = 2w Z ( ! q 2q Tq) (0R,R, + OR,+R..R,/)- (2.3)
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In , o5 is the z-component of the pseudospin operator that describes the state of the f-th bond
(f = 1,2,3,4) in the g-th cell. The first Kronecker delta corresponds to the interaction between protons
in the chains near the tetrahedra HPO3 of type “I” (figure [T)), where the second one near the tetrahedra
HPO3; of type “IT”, R, is the lattice vector along the crystallographic c-axis. Contributions into the energy
of interactions between protons near the tetrahedra of different type, as well as the mean values of the
pseudospins 17y = {0s), wWhich are related to the tetrahedra of different type, are equal. Parameter w,
which describes the short-range interactions within the chains, is expanded linearly into the series over
strains &;:

6
w=uw’+ Z 0i&;. 24
i=1

The third term in (2.1I) describes the long-range dipole-dipole interactions and indirect (through
the lattice vibrations) interactions between protons, which are taken into account in the mean field
approximation:

. 1 N $Tar) {agpr) n$Tqp) Oqr
Hiong = 3 Z Jr(qq )TT - Z Jrr(qq )TT' (2.5)
aq'ff’ aq'ff’
Fourier transforms of interaction constants Jr = 3. Jr/(qq’) at k = 0 are linearly expanded over the
strains &;:

aJs g J
0 ff 0
Tpp = Iy + oo =+ Zl Urpiki (2.6)
i=
Thus, (2.5) can be written as:
4
. o
Hiong = NH* =" %" ?(f—;f , 2.7)
q f=1

where

1 1 1 1 1
H® = gfu(?ﬁ +73) + ghz(ﬂ% +y) + ZJ13771773 + mezm + ZJ12(771772 +11314)

1
+ 2114(771774 +12173). (2.8)

In (2.7) the following notations are used:

H, = 1J +1J +11 +1J
1= 5 1nm ) 12172 3 13773 3 1414,

1 1 1 1
Ho = =Jnny + zJiam + 5 Joang + = J1ams,

2 2 2 2
H; = 1] +1J +1J +1J
3= 3 1173 ) 12774 3 1311 3 1412,
H. —lJ +1J +IJ +1J 2.9)
4 = 5 22114 2 12173 5 24172 5 1471 - .

The fourth term in (2.) describes the interactions of pseudospins with an external electric field:

A (op
Ag=-) ufE%f. (2.10)
af

Here, w1 = (k3. 15, 133): B3 = (=415 M3 —H33)s W2 = (=450 = Hoys H54), Wa = (113, —H3, —415,) are the
effective dipole moments per one pseudospin.
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The two-particle cluster approximation for short-range interactions is used for the calculation of
thermodynamic characteristics of GPI. In this approximation, thermodynamic potential is given by:

6
0]
G = NUgeeq + NH® — kBTZ [21nSpe Ay _ Z InSpe” qf] —Nv Z oiEr 2.11)
i=1
Here, B = 1/kgT, kp is Boltzmann constant, I:I(z), I-AI(;) are two-particle and one-particle Hamiltonians:
4
~(2) Uq109q2  0g3 0'614) Yy 9qf
AY = 2 (—— 9 Zaf 2.12
a A 2 B 2 2.12)
f=1
g _ _9r ar
qu_ 52 (2.13)
where such notations are used:
yr = B(Ar + Hy + nrE), (2.14)
Jr = BAr + ys. (2.15)

The symbols Ay are the effective cluster fields created by the neighboring bonds from outside the cluster.
Minimizing the thermodynamic potential with respect to the cluster fields Ay and to the strains
g, and expressing Ay through the equilibrium order parameters 7y = 73 = 13, 7o = 74 = 7jo4, We
have obtained a system of equations for the equilibrium order parameters and strains for the case of zero
mechanical stresses and fields:

- | - o - L
iz = B[smh(ym +724) + @ sinh(f13 — 724) + 2a sinh i3],
. o . s . L
flaa = B[Slﬂh(ym +724) — a* sinh({13 — fj24) + 2a sinh 4],
20, 26
0= cﬁosl + clzoaz + cl3083 + 6‘15085 - —fMg
v vD
Y Vo Vi
il 754 » [=1,...,6), 2.16
s 5, == 1713724 — T T4 ( ) (2.16)
where such notations are used:
- 1 1+ 13 - . 1 1+ 4
ji3=zIn 1 + Bviis + v i, y24=ﬂv;7713+—ln )7 +ﬁ V34,
2 1-113 2
) L1 L1
v = Vl + Z‘/’lzgl’ vE = _(‘]01 + J13) vyt = Z(J?z + 1)) Vg_ = Z(ng + I

. L1 L1
Ui = Z(llflu £ Y13i)s Y5 = Z(llflzi £ Y14i)s Y3 = Z(llfzzi + Y24i),
D = cosh(ij13 + ijoa) + a’ cosh(ij13 — ijr4) + 2a cosh ij13 + 2a cosh iy + a’+ 1,

= 24> cosh(#13 — ijo4) + 2a cosh ij13 + 2a cosh jjpo4 + 2a°.

3. Theoretical calculations of dynamic dielectric permittivity of mecha-
nically clamped GPI crystal
To calculate the dynamic properties we use an approach based on the ideas of a stochastic Glauber

model [12]. Using the methods developed in [13]], we obtain the following system of Glauber equations
for time dependent correlation functions of the pseudospins:

—a%( 1:[ O'qf> = ; < 1:[ a'qf[l — 04y tanh %ﬁsqf/(t)] >, 3.1
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where parameter a determines the time scale of dynamic processes, £, (t) is the local field acting on
the f’-th pseudospin in g-th cell. We use a two-particle cluster approximation in order to obtain a closed
system of equations. In this approximation, local fields g, () are coeflicients at o7, r /2 in two-particle and
one-particle Hamiltonians (2.12), (2.13). Correspondingly, these fields are presented in a two-particle
approximation:

Y1 Y2 Y3 Y4
Eql = WOy + — g = WOyl + = Eq3 = WOg4 + — Eq4 = WOz + E s (3.2)

B B B
and in a one-particle approximation:

Ear = %f. (33)

As a result, from (3.1)) we obtain a system of equations for mean values of pseudospins (o r) = 717
in a two-particle approximation:

d d
—n1 =-m +Pim+ Ly, —n3 = -3 + P3ns + L3,
a’dt771 m 1172 1 (ldtﬁ3 m3 3N4 3
d d
a—m =P —m+Ly, a—ns=Pupz—na+Ly (3.4)
dt dt
and in a one-particle approximation:
d _
a1y = =717 + tanh i (3.5)

where the following notations are used:

1 Bw Yy Bw  yy
Pr== h{— + =] —tanh |[-—— + =
f ) [tan ( ) + > ) tan ( ) + NIk
1
Ly = 7 tanh (% + yz—f) + tanh (—% + yz—f)} .

Let us restrict ourselves to the case of small deviations from equilibrium state to solve the equa-
tions (3.4) and (3.5). For this case we write 17y and effective fields yy, §jy in the form of a sum of
equilibrium values and their deviations from equilibrium values (a mechanically clamped crystal):

n,3 =13 + M35 M,4 = o4 +124s,
y1 = 13 + yu = B A1z + 20T i3 + 203 s + Aig + Vi (e + 130) + v3 (720 + 1ar)
+ vy (e = 1m3e) +v5 (020 = Mar) + 3 Ere + ll!l/3E2t + H§3E3t]» Ey = Eie",

Y3 = 13 + y3e = BlArs + 20 i3 + 2v3 s + Ave + Vi (e +m30) + v3 (021 + 1ar)
= vy (e = m30) = va (M2r = Mar) — i3 Ene + ﬂ1y3E21 - IJT3E3t],
Y2 = s + Yor = BAoa + 28313 + 2BViTia + Doy + vy (e + 03) + V3 (20 + Mar)
+v3 (e = n30) + V5 (020 — ar) = 3, E1e — pi, Eny + 15, E3 |
Ya = oa + yar = B[Aos + 2Bv3 3 + 2BViTioa + Aar + v (s + 130) + V3 (M2 + Nar)
= vy (e = m30) = v3 (M2r — Nar) + 1o E1e — /134152: - /1§4E3t]»
yr = BAr + Gy + BAst + ys1, b1 =93 = 13, J2 = Ja = . (3.6)

Here, A;3 = A1 = A3, Aog = Ay = A4 are equilibrium effective cluster fields, and Ay, are their deviations
from equilibrium values. Parameters v:* describe long-range interactions. We decompose the coefficients

Py and Ly in a series of % limited by linear items:
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_ pO)  YL3t 50) _ 7O Y3,
P13 =P +TP13’ Liz=Lj +TL13’
_ p0) , Y24t (1) _ 70 Y24 ()
P2’4 = P24 + > P24, L2,4 = L24 + 7 L24, (37)
where the following notations are used:
P(O) _ 1- 612 P(l) _ 461(1 - (12) sinh 713 L(O) _ 2a sinh 713 L(l) _ 461[261 + (1 + a2) cosh y13]
137 7 T13 T 2 > 13 T 7 » 13 T 2 ’
13 Z 13 Ziy
P(Q) _ 1-da° P(l) _ 4a(1 - az) sinh Yo L(o) _ 2a sinh o4 L(l) _ 4a[2a + (1 + az) cosh g24]
24 = i 2 Y v g T 2 )
2oy z;, Loy z3,

Ziz=1+ a2 +2acoshy13; Zoy =1 +612 + 2a cosh T

__w 0 3 6
a=¢ BT, w=w +Z5i£i+26jsj.
i=1 j=4

Substituting @ @ into @) @ and excluding parameter Ay,, we obtained the following
differential equations for sums and differences of proton unary distribution functions:

E( (me = M3 ):( my - )( (M1t = M3 )—ﬂElz( mi s ), (3.8)

dr \ (720 = a1 —my, M, (m2r = Mach —mapy,

d ( (s +m31)2 ) ( mﬁ —my, )( (71e +1730)2 )—BE2[( iy ) (3.9)
2

ar \ O+ | =\ —mi, m, (121 + Mar )2 —map3,
A me—m)s | _ my My (me —m30)3 | _ BEs ml#ig ’ (3.10)
dr \ (720 = 1140)3 —my,  mj, (m2e = Mar)3 mapis,
where
1

+ + 1 (0) +
5(1 - BviriKiz), mp =~ [(1 + Ki3)P|; +,3V2_’”13K13],

+ 1 + + 1 +
2 =7 [(1 + K24)P£3) +5V2_”24K24] , my, = 5(1 - BvirukKa),

3
=
[

my = —Ky3r13, my = —Koyr,
a a
1)~ 1
P§3)’713 + L§3)
D= D1’
2ri3 = [P'is + LjY)]

2

Kz = riz=1-(fi3)",

1)~ 1
P §4)’724 + L§4)

Kos = rg=1- (7724)2-

224 = [PoTos + L]
Solving the equations (3.8)—(3.10), we obtained time-dependent unary distribution function of protons.
The components of dynamic susceptibility of GPI clamped crystal can be written as:

1 x d(1e —me x d(n2 _7741)1-

0 .
w) = + lim — - s
Xll( ) Xll E]IHOU »lll:; dE]t “24 dE][ |
L[y done + 132 d(m2; + 141)2 |
0 . y t t y t t
w) = + lim - - s
)(22( ) X22 E2t~>0U »M13 dEzt Ll dEzt

1 z d(m1r — 1730)3 z d(m2: — 141)3 |

0 .
w) = + lim — +
X33( ) X33 E;;—0 v »M13 dE3t IJ24 dES[

The obtained susceptibilities consist of the “seed” part and two relaxational modes:

2 i
X .
Xi@) =X+ ), s =123y, (3.11)

. l >
= 1+1le
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where

[
i ,3717
2v

X1 = {( 1)l l[(.‘113)2’”1 + (,U24) mz]

+ (- l)l [(#13)2’”1’”22 + (1) mam}| = pys oy (mim3y + momy))| }, (3.12)

1 , are relaxation times of the following form:

. 1
(T{,z) b= 5 [(m)l/l + m;’2) + \/(mh + m;/z)z - 4(m)1/1m;/2 - m‘fzmgl) : (3.13)

In 312), G13) y = “+" fori = y and y = “=" fori = x, z.

Components of dynamic dielectric permittivity of proton subsystem of GPI is as follows:

sii(a)) =1+ 43‘[7)(,'1'((4)). (314)

4. Comparison of numerical calculations with the experimental data.
Discussion of the obtained results

To calculate the temperature dependence of dielectric, elastic, piezoelectric and thermal characteristics
of GPI we need to set certain values of the following parameters:

* parameters of the short-range interactions wo;

* parameters of the long-range interactions v ( f=123)
* deformational potentials 9;, lp}’i (f=1,23i=1,...,6);
« effective dipole moments u%; s p2s5 pbys 1$ys 1S,

* “seed” dielectric susceptibilities )(2.;

» “seed” coefficients of piezoelectric stress e?j;

* “seed” elastic constants c’j 0
The values of the present theory parameters are determined while studying the static properties of
GPI [3]]. The optimal values of long-range interactions V?+ are as follows: v?+ = 17;” = 170+ =2.643 K,
W7 = )" = ¥~ = 0.2 K, where 170i = vO+ /kg. The determined parameter w® of the GPI crystal is
Li)o /kg = 820 ~K. The opt1m~al values of tlle deformatlopal potentials 9; are 51 = 500 K, 6, = 600 K,
63 = 500 K, 64 = 150 K, 65 = 100 K, 8¢ = 150 K; 6;=6;/kg. The optimal values of the ¥%. are as
fi
follows: a,bfl =879 K, zpfz = 237.0K, zpﬁ = 103.8 K, ’I’f4 = 149.1 K, wa =213 K, l,bf6 = 143.8 K,
U b= = 0 K, where J% =Y ﬁ/ kg. The effective dipole moments in the paraelectric phase are equal to
My =0.4-107 18 esu-cm; ,u]3 =4.02-107'8 esu-cm; My =4.3-10" 18 esu-cm; Hy, =2.3-107 18 esu-cm;
,u"2’4 =3.0-107"8 esu-cm; M5, =22 107!3 esu-cm. In the ferroelectric phase, the y-component of the
first dipole moment is y]y3ferr0 =3.82-107'8 esu-cm.

In [9] the transition temperature is 7. = 223.6 K, and one should multiply the parameters w?, v* f , 0is

(//fl., '“13’ ,1124 by the coefficient 0.994.

The volume of a primitive cell of GPI is v = 0.601 - 107! cm?

Parameter « is determined from the condition of an agreement of theoretically calculated and experi-
mentally obtained frequency dependences of £5>(w). We consider that parameter @ slightly changes with
temperature:

@ =[1.6-0.011(AT)] - 10~ s, AT =T -T..
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The “seed” coefficients of piezoelectric stress, dielectric susceptibilities and elastic constants are as
follows:
0 _ esu . 0 _ 0 _ 0 _ .
e = 0.0 X 0.1, Xy = 0.403, X33 = 0.5;

cm?2’ mn- >
VF =2691-10"0 25 B0 =145.100 &5 B0 =11.64-10"0 25 (B0 =3.91-10'0 &5
cm cm cm cm
B0 = [64.99 — 0.04(T - To)] - 100 25 | 0 =20.38.10'0 25 £0 =5.64.1010 &
EO _ 10 dyn EO _ 10 dyn EO _ 10 dyn
cE0 =24.41-10 e =-2.84-10 e =8.54-10 e
EO _ 10 dyn EO0 _ 10 dyn EO _ 10 dyn
cE0=1531-1010 25 B0 = —1.1.100 &5 (B0 =11.88-10'0 2.

Other components 650 =0.

From expression (3.11)) we can see that there are two contributions into the components of dielectric
permittivity tensor of GPI. Numerical analysis shows that only one contribution to the permittivities is
determinative (x} > x!).

Let us first consider the longitudinal dynamic dielectric characteristics. They are predetermined
by the behaviour of static dielectric characteristics x|, x5 and relaxation times 7/, 7, in the system.

Relaxation time 1'2” is connected with some relaxation frequency (soft relaxation mode) typical of this

crystal vy = (ZJWZ )~!, which conventionally separates the regions of low-frequency and high-frequency
dispersion. In figure [2| there are presented temperature dependences of the relaxation frequencies v/
taken from [9H11], and the calculated temperature dependences of the longitudinal relaxation times
7'2” = (2av?)~! [9L[10]. Relaxation frequency, taken from [I1]], greatly differs from the frequencies taken
from [9,110]. One can see from these figures that theoretical results satisfactorily agree with experimental
data [9,[T0]], except the phase transition region. Relaxation frequency v{ decreases at approaching to the
phase transition temperature and tend to zero at the temperature 7 = 7. The calculated relaxation time

T2y has a singularity at 7 = T, but experimental values of sz are finite at this temperature.

x 10" v/, Hz x10° ¢
®
25 08
12
ol °
* . 0.6

15

1 0.4
1 2

o
0-5 0-2
0 0
210 215 220 225 230 235 T g 220 222 224 226 228 T,K

Figure 2. (Colour online) The temperature dependence of relaxation frequency vé’ :1,m—[9]; 2, ¢ —[10];
e — [11]] and relaxation time sz: 1, m—[9]; 2, ¢ — [10].

At the frequencies v < v the real part of the dynamic dielectric permittivity &}, behaves as static,
but the imaginary part £7), is close to zero at all temperatures excepting the narrow region near 7. One can
see this on the frequency dependences £,(v) at different AT = T —T,. in the frequency region v < 10’ Hz
(figure , as well as on the temperature dependences &2,(T) at low frequencies (10* Hz, 10° Hz, 10° Hz)
(figure [d).

At the frequencies v ~ v; we observe a relaxation dispersion, which reveals itself in the steep
decreasing of the real part of dielectric permittivity &, with an increasing frequency and in the large

7.

values of imaginary part £7); the peak of &, corresponds to the frequency v;. One can see it on the
frequency dependences £,(v) at different AT = T — T, in the frequency region 107 < v < 10'° Hz
(figure [3), as well as on the temperature dependences &,(T) at the frequencies 1 MHz-27000 MHz
(figure3).

At the frequencies v > v, the dielectric permittivity behaves as a purely lattice contribution. It
corresponds to the frequency region v > 10'% Hz on the frequency dependences £x(v) in ﬁgure
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' 22
350 ——— ‘ ‘ ‘ 160

300

250

200

150

100

50

2 4 6

10 10 10 g

10

Figure 3. (Colour online) The frequency dependences of real 852 and imaginary sé’z parts of dielectric

permittivity of GPI at different AT (K): 1.0 — 1; 2.0 — 2; 5.0 — 3; 10.0 — 4; o [8]]; m [O]; ¢ [10]; » [14];

A [15].
&2
1000 100
L]
[ ]
800 80 o A
v
e 4
600 60
v
[ ]
400 40
200 20
[ ]
[ ]
> v
0° : ‘ ‘ : Q=== v *
215 220 225 230 235 240 T, K 215 220 225 230  T,K

’

Figure 4. (Colour online) Temperature dependences of &,

and &7/, of GPI at different frequencies v (MHz):
0.01 —1, e [8]; 0.1 —2, v [8]; 1.0 — 3, a [8].

An increase of the relaxation time Téy and a decrease of the relaxation frequency v/ at approaching
the temperature T = T, manifests itself in the shift of the region of dispersion to lower frequencies in
the frequency dependence &5;(v) (figure |3) at approaching the temperature T = T, as well as in the
availability of depression near 7' = T; on the temperature dependence &),(T), and of a sharp peak on
the curve &75(T) (figures . Since v/ — 0 at T = T, then a depression of 5,(T) and a peak of
&,(T) appears at all frequencies; they are very narrow at low frequencies and widen with an increase of
frequency. The value of permittivity in the minimum point (at 7 = T;) is equal to the lattice contribution

832. Since the experimental value is v/ # 0 at T = T, one can observe a low-frequency maximum in the
experimental temperature dependence &,(v, T) at low frequencies. Starting from frequency v, ~ 107, a
depression-minimum appears instead of a maximum of &/,(v,T), and this minimum decreases with an
increase of frequency.

From figures [3H5] one can see that the proposed theoretical model satisfactorily describes the ex-
perimental data for the frequency and temperature dependences &),(v,T) and &,(v,T) of GPI crystal
in the paraelectric phase, with the exception of [10], and less satisfactorily in the ferroelectric phase.
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22
500 300
400 o 250
o
o 200
300 o 1.2 1
i 150
200 1
3
A 100
4
100 * o4 1
0t 56 50
L 0 94 v
0 b b -s 0 3 4 W Y E
215 220 225 230 T.K 215 220 225 230 T K

Figure 5. (Colour online) Temperature dependences of £/, and £2% of GPI crystal for various frequen-
cies v (MHz): 1.0 — 1, ¢ [9]]; 15.0 — 2, e [9]; 230.0 — 3, a [9]; 610 — 4, v [9]]; 2000 — 5, m [9];
27000 — 6, » [9].
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Figure 6. (Colour online) The temperature dependences of relaxation frequencies vy’* and relaxation
times 73°%.
2

A disagreement of the theoretical curves with the experimental data in the low-frequency region in the
ferroelectric phase is connected with an essential role of domain processes in this region [16], which are
not taken into account in the proposed theory.

Let us discuss the transverse dynamic characteristics. Transverse relaxation frequencies vy’* and
transverse relaxation times 73 and 75 are calculated at the same « as longitudinal v? and 1'2” . The
frequencies v are higher than v¢ and they also decrease at approaching the phase transition temperature
(figure EI), and take on a nonzero value at T = T,. The transverse relaxation times T;’Z in contrast to 77
are finite at 7 = T¢. This results in the frequency dependences of g{(v) (figure7) and e33(v) (figure
at different AT that are qualitatively similar to the frequency dependences of &3>(v), but the region of
dispersion exists at higher frequencies and at weaker changes with temperature.

However, in the temperature dependences of &{; and &;, only the angle of the curve fracture in
the point 7, changes (figures [0} [I0) instead of a depression near the phase transition temperature. The
maximum value of & 1’33(T, v) at T = T, decreases with an increase of frequency. Values of 8;'1’33(T, V)
at T = T, increase with an increase of frequency up to 1.5 - 10'° Hz. At higher frequencies, the maximum
values of 8{’1’33 (T, v) decrease and shift to the region of higher temperatures. Experimental investigations
of transverse dynamic characteristics of GPI are very important to verify the obtained theoretical results
in this regard. It is necessary to note that experimental data in figures[9and [T0]are measured at frequency
1 kHz. They are close to static permittivities at such a small frequency.
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Figure 7. (Colour online) Dispersion of real Eil and imaginary si’l parts of dielectric permittivity of GPI

at different AT (K): 1 —1;10—2;20—3;-1—1’;-5—2";-10—73".
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Figure 8. (Colour online) Dispersion of real 8§3 and imaginary 8§§5 parts of dielectric permittivity of GPI
at different AT (K): 1 —1; 10 —2; 20 — 3; -5 —2/; —-10 — 3’.
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Figure 9. (Colour online) Temperature dependences of &{, and &} for GPI crystal for various frequen-
cies v (GHz): 0.0 — 1, A (1 kHz); 7—2;20 — 3; 40 — 4; 100 — 5.

The results of calculation of Cole-Cole curves (figure [IT)) witness for monodispersivity of dielectric
permittivity in the crystals studied. The results of measurements of Cole-Cole curves for the longitudinal
permittivity, presented in [9HIT]], disagree with each other. The calculated curves well agree with the
results of [9] for longitudinal permittivity.
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Figure 10. (Colour online) Temperature dependences of g§3 and 85/3 for GPI crystal for various frequen-

cies v (GHz): 0.0 — 1, A [15] (1 kHz); 7 —2; 20 — 3; 40 — 4; 100 — 5.
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Figure 11. (Colour online) Cole-Cole (22) plot for GPI crystal at AT (K): 1 — 1, m [9]]; ¢[10]; e [11];
2—2,m[9]; ¢ [10]; 5— 3, m [9]; 10 — 4, m [9] and Cole-Cole (11) and Cole-Cole (33) plot at different
AT (K):1—1;10—2;20—3;-1—1’; -10 —2’; =20 — 3’.

5. Conclusions

Using the modified GPI model, the components of dynamic dielectric permittivity tensor and re-
laxation times are calculated in a two-particle claster approximation. A satisfactory agreement of the
theoretical results with experimental data for longitudinal permittivity is obtained, with the exception of
low-frequency region in the ordered phase, inasmuch as the proposed theory does not take the domain
processes into account, which can give a contribution into the above mentioned frequency region.

It is determined that the dynamic dielectric permittivity at low frequencies behaves as static; at the
frequencies comparable with an inverse relaxation time, a relaxational dispersion is observed; at high
frequencies, only a lattice contribution to permittivity reveals itself. The region of longitudinal dispersion
in GPI shifts to the low frequencies at temperature approaching the phase transition point, which is
connected with a considerable increase of relaxation time at approaching the temperature 7;. The region
of transverse dispersion lies at higher frequencies and weakly depends on temperature.

The obtained results for transverse characteristics bear the character of predictions and can be a
stimulus for further experimental investigations.
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AviHamiuyHi BNacTUBOCTI cerHeToenekTpmka
NH3CH,COOH-H,PO3

1.P. 3aueild P.p. I'IeBMU,bKMVP], A.C. BAOBI/I‘P], 0.6. bineHbka®

L HauioHanbHWIA yHiBepcuTeT “/IbBiBCbKa NoniTexHika”, Byn. C. baHaepu, 12, 79013 JlbBiB, YkpaiHa

2 IHCTUTYT $i3nkm koHAeHcoBaHMX cnctem HAH YkpaiHu, Byn. CBeHuiupkoro, 1, 79011 JibBiB, YkpaiHa

BrikopuctoBytoun MoandikoBaHy nceBgocniHoBy mogens cerHetoenektpuka NH3CHyCOOH-HyPO3 winsxom
BpaxyBaHHA M'€30eN1eKTPUYHOro 3B'A3KY 3 Aedopmauiamun &;, €4, €5, Eg B paMkax MeTogy naybepa B Habau-
>KEHHI BOYaCTMHKOBOro KiacTepa po3paxoBaHO AS Hel KOMMNOHEHTW TeH30pa KOMIJIEKCHOI AienekTpuyHol
NPOHWKHOCTI | Yacu penakcadii. Mpu HanexHoMy BMGOpi NnapameTpiB Teopii BUBYEHO YacTOTHI Ta TeMnepaTypHi
3a1e@XXHOCTi KOMMOHEHT CNPUIAHATANBOCTI Ta TeMnepaTypHi 3an1eXHOCTi Yacie penakcauii. OTprMaHo 3aA0BiNb-
HY 3rofly TEOPeTUYHUX pPe3y/bTaTiB 3 eKCrneprMeHTaNbHMMN JaHUMW AN NO3/0BXHbOT MPOHUKHOCTI.

Knto4voBi cnoBa: cerHeroenekTpykuy, KnactepHe HabavKeHHs, AMHaMIYHa JieNIeKTpUYHa NPOHNKHICTb, Yac
penakcayii
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