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We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase
transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an uncon-
ventional QHE near the band center, with plateaus developing at ν = 0,±2,±6, . . . , and a conventional QHE
near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of
extended levels toward the band center, in which higher plateaus disappear first. However, the center ν = 0
Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the
combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase tran-
sitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by
additional quantum Hall conductivity plateaus.
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1. Introduction

Silicene is a monolayer of silicon atoms bonded together on a two-dimensional (2D) honeycomb
lattice. Both silicene sheets and ribbons have been experimentally synthesized through synthesis on
metal surfaces [1–4]. Silicene shares almost every remarkable property of graphene; for instance, it
exhibits Dirac-like electron dispersion at the corners of the Brillouin zone. Unlike graphene, it has a
buckled structure due to the large ionic radius of silicon atoms [5–7], which causes different sublattices
to sit in different vertical planes with a separation of d ≈ 0.46 Å [5, 8], as shown in figure 1. When an
electric field Ez is applied perpendicular to the silicene plane, an on-site potential difference (∆z = Ezd)
will be created between different sublattices [5, 9, 10]. Moreover, a buckled structure leads to a relatively
large spin-orbit gap of ∆so ≈ 1.55−7.9 meV [5–8], as obtained through first-principles calculations and
tight-binding calculations [7], which provides a mass to the Dirac fermions. When the strength of ∆z
becomes greater than ∆so, silicene will undergo a transition from a topological insulator (TI) to a band
insulator (BI) [5, 10, 11].

Under a perpendicular magnetic field B, graphene exhibits a
√

B-dependent Landau level (LL)
spectrum and gives rise to an unusual integer quantum Hall effect (QHE). Similar to graphene, the n , 0
LLs of silicene scale as

√
B, whereas the n = 0 LL is not pinned at zero energy as in graphene [11, 12].

Therefore, silicene is expected to exhibit an exotic QHE, and the n = 0 LL should possess peculiar
properties under the combination of a perpendicular electric field and the spin-orbit interaction (SOI).
Recently, the QHE and quantum phase transitions of silicene have been investigated by many authors
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Figure 1. (Color online) Illustration of buckled silicene. The upper and lower images correspond to top
and side views, respectively, of the lattice geometry. Due to the large ionic size of silicon atoms, the
silicene lattice is buckled, and the two sublattices sit in vertically separated, parallel planes.

[13–17]; however, studies of the effect of disorder on the QHE in silicene, which is an essential ingredient
for understanding the underlying physics of the QHE phenomenon compared with that in graphene [18],
are still lacking. Therefore, it is highly desirable to numerically investigate the effect of disorder on the
QHE in silicene while considering the full band structure to reveal the underlying physics of the QHE
phenomenon.

In this work, we conduct a numerical study of the QHE in silicene in the presence of disorder
and an electric field based on a tight-binding model. It is shown that unconventional QHE plateaus at
ν = 0,±2,±6, . . . are produced near the band center and conventional QHE plateaus appear near the
band edges. We further map out the phase diagram for the QHE and demonstrate that the Hall plateaus
disappear at strong disorder through the float-up of extended levels toward the band center. However, the
ν = 0 plateau is not as stable as other plateaus with the same plateau width near the band center and
will disappear at a weak disorder. Under a perpendicular electric field, the spin and valley degeneracies
are lifted, and the system changes from the TI phase to BI phase when the strength of the electric field
exceeds the strength of the SOI.

2. Model and formalism

We consider a buckled silicene structure on a honeycomb lattice, where the A and B sublattices sit in
different vertical planes, as shown in figure 1. The entire system contains Ly zigzag chains with Lx atoms
in each chain, and the size of the sample could be expressed as N = Lx × Ly . Under a perpendicular
electric field Ez , a staggered potential∆z = Ezd is generated between different sublattices. In the presence
of both a magnetic field and an electric field applied perpendicular to the silicene plane, the lattice model
can be written in the tight-binding form as follows [7]:

H =
∑
iα

(εiα + wiα)a
†

iαaiα − t
∑
〈i, j 〉α

eiφi j a†iαajα + i
λso

3
√

3

∑
〈〈i, j 〉〉αβ

νi ja
†

iασ
z
αβajβ + ∆z

∑
iα

a†iατzaiα , (2.1)

where a†iα and aiα are the creation and annihilation operators at the i-th discrete site with spin polariza-
tion α and the 〈i, j〉 (〈〈i, j〉〉) run over all nearest-neighbor (next-nearest-neighbor) hopping sites. The first
term represents the on-site energy and random disorder, where the on-site disorder energy wi is uniformly
distributed in the range wi ∈ [−W/2,W/2]t in terms of the disorder strength W . The second and third
terms represent the nearest and next-nearest couplings with the effective SOI λso, where σ = (σx, σy, σz)

is the Pauli spin matrices and νi j = +1 and νi j = −1 correspond to anticlockwise and clockwise next-
nearest-neighboring hopping, respectively, with respect to the positive z axis. The final term represents
the lattice potential resulting from different sublattices in the perpendicular electric field Ez , where τz
is the Pauli matrix of the sublattice. In the presence of a magnetic field B, a Peierls phase factor φi j is
added to the hopping interactions, where φi j =

∫ j

i
®A · d®l/φ0, with the vector potential ®A = (−By, 0, 0) and
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φ0 = ~/e. The magnetic flux per hexagon is φ = 2π/M , where M is an integer. The total flux through the
sample, Nφ/4π, is taken to be an integer. When M is equal to Lx or Ly , the magnetic periodic boundary
conditions are reduced to ordinary periodic boundary conditions. Here, we disregard the Rashba SOI
because it is weak in comparison with the intrinsic SOI [7].

In the presence of an electric field, the spin degeneracy is broken; therefore, it is convenient to
investigate the Hall conductivity separately for each spin. We use the symbol s (s =↑, ↓) to define the
spin up or spin down. The eigenstates |αs〉 and eigenenergies ε sα for each spin are obtained through exact
diagonalization of the Hamiltonian in equation (2.1), and the Hall conductivity for different spins σs

xy is
calculated using the Kubo formula [18]:

σs
xy =

ie2~

S

∑
α,β

〈αs |V s
x |β

s〉〈βs |V s
y |α

s〉 − h.c.
(ε sα − ε

s
β)

2 , (2.2)

where S is the area of the sample and V s
x and V s

y are the velocity operators of spin s. The total Hall
conductivity of the system is σxy = σ

↑
xy + σ

↓
xy . It is hoped that our results will suggest new potential

directions for the experimental realization of the QHE and topological insulators.

3. Results and discussion

In what follows, we will discuss the Hall conductivity σxy and the quantum phase transitions in
silicene. In our calculations, the hopping integrals and the SOI strength are taken to be t = 1.6 eV and
λso = 0.04t, respectively; the temperature is set to T = 0 K, and the disorder is averaged over 800 sample
configurations.

We first focus on the Hall conductivity and the electron density of states as functions of the electron
Fermi energy Ef for a clean sample (W = 0) under zero electric field; the results are shown in figure 2. The
system size is taken to be N = 288×32 and the magnetic flux is taken to be φ = 2π/96 (corresponding to
approximately 822 T [19]) to illustrate the overall picture of the QHE throughout the entire energy band.
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Figure 2. (Color online) (a) The Hall conductivity σxy and electron density of states (in units of 1)
throughout the entire energy band with a magnetic flux of φ = 2π/96. (b) The Hall conductivity near the
band center for different magnetic fluxes. The disorder strength is W = 0, and the electric field strength
is ∆z = 0; the system size is N = 288 × 32.

43701-3



Y.L. Liu et al.

It is shown in figure 2 (a) that discrete LLs appear in the system and constitute a nonzero density
of states. The LLs near the band center are four-fold degenerate due to the two spin components and
two Dirac points, except for the two center n = 0 LLs adjacent to the gap, which show a spin splitting:
the upper one is the n = 0 spin-up LL, and the lower one is the n = 0 spin-down LL. The LL above
(below) the spin-up (spin-down) n = 0 LL is the n = 1 (n = −1) LL, and so on. Therefore, at the
band center, the quantum Hall conductivity σxy = νe2/h is quantized according to the unconventional
quantization rule ν = gs(k − 1/2)e2/h (k = 1, 2, . . .) beyond the gap, where gs = 4 is the LL degeneracy.
However, a zero Hall plateau appears in the energy gap (−λso 6 Ef 6 λso) because the two n = 0 LLs
reside at Ef = ±λso and each contributes a Hall conductivity of ±e2/h, respectively, to σxy . A similar
zero quantum Hall plateau induced by the quantum spin Hall (QSH) gap can also appear in graphene
under a strong magnetic field; however, it is induced by Zeeman splitting rather than by the SOI [20].
In figure 2 (b), the quantization rule for the Hall conductance in this unconventional region is shown
for three different φ. It is shown that more quantum plateaus appear with a decreasing φ, but the ν = 0
plateau is not affected by a change in the magnetic field.

As each additional LL is occupied, the total Hall conductivity increases by gse2/h as a result of the
spin and valley degeneracy. When the energy reaches Ef = ±t, which are the van Hove singularities,
the Hall plateaus become indiscernible and the system changes to exhibit the conventional QHE as it
exceeds the critical region, as indicated by the two blue lines. Similar to those in graphene [18, 21], these
crossover regions correspond to a transport regime, in which the Hall resistance changes sign and the
longitudinal conductivity exhibits a metallic behavior. At the band edges, the LLs are two-fold degenerate
due to the two spin components, and a conventional QHE emerges, with the Hall conductivity quantized
as σxy = kgse2/h (k = 1, 2, . . .), where gs = 2 because there is a spin degeneracy only.

Now, we investigate the effect of random disorder on the QHE in silicene. In figure 3, the Hall
conductance near the band center is shown for different disorder strengths, with a magnetic flux of
φ = 2π/96 and a system size of N = 288 × 32. It is shown that the higher plateaus (with larger |ν |)
become less distinct and eventually disappear with an increasing W . At W = 0.05, the plateaus at
ν = 0,±2,±6,±10,±14 remain well quantized, whereas all plateaus except the ν = ±2 plateau disappear
at W = 2.0. By contrast, as shown in the lower inset of the panel, for the QHE near the band edge, all

Figure 3. (Color online) Calculated Hall conductivity σxy as a function of the electron Fermi energy
for different disorder strengths. The two insets show the Hall conductivity near the lower band edge and
the central Hall plateau ν = 0. The magnetic flux and system size are φ = 2π/96 and N = 288 × 32,
respectively.
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plateaus are destroyed at a low disorder strength of W = 0.5. The center plateau (ν = 0) remains distinct
at a small disorder strength of W = 0.05; however, it narrows at W = 0.4 and nearly disappears at a
disorder strength of W = 0.5 (the higher insert in figure 3). Obviously, the ν = 0 plateau is not as robust
as the one at ν = 14, which has approximately the same initial width as the ν = 0 plateau but still has a
narrow, yet finite width at W = 0.5. This is because the magnetic field breaks the time-reversal symmetry
of the QSH states in the energy gap, and the ν = 0 states become unstable under a weak disorder.

Finally, we numerically investigate the quantum phase transition from a two-dimensional TI to a
trivial insulator under an external perpendicular electric field with an on-site potential difference of ∆z ;
the results are shown in figure 4. When ∆z = 0, the n = 0 LLs are valley degenerate and spin split —
the spin-up LL is located at Ef = λso, and the spin-down LL is located at Ef = −λso. They have the same
density of states and make Hall conductivity contributions of ±e2/h, leading to zero Hall conductivity
near the Dirac point. In the presence of an electric field, the valley degeneracy is resolved, which results
in four n = 0 states; two are from the K valley, and two are from the K′ valley. For a pair of spins from
different valleys, there is a gap between them that can be tuned by adjusting the electric field. However,
the gap between the two spins in each valley (K or K′) is fixed at the SOI strength, λso. As ∆z increases,
the valley split is enhanced; thus, the spin-up state from the K valley descends and the spin-down state
from the K′ valley ascends. When ∆z < ∆so, the two states are still above and below the Dirac point;
therefore, the total system is still a TI, and Hall plateaus appear at ν = 0,±1,±2 near the Dirac point, as
shown in figure 4 (b). At the critical point ∆z = ∆so, the two states coincide at Ef = 0 and the system
transits into a semi-metallic state, with Hall plateaus appearing at ν = 0,±2 near the Dirac point, as
shown in figure 4 (c). When ∆z > ∆so, band inversion occurs, with the spin-down state from the K′
valley shifting from negative to positive and the spin-up state from the K valley shifting from positive
to negative; the system enters the BI regime, and Hall plateaus develop at ν = 0,±1,±2. In figure 4 (b)
and (d), the ν = ±1 plateaus that are contributed by one spin state from one valley arise only from the
breaking of the valley degeneracy. In fact, ν = ±1 Hall plateaus can also appear in graphene, in which
case they originate from the long-range Coulomb interaction [22] or the breaking of the spin and valley
degeneracies [20].

Figure 4. (Color online) Spin-dependent Hall conductivity and electron density of states of the n = 0
states for different on-site potential differences ∆z . The black and red lines correspond to the spin-down
and spin-up states, respectively. The notation K (K′) in the figure indicates the state from the K (K′)
valley. The magnetic flux and system size are φ = 2π/96 and N = 288 × 32, respectively.
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4. Conclusion

In conclusion, we have numerically investigated the effects of disorder on the QHE and the quantum
phase transitions in silicene under a perpendicular electric field. It is shown that Hall plateaus develop at
ν = 0,±2,±6, . . . near the band center, whereas conventional quantum Hall plateaus appear near the band
edges. The phase diagram indicates that the Hall plateaus gradually disappear toward the band center
with an increasing disorder strength, which causes higher plateaus to disappear first. However, the ν = 0
plateau is not robust and disappears at a relatively weak disorder strength. In the presence of an electric
field, the valley degeneracy of the two n = 0 LLs is broken, which results in a quantum phase transition
at the CNP together with the unconventional plateaus in the QHE. The derived results also apply to
isostructural germanene, whose SOI strength is even higher (∆so = 43 meV with d = 0.66 Å). Due to
the strong SOI and electric field, the QHE in silicene and germanene will be unaffected by temperature.
Therefore, the QHE and quantum phase transitions in silicene and germanene can be experimentally
observed and tuned at a finite temperature. Electrical controllability in silicene and germanene is of great
significance for the development of electrically tunable spintronic and valleytronic devices.
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Цiлочисловий квантовий Голiв ефект та топологiчнi фазовi

переходи у сiлiценi

Я.Л. Лiу1, Г.Х. Луо2, Н. Сюй2, Ґ.Я. Тiань3, Ц.Д. Рен4
1 Факультет електричної iнформацiйної технiки, Технологiчний iнститут Хуаинь, Хуайань 223001, Китай
2 Вiддiл фiзики, Технологiчний iнститут Яньчен, Цзянсу 224051, Китай
3 Iнститут фiзики та електронної iнженерiї, Унiверситет Лiньї, Лiньї 276005, Китай
4 Вiддiл фiзики, Нормальний коледж Цзуньї, Ґуйчжоу 563002, Китай
Проведено числове дослiдження впливу безладу на квантовий Голiв ефект (КГЕ) та квантовi фазовi пе-
реходи у сiлiценi на основi ґраткової моделi. Показано, що у випадку чистого зразка, сiлiцен проявляє
нетрадицiйний КГЕ поблизу центру зони, де утворюються плато при ν = 0,±2,±6, . . . , i традицiйний КГЕ
поблизу країв зони. При наявностi безладу, плато Гола можуть бути зруйнованi за рахунок спливання роз-
тягнутих рiвнiв в напрямку до центру зони, де першими зникають вищi плато. Однак, центр ν = 0 плато
Гола є бiльш чутливим до безладу i зникає при вiдносно слабiй силi безладу. Крiм того, поєднання еле-
ктричного поля та властивої спiн-орбiтальної взаємодiї може призвести до квантових фазових переходiв
вiд топологiчного дiелектрика до зонного дiелектрика у точцi нейтральностi заряду, що супроводжується
утворенням додаткових плато квантової провiдностi Гола.
Ключовi слова: квантовий Голiв ефект, сiлiцен, квантовi фазовi переходи
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