
Condensed Matter Physics, 2016, Vol. 19, No 4, 43704: 1–11

DOI: 10.5488/CMP.19.43704

http://www.icmp.lviv.ua/journal

Dynamic conductivity of one-dimensional ion

conductors. Impedance, Nyquist diagrams

I.V. Stasyuk, R.Ya. Stetsiv

Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,

1 Svientsitskii St., 79011 Lviv, Ukraine

Received September 23, 2016

Dynamic conductivity of the one-dimensional ion conductor is investigated at different values of the interaction

constant between particles and the modulating field. The consideration is based on the hard-core boson lattice

model. Calculations are performed for finite one-dimensional cluster using the exact diagonalization method.

Frequency dependence of the dynamic conductivity and behaviour of its static component (Drude weight) in

the charge-density-wave (CDW) and superfluid (SF) phases are studied. Frequency dispersion of impedance and

loss tangent is calculated; the Nyquist diagrams are built and analyzed.
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1. Introduction

Transport properties of one-dimensional systems are of great interest over many years [1–9]. One-

dimensional objects have special features, and, in addition, the relevant models are investigated much

easier than for higher dimensionalities and in many cases permit to obtain exact solutions. The resulting

solutions frequently provide the understanding of conduction for 2d and 3d systems, but, at the same

time, there exist purely one-dimensional complex problems. The systems with ionic conductivity are of

special interest. Attention to these systems is paid due to ever-increasing possibilities of their practical

applications as solid electrolytes in capacitors and batteries, in membranes of fuel cells [10], in electron-

ics, in controlling and signalling devices for special purposes. Therefore, new compounds with high ionic

conductivity were recently synthesized in order to find materials stable against chemical and mechan-

ical action and possessing other specific properties. Just recently a new superionic crystal Li10GeP2S12,

the conductivity of which reaches 12mΩ−1 cm−1 at room temperature and 0.41 mΩ−1 cm−1 at−30◦C, was

synthesized [11]. The conductivity of ionic conductors is especially high when a number of ions is much

smaller than the number of positions in a lattice, i.e., when there are vacancies. Therefore, a lot of free

positions facilitate the ion hopping probability from one position to another. Charge transfer process in

some superionics occurs along the chain (one-dimensional) structures. The proton conductor LiN2H5SO4

[12], some superionic (superprotonic) conductors, in particular CsHSO4 [13], coordination polymers such

as iron oxalate dihydrate Fe(C2O4) ·2H2O, nanotubes [14], etc. are the examples. One-dimensional sys-

tem with Josephson junctions (one contact in width and several hundred tunnel contacts in length) are

created [15]. In most cases, the quantum systems are studied at low temperatures, when the transport

properties of a system are determined mainly by their ground state. Conductivity at high temperatures is

less studied. In such a case one cannot restrict oneself to strictly defined elementary excitations (see for

example [9]).

Lattice models are widely used for a theoretical description of ion and proton transport at the mi-

croscopic level. As a rule, the Bose-Hubbard model is used here at arbitrary occupation of local particle

positions (see review [16]). There are also used the models based on Fermi statistics [17–21] or on the

“mixed” Pauli statistics [1, 22–35], where particles are of Bose nature, but they obey the Fermi rule as
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well. The lattice model of Pauli particles is similar to the Bose-Hubbard model in the hard-core approx-

imation (provided that the occupation numbers are restricted, ni = 0,1). When taking into account only

the on-site interaction (U ) of particles in the one-dimensional Bose-Hubbard model, the Mott insulator

(MI) phase with the integer particle density was received. At intermediate concentrations, the superfluid

(SF) type state [the phase with the infinitely large (divergent) boson correlation length and without the

order parameter (see for example [7])] appears at T = 0. Inclusion of the near-neighbors interaction (V )

leads to charge-density-wave phase (CDW) with half-filling of ionic sites on the average. The Pauli (hard-

core boson) lattice model also enables one to describe the transitions (which are the true ones only at

T = 0) between these phases, including the emergence of the SF-type state that can appear even in the

absence of a direct interaction between particles [22, 23, 25].

In our previous work [24] in the hard-core boson approximation, the one-particle spectral density

was calculated. The exact diagonalization method for finite one-dimensional lattice model with periodic

boundary conditions was used. The conditions of existence of various phases of a system, depending on

the values of interaction between particles V and the modulating field strength A, were established by

analyzing the character of spectral density; the phase diagrams were built [24]. The results agree with the

known ones from the literature. In particular, the diagram of state for the case V = 0 coincides with the

exact diagram obtained analytically for the one-dimensional case, see for example [29] (the exact analyt-

ical solution can be obtained in this case by applying the Jordan-Wigner transformation, which makes

it possible to pass from the Hamiltonian of hard-core bosons to the Hamiltonian of noninteracting spin-

less fermions). It was shown in [24] that at T = 0, the repulsive short-range interaction between particles

(V > 0) results in the emergence of a gap in the energy spectrum in the limit of half-filling (n = 1/2). A

true CDW phase is realized here only at zero temperature. The gap in the CDW-phase spectrum grows

if the magnitude of either the short-range interaction V or the modulating field A (which can be associ-

ated with an internal field that appears owing to the long-range interaction) increases. At T , 0, the gap

gradually disappears with the temperature rise; the interphase boundaries on the (T, µ) plane become

smeared, and the corresponding phase transitions in this case reduce to the crossover transformations,

i.e., they are not genuine phase transitions.

This work is devoted to the calculation of static and dynamic conductivity of one-dimensional ion

conductor. The attention was mostly focused on the study of the static conductivity σ(ω= 0) described by

the so-called Drude weight D [3, 8, 36–39]. The value of D usually serves as a criterion that determines

the state of a system: superconducting (superfluid), metallic, or dielectric (insulator). For infinite systems

D = 0 in the case of insulator (the MI phase or CDW phase) and D is finite in the case of a conducting

state (SF phase). For 1d systems of finite length (L), the Drude weight D goes exponentially to zero at

L → ∞ in an insulator state (the phase with a gap in spectrum), but remains finite in this limit in the

conducting one (the gapless phase), [3, 38, 39]. The investigations of the frequency dependence of the

dynamic part of conductivity σreg(ω) in the MI phase show that this quantity is equal to zero at low

frequencies and becomes nonzero starting from some threshold value ofω [2, 39]. Contrary to that, in the

SF phase, theσreg(ω) function increases with frequency according to the power law starting from the zero

value at ω = 0 [6] and decreases exponentially at high frequencies. Besides that, the existence of peaks

on the frequency dependence of σreg(ω) was noticeable. For 1d models with finite on-site repulsion U ,

the presence of three peaks was shown in [7]; the peaks are located in the frequency region ħω∼U . The

calculations, performed in the case of hard-core bosons for MI phase, revealed one (or two, depending on

approximation) peak of σreg(ω) [40].

Our lattice model includes the ion transfer, the interaction between the neighboring ions, and the

modulating field. By applying the exact diagonalization technique we determine the energy spectrum

and matrix elements of the current density operator for the finite one-dimensional model of the ionic

conductor. Based on the Kubo theory [41], we numerically calculate the static (Drude weight) and dy-

namic (frequency dependent) parts of conductivity. The main attention is paid to the investigation of the

ion conductivity in the SF and CDW phases and to the study of the effect of the short-range interaction

between particles as well as the modulating field (that effectively appears due to long-range interaction

or due to the two-sublattice structure). Restricting ourselves to the T = 0 case, we analyze the differences

between the Drude weight values and frequency dispersion of conductivity in CDW and SF phases. In

addition, the plots of impedance are presented and Nyquist diagrams are built. In our consideration, we

restrict ourselves in this work to the case T = 0.
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2. Hamiltonian and its transformation

We consider the one-dimensional ion conductor as the chain of heavy immobile ionic groups and

light ions that move along this chain occupying certain positions between the mentioned groups. The

subsystem of light ions is described with the following Hamiltonian

Ĥ = t
∑

i

(c+i ci+1 +c+i+1ci )+V
∑

i

ni ni+1 −µ
∑

i

ni + A
∑

i

(−1)i ni . (2.1)

Here, the operators of creation and annihilation of particles (c+
i ,α

and ci ,α) obey the Pauli statistics. The

model (2.1) is equivalent to the hard-core boson model. The model takes into account the nearest-neigh-

bour ion transfer (with hopping parameter t ), interaction between ions that occupy nearest-neighbouring

positions (with corresponding parameter V > 0) and modulating field (parameter A). The system is di-

vided into two sublattices under the effect of the A field, which simulates the long-range interactions

between the particles, which contributes to the modulation of the spatial distribution of light ions in the

so-called ordered phase (the existence of such phases at low temperatures is a characteristic feature of

superionic conductors).

In order to calculate the energy spectrum of the one-dimensional ionic Pauli conductor we apply the

exact diagonalization technique. For this purpose, let us consider a finite chain with periodic boundary

conditions. For a chain with N sites in the main region, we introduce the many-particle states

|n1 ,n2 , . . . ,nN 〉. (2.2)

The Hamiltonian matrix on the basis of these states is the matrix of the order 2N × 2N . This matrix is

numerically diagonalized [24]. Such an operation corresponds to the transformation

U−1HU = H̃ =
∑

p

Ep X̃ pp , (2.3)

where Ep are eigenvalues of the Hamiltonian, X̃ pp are Hubbard operators. The same transformation is

applied to the operators of particle creation and annihilation at the i -th chain site

U−1ci U =
∑
p,q

Ai
pq X̃ pq , U−1c+i U =

∑
r,s

Ai∗
r s X̃ r s . (2.4)

Herein below we shall express the current density and conductivity operators applying this representa-

tion. It should be marked that we used it in [24] to calculate the single-particle spectral density ρ(ω) =

−2Im〈〈c|c+〉〉 for the model (2.1) and analyze its form in different phases of the system.

3. Dynamic conductivity. General relations

The dynamic conductivity of one-dimensional ion conductor can be calculated starting from the Kubo

formula [41]

σ(ω,T ) =

0∫

−∞

dt exp[i(ω− iε)t ]

β∫

0

dλ〈Î (t − iħλ)Î (0)〉, (3.1)

here, Î is the current operator. We use the following expression for current density operator ĵ (see for

example [1, 7, 42])

ĵ (0) =
i

ħ
t qa

1

V0

∑

i

(
c+i ci+1 −c+i+1ci

)
, (3.2)

here, q is the ion charge, a is lattice constant, Î = ĵ S, where S is the conductor cross-section, V0 = SN a.

The current operator written on the transformed basis is of the form

Î (0) =
i

ħ
t q

1

N

N∑

i=1

∑

k ,l

∑
m

[
Ai∗

km Ai+1
kl − A(i+1)∗

km
Ai

kl

]
X̃ ml , (3.3)
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I (t) = e
i
ħ

H t I (0)e−
i
ħ

H t . (3.4)

According to Kubo formula (3.1), we obtained the following expressions for the ion conductivity

σ(ω) = i

(
t q

ħN

)2 N∑

i=1

N∑

j=1

∑

k ,l

∑

m,n

[
Ai∗

km Ai+1
kl − A(i+1)∗

km
Ai

kl

][
A

j∗

nl
A

j+1
nm − A

( j+1)∗

nl
A

j
nm

]

×
1

Z

1

El −Em

e−βEm −e−βEl

ω− 1
ħ

(Em −El )+ iε
. (3.5)

The real part of the dynamic conductivity exhibits a discrete structure that consists of many δ-peaks in

the case of finite size of a cluster. If the chain size (the number of sites N ) increases, the δ-peaks are

located more densely and, at N =∞, form a band structure. In our calculations, we confined ourselves to

the case N = 10. The small parameter ∆was also introduced to broaden the δ-peaks according to Lorentz

distribution

δ(ω) →
1

π

∆

ω2 +∆2
. (3.6)

In what follows, we relate all energy parameters, including ħω, to the hopping constant t , which is taken

as the energy unit. For convenience, we use the notation µ′ =µ−V .

The expression for the static conductivity can be obtained when in the formula (3.5) we put Em = El ,

taking into account only the contribution of degenerate states.

Real part of the conductivity will possess in this case the component proportional to δ(ω):

Reσ(ω→ 0) =
1

Z
πβ

(
t q

ħN

)2 N∑

i=1

N∑

j=1

∑

k ,l

∑

m,n

[
Ai∗

km Ai+1
kl − A(i+1)∗

km
Ai

kl

][
A

j∗

nl
A

j+1
nm − A

( j+1)∗

nl
A

j
nm

]

×e−βEm ·δ(ω) ≡ D ·δ(ω). (3.7)

Here, the summing over indices l ,m is performed only for Em = El . As can be seen from the formula

(3.7), Drude weight D is different from zero at T , 0 if the degenerate states are present (at T = 0 D , 0

when the ground state is degenerated).

4. Drude weight

We analyzed the energy spectrum obtained for different phases of our model. In all cases, the ground

state is nondegenerate (that can be due to a finite size of the chain structure). Therefore, at T = 0 accord-

ing to formula (3.7), the static conductivity is equal to zero, σ(ω = 0,T = 0) = 0. The expression (3.7) is

similar to the one for Drude weight D I obtained in the work [8]. However, as indicated in [8], the ex-

pression for D I does not describe the temperature dependence of the Drude weight at low temperatures.

Based on the theory of linear response, an alternative expression for Drude weight was obtained in [8]

D II(N ,T ) =
π

N

[
〈−T̂ 〉−

2

Z

∑
m,n

En,Em

e−βEn
| 〈m | j | n〉 |2

En −Em

]
. (4.1)

At the summing over indices n, m, only the states with Em , En are taken into account. T̂ is the operator

of kinetic energy

T̂ = t
∑

i

(
c+i ci+1 +c+i+1ci

)
. (4.2)

In the derivation of relation (4.1), the f -sum rule (see for example [2, 3])

∞∫

−∞

Reσ(ω)dω=
πe2

dħ2Ld
〈−T̂ 〉 (4.3)
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was used. Here, d is the dimensionality of the system, L is the linear dimension. In a number of other

works the coefficient at the average value of kinetic energy is often different. It is due to adoption of a

system of units in which the constants ħ, and c are taken equal to unity (ħ= c = 1) and the lattice constant

is taken as a = 1 (see for example [42]).

Both quantities of D I and D II coincide in thermodynamic limit

D(T ) = lim
N→∞

D I(N ,T ) = lim
N→∞

D II(N ,T ), (4.4)

but they are non-equivalent for finite system [8]. In the paper [8] it was shown that the difference be-

tween D I and D II is negligibly small for finite system at high temperatures. At low temperatures, only

D II exhibits the correct temperature dependence. Nevertheless, there are also some problems. In partic-

ular, when approximating T → 0, the value D II for finite systems is often negative [8, 42].

As a whole, the real part of the conductivity can be written in the form

Reσ(ω) = D ·δ(ω)+Reσreg(ω), (4.5)

where besides the Drude term, the regular part Reσreg(ω) is present.

Integrating the relation (4.5) over the frequency and using the formula (4.3), one can write the ex-

pression for the Drude weight in the form equivalent to D II (see for example [7])

D =
πq2

ħ2N
〈−T̂ 〉−

∞∫

−∞

Reσreg(ω)dω. (4.6)

We performed the numerical calculation of the Drude weight for our model of one-dimensional ionic

conductor in different phases based on the formula (4.6). For the Mott insulator (MI) phase (see the phase

diagrams [24] and, in particular, the diagram in figure 1) we have got 〈T̂ 〉 = 0 and σ(ω) = 0 at T = 0; there-

fore, D = 0, exactly as one could expect. At half-filling in CDW phase, the system is also an insulator, so it

is expected that in this phase the Drude weight should be also absent (static conductivity must be equal

to zero, D = 0); see for example [8, 42]. However, as follows from our calculations, the Drude weight re-

mains finite (D > 0) in the case of half-filled CDWphase, but is significantly smaller than in the superfluid

(SF) phase. Apparently, this is due to the finite and small size of our one-dimensional cluster (N = 10). In

particular, at V = 4, µ′ = 0, A = 5 for CDWphase we have obtained 1
N 〈−T̂ 〉 = 0.139,

∫
Reσreg(ω)dω= 0.043

and accordingly D = 0.096. The gap in the CDW phase increases with the modulating field A growth. This

leads to the reduction of the calculated Drude weight. We also observe the vanishing of Drude weight for

large values of A.

Figure 1. State diagram for a one-dimensional model of ionic conductor at T = 0; V = 4, t = 1 [24].
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For SF phase, if V = 4, µ′ =−5 (see figure 1), we obtained D = 0.501 (A = 0), and D = 0.416 (A = 1). The

large magnitudes of static conductivity σ(0) in SF phase are also found for other values of parameters of

the model. More results are shown in tables 1 and 2. Hereinafter, we present the conductivity in relative

units omitting the multiplier πq2/ħ2 and taking t = 1. As it follows from the tables, the static conductivity

σ(0) in SF phase is determinedmainly by themean kinetic energy of ions, while in CDWphase both terms

in D should be equal in modulus and compensate each other.

Table 1. Static conductivity (Drude weight) of one-dimensional model of ionic conductor in SF phase (V =

4, µ′ =−5, t = 1) at different values of the modulating field A.

A 1
N
〈−T̂ 〉

∫
Reσreg(ω)dω D

0 0.501 0.0003 0.501

1 0.424 0.008 0.416

Table 2. Static conductivity (Drude weight) of one-dimensional model of ionic conductor in SF phase (A =

0, µ′ =−1, t = 1) at different values of interaction constant V .

V 1
N
〈−T̂ 〉

∫
Reσreg(ω)dω D

0 0.524 0 0.524

1 0.607 0.0004 0.607

2 0.588 0.001 0.587

In the absence of interaction between the ions (V = 0), as well as the modulating field (A = 0), the

current operator commutes with the Hamiltonian and is the integral of motion. Then, σ(ω , 0) = 0 and

Drudeweight is determined only by the ion kinetic energy. In particular, we have obtained along the lines

V = 0, A = 0 (see corresponding diagrams [24]): D = 1
N
〈−T̂ 〉 = 0.524 at µ′ =−1, and D = 1

N
〈−T̂ 〉 = 0.380 at

µ′ =−1.5. This case corresponds to SF phase.

5. Dynamic part of conductivity

Dynamic conductivity of one-dimensional ionic chain is calculated according to the formula (3.5).

The obtained frequency dependence of the real part of the dynamic conductivity Reσreg(ω) of our one-

dimensional model at T = 0 is presented in figure 2. Here, as an example, the results are shown for the

case V = 4. Two maxima of conductivity (if we consider only positive frequencies ω) are obtained. The

diagram in figure 1 shows that the one-dimensional chain at µ′ = 0 is a dielectric in the charge density

wave (CDW) state. In the absence of a modulating field (A = 0), two maxima of conductivity are posi-

tioned at frequencies ħω1 = 4.92, ħω2 = 8.12. When the modulating field is included, the peak values

increase becoming the largest at the field A ≈ 1. At the further growth of a modulating field, the conduc-

tivity monotonously decreases and its two maxima shift to the region of higher frequencies (when A > 2,

one of the peaks practically disappears). In the superfluid phase, the peaks of conductivity are located

in the nearly the same frequency region but are slightly displaced. However, their weights are signifi-

cantly changed. While in CDW phase there is a higher peak at lower frequencies, in the SF phase, on the

contrary, the opposite picture is observed. In addition, what is more important, the heights of the peaks

are significantly less in the SF phase (up to two orders at A = 0). When the modulating field is present in

SF phase (µ′ =−5), the heights of the peaks significantly increase, similarly to the case of CDW phase [at

A = 2 we are passing from SF phase to CDW phase (see figure 1) and obtain the conductivity peaks which

are characteristic of CDW phase]. Tables 3 and 4 present the frequencies at which the peaks of dynamic

conductivity are located: for V = 4 and V = 0, depending on the values of the modulating field A, and for

A = 0, depending on the values of the interaction V (table 5). As can be seen from the tables, the increase

of interaction V constant and the increase of the modulating field A lead to the shift of the peaks of the

dynamic conductivity in the direction of higher frequencies. For example, in the case V = 0 (table 3), we
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Figure 2. Frequency dependence of the real part of dynamic conductivity of one-dimensional model of the

ion conductor at different values of a modulating field A in CDW phase (µ′ = 0), and in SF phase (µ′ =−5);

N = 10, V = 4, t = 1, ∆= 0.25.

Table 3. The positions of peaks of dynamic conductivity of one-dimensional model of the ion conductor

in CDW phase at different values of the modulating field A and fixed interaction constant V : V = 4 (table

on the left) and V = 0 (table on the right); (µ′ = 0, t = 1). Let us mention that dashes in certain places in

the tables mean a lack of peaks.

A ħω1 ħω2 A ħω1

0 4.92 8.12 0 –

1 5.4 8.6 1 2.36

2 7.8 11.72 2 4.2

3 9.96 – 3 6.12

4 11.96 – 4 8.12

5 14.04 – 5 10.12

Table 4. The positions of peaks of dynamic conductivity of one-dimensional model of the ion conductor

in SF phase at different values of the modulating field A and fixed interaction constant V = 4; (µ′ = −5,

t = 1).

A ħω1 ħω2

0 5.16 8.36

0.5 3.64 7.0

1 3.96 7.48

1.2 4.2 7.72

2 7.8 11.72

have only one peak of dynamic conductivity in CDW phase; a rough estimate shows the linear depen-

dence of the peak position on the modulating field [ħω1(A) ≈ 2A]. In the case of SF phase, the behaviour

of the peaks is more complicated (see table 4). Here, the inclusion of a modulating field initially leads to

a shift of the peaks towards lower frequencies. At A = 2 and V = 4, we come from the SF phase to CDW

phase and the peak position coincides with the relevant one for CDW phase (see table 3 and 4). The shift
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Table 5. The positions of peaks of dynamic conductivity of one-dimensional model of the ion conductor in

CDW and SF phases at different values of the interaction constant V and at the absence of a modulating

field (A = 0, t = 1): CDW phase at µ′ = 0 (the left table) and SF phase at µ′ =−1 (the right table).

V ħω1 ħω2

0 – –

1 4.36 6.04

2 4.36 6.68

3 4.52 7.48

4 4.92 8.2

5 5.48 9.0

6 6.2 9.88

V ħω1 ħω2

0 – –

1 5.0 8.6

2 5.64 11.72

3 4.52 7.48

4 4.92 8.2

Figure 3. Frequency dependences of the real parts of dynamic conductivity Reσreg, impedance Re Z and

the loss tangent tanδ; Nyquist diagrams for CDW phase (µ′ = 0); N = 10, V = 4, A = 0, t = 1, ∆= 0.25.
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of the peaks affected by interaction V is much weaker. For A = 0 in CDW phase, it is approximately pro-

portional to V (see table 5). In particular, ħω1(V ) is of the order of V , which is in accord with the previous

results for conducting phases of 1d models [39] and reflects the similar microscopic nature of the peak

appearance.

In figures 3, 4 we presented the calculated frequency dependences of Reσ, Re Z and tanδ, as well as

the Nyquist diagrams for impedance and conductivity in the case of CDW and SF phases. As it follows

from the figures, there exists a direct correspondence between the peaks of conductivity and the ellipses

or semiellipses in Nyquist plots. In phenomenological description, the existence of two ellipses can be

interpreted asmanifestation of two types of collective vibrations (“oscillators”) in the system, which exists

due to the interaction between particles. In this connection it is worth mentioning that in the absence of

interaction, there is no dynamical part of conductivity in one-dimensional case.

Figure 4. Frequency dependences of the real parts of dynamic conductivity Reσreg, impedance Re Z and

the loss tangent tanδ; Nyquist diagrams for SF phase (µ′ =−5); N = 10, V = 4, A = 0, t = 1, ∆= 0.25.
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6. Conclusions

In this paper, using the exact diagonalization method we calculate the energy spectrum and eigen-

functions of the finite one-dimensional model of the ionic conductor with periodic boundary conditions.

On the basis of its eigen-states and with the help of Kubo formula we calculate the dynamic conductiv-

ity at different values of the interaction constant between particles and the strength of the modulating

field. The consideration is performed within the hard-core boson approach (that corresponds to the Pauli

statistics). Calculations are made for the case T = 0.

Based on the results of the energy spectrum calculations [24], we expect that at the transition from

CDW-type phase to the superfluid phase, the peaks of dynamic conductivity of the ion chain will shift to

the region of lower frequencies. Indeed, in SF phase there are transitions at lower energies than in the

CDW phase, but the selection rules for matrices Ai
pq practically eliminate their contributions to conduc-

tivity. Similar results were also obtained by other authors (see for example [7]).

Frequency dependence of dynamic conductivity Reσreg(ω) remains qualitatively unchanged after

the transition from CDW phase to SF phase. Only the heights of the maxima of conductivity are changed

significantly. In particular, the heights of the peaks are in SF phase of the one order (at A = 1), or even of

the two orders (at A = 0) less than those in CDW phase. The peaks of the dynamic conductivity in CDW

phase shift in the direction of higher frequencies when the values of interaction between the ions V and

the modulating field A increase. The effect of the modulating field is here much larger. The peak shift is

directly proportional to the field A at V = 0. As can be seen from the Kubo formula, Drude weight [static

conductivity Reσ(ω = 0)] is non-zero if there are degenerate states. At T = 0, this is possible when the

ground state is degenerate. We analyzed the energy spectrum obtained in different phases of the finite

one-dimensional model of the ion conductor. In all cases, the ground state is nondegenerate (which can

be due to finite size of the ion chain), and the Drude weight calculations based on the Kubo formula

give the D = 0 result. Therefore, to calculate the Drude weight we use an alternative way (based on

the sum rule) that connects Drude weight with the frequency integrated regular part of conductivity

and the average kinetic energy of the ions. In this case, our calculations of D for the half-filled CDW

phase still give a non-zero result (which is caused by a finite size of a system), but the obtained value

of D is significantly smaller than the one for SF phase [here, the two terms in (4.6) nearly compensate

each other]. A significant reduction of the dynamic conductivity in SF phase (compared with CDW phase)

leads to a considerable reduction of the second term of Drude weight [
∫

Reσreg(ω)dω] in SF phase and,

therefore, the static conductivity in SF phase is mainly determined by the kinetic energy of ions 1
N
〈−T̂ 〉.

Besides the real part of conductivity, we have also calculated the impedance Z (ω) = 1/σ(ω) and loss

tangent tanδ= Im Z (ω)/Re Z (ω). Frequency behaviour of such quantities is important from the point of

view of experimental study. In order to interpret the results of the measurements, the Nyquist diagrams

(the Im Z versus Re Z plots) are usually used. In particular, an important feature of our diagrams is a

significant difference in the frequency range of Nyquist plots for CDW and SF phases (up to two orders,

as is seen from the presented figures). In practice, it can be used for identifying the state of the ion

conducting system.
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Динамiчна провiднiсть одновимiрних iонних провiдникiв.

Iмпеданс, дiаграми Найквiста

I.В. Стасюк, Р.Я. Стецiв

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна

Дослiджено залежнiсть динамiчної провiдностi одновимiрного iонного провiдника в залежностi вiд ве-

личини взаємодiї мiж частинками i величини модулюючого поля. Розгляд базується на гратковiй моделi

жорстких бозонiв. Розрахунки проведено методом точної дiагоналiзацiї для скiнченного одновимiрно-

го кластера. Вивчається частотна залежнiсть динамiчної провiдностi i поведiнка її статичної складової

(внеску Друде) в зарядовпорядкованiй фазi (CDW) i в фазi типу суперфлюїду (SF). Розраховано частотну

дисперсiю iмпедансу i тангенса втрат; побудовано дiаграми Найквiста.

Ключовi слова: iонний провiдник, модель жорстких бозонiв, внесок Друде, динамiчна провiднiсть,

дiаграми Найквiста
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