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As the proposed structured bounding surface model can only be used to solve planar strain 
problems of natural soft clay, a three-dimensional adaptive failure criterion is adopted to im-
prove the model to capture the three-dimensional behaviors of natural soft clay. The three-
dimensional adaptive failure criterion incorporated in this model can cover the Lade-Duncan 
criterion and the Matsuoka-Nakai criterion as its special ones. The structured bounding surface 
model is generalized into three-dimensional stress space by using the three-dimensional adap-
tive failure criterion. After improved with the three-dimensional adaptive failure criterion, the 
model can be seen as a modified bounding surface model which considers the destructuration 
and three-dimensional behaviors and neglects the anisotropy of natural soft clay. The simula-
tions of undrained compression and extension tests of K0 consolidation state Bothkennar clay 
shows the unimportance of neglecting anisotropy in this model. It was validated on Pisa clay 
that the improved model can  simulate well the three dimensional behaviors of natural soft clay 
under true triaxial conditions.

Keywords: natural soft clay, bounding surface, three-dimensional behavior, adaptive failure 
criterion

Рассмотрен трехмерный адаптивный критерий отказа трехмерного поведения 
естественной мягкой глины, в котором использованы критерий Ладэ-Дункана и критерий 
Мацуока-Накаи. Структурная модель ограничивающей поверхности обобщается на 
трехмерное пространство напряжений с использованием трехмерного адаптивного критерия 
отказа. После его учета модель может рассматриваться как модифицированная модель 
ограниченной поверхности, которая учитывает разрушающее и трехмерное поведение 
и пренебрегает анизотропией естественной мягкой глины. Проведено моделирование 
недренированных грунтов на сжатие и растяжение, а также состояния консолидации. 
Подтверждено, что предложенная модель может хорошо имитировать трехмерное поведение 
естественной мягкой глины при истинных трехосных условиях воздействия нагрузок. 

Тривимірне узагальнення та перевірка структурованої моделі граничної 
поверхні для природної глини. Cui Yunliang, Wang xinquan, Zhou lianying.

Розглянуто тривимірний адаптивний критерій відмови тривимірної поведінки природної 
м’якої глини, в якому використано критерій ладе-дункана і критерій мацуока-накаї. 
Структурна модель обмеженої поверхні узагальнюється на тривимірний простір напружень 
з використанням тривимірного адаптивного критерію відмови. Після його обліку модель 
може розглядатися як модифікована модель обмеженої поверхні, яка враховує руйнівну і 
тривимірну поведінку і нехтує анізотропією природної м’якої глини. Проведено моделювання 
недренованих грунтів на стиск і розтяг, а також стану консолідації. Підтверджено, що 
запропонована модель може добре імітувати тривимірну поведінку природною м’якої глини 
при істинних тривісних умовах впливу навантажень. 
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1. Introduction
	 Experimental results [1, 2] indicate 

that the stress-strain relationship curve of 
natural clay has a softening after peak stress 
in triaxial compression with low confining pres-
sure, and the compression rate of one-dimen-
sional compression becomes faster when the 
compression pressure exceeds the structure 
yielding stress. To capture the structured be-
haviors of natural soft clay, many advanced 
constitutive models [3, 4] had been proposed. 
Based on the bounding surface concept initi-
ated by Dafalias [5], AI-tabbaa and Wood [6] 
set a kinematic hardening yield surface, called 
‘bubble surface’, inside the bounding surface to 
formulate a bubble model for soil. Rouainia and 
Wood [7] presented a structured bounding sur-
face model, using the structure surface as the 
bounding surface and incorporating a structure 
measure of the bounding surface. The structure 
measure allows the size of the bounding sur-
face to decay with plastic straining, so that the 
proposed model can describe the loss of struc-
ture. Taiebat et al. [8] suggested a destructura-
tion law to address both isotropic and frictional 
destructuration and applied it on SANICLAY 
model. The frictional destructuration is proved 
to have significant effect on the loss of structure 
[8]. Literature [9] proposed a simple bounding 
surface model incorporating the destructura-
tion law with some modifications. The proposed 
model can be seen as a simplified model of the 
existing structured bounding surface models 
[6-7], because it neglected some complex prop-
erties of soil, such as the kinematic hardening 
and anisotropy but considered the frictional de-
structuration. However, the model proposed by 
work [9] is two-dimensional constitutive model. 
it can only be used to solve planar strain prob-
lems of natural soft clay. It should be extended 
to be three-dimensional to capture the three-
dimensional problems of natural soft clay. In 
order to describe the three-dimensional defor-
mation of natural soft clay more precisely, the 
proposed model is generalized in three-dimen-
sional principal stress space with a three-di-
mensional adaptive failure criterion [10, 11]. 
The adopted criterion can cover the Lade crite-
rion as well as the Matsuoka-Nakai criterion. 
The performance of the proposed model is veri-
fied by typical experimental results on intact 
samples of natural soft clay.

2. Generalization of bounding surface 
model

The yielding surface of bounding surface 
has the same elliptical shape with the Modified 
Cam-Clay model [7, 8]:

	 F p p p q Mc= - +* *2 2 2/  	 (1)

where, p and q are the mean effective stress 
and the generalized shear effective stress of 
the mapping point on the bounding surface of 
the current stress point, respectively; pc

* is the 
intersection point of the bounding surface and 
the axial of p , which denotes the size of the 
bounding surface;  M* is the critical state stress 
ratio that is the slope of the critical state line. 
By definition:
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where σ σ σ1 2 3, ,  are principal stresses in three-
dimensional stress.

In the classical plastic theory, the basic con-
stitutive equation can be expressed as follows:
	 d C dp

pε σ= ×  	 (4)

wherein d pε is incremental plastic strain, dσ  
is incremental stress, and Cp  is the plastic flex-
ibility matrix.

According to the associated flow rule, the 
plastic flexibility matrix can be presented as 
[10]
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wherein Kp is the plastic hardening modulus. 
It is necessary to define the plastic hardening 
modulus in constitutive model. Work [9] pro-
posed a structured bounding surface model. As 
presented in [9], 
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The expression of Kp  in eq. (6) can be seen 
in Ref. [9]. b  is the measure of the distance 
between the loading surface which has been 
defined in work [9]. ζ andψ are interpolation 
parameters, reflecting the affect of the stress 
level on the modulus. Their values can be de-
termined based on experimental curve fitting. 
Pa  denotes the initial size of the bounding sur-
face on axial of p  in p q- stress space. 

The model proposed by work [9] is proved to 
be efficient and accurate for simulating the deg-
radation of structure of natural clay. However, 
this model can only predict the two-dimension-
al stress-strain relationship of natural for it is 
only a two-dimensional constitutive model. It 
can only be used to solve planar strain prob-
lems. As we know, engineering problems are of-
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ten three-dimensional problems, which should 
be solved with three-dimensional constitutive 
models. Thus, in order to simulate the three-
dimensional behaviors of natural soft clay, a 
reasonable three dimensional adaptive failure 
criterion [10, 11] will be introduced to revise 
the proposed model in [9]. An adaptive crite-
rion adopted here almost covers all the crite-
ria between the Lade-Duncan criterion and the 
Matsuoka-Nakai criterion in principal stress 
space by adjusting the adaptive parameter m
, including the Lade-Duncan criterion and the 
Matsuoka-Nakai criterion as its special cases. 
So, it is more adaptive compared with conven-
tional criteria. The function of the three-dimen-
sional adaptive failure criterion [10, 11] can be 
expressed as
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where m  is a material constant which is deter-
mined by true triaxial test; fc  is the critical 
state internal friction angle for triaxial com-
pression; I1, I2 and I3 are the first, second and 
third effective stress invariants, respectively.
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 I1, I2 and I3 can be expressed as:
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wherein

	 θ
σ σ

σ σ σ
=

-
- -

arctan
( )3

2
2 3

1 2 3

	 (10)

Substituting (10) into (8), equation (8) can 
be written as 
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It should be noted that L2  and L3  are only 
used to denote complex expressions, and they 
have no physical meanings. 

Derived from mathematical calibration, the 
shaping function of the criterion can be defined 
as [10,11]
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Bounding surface revised by the three-di-
mensional adaptive failure criterion can be ex-
pressed as

Fig. 1. Comparison of prediction (solid lines) and experimental data (symbols) for undrained stress paths 
and stress-strain curves of triaxial compression and extension tests on Bothkennar clay following the K0 
state at point A. (a) Comparison of stress-strain curves;(b) Comparison of stress paths.
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where p S pc i c
* =  and M S Mf

* = . Si  is an iso-
tropic destructuraion factor and Sf  is a fric-
tional destructuraion factor.

Solving the partial derivatives of Eq. (15) 
with respect to p , q  and q , respectively, it 
comes that
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In Eq. (17), ¢g ( )q is the derivative of g( )q   
with respect to q  .

Work [9] has already presented the expres-
sion of plastic modulus at the bounding surface
Kp . To generalize the expression of Kp  into 
three-dimensional stress space, it can be re-
vised by multiplying M  by g( )q in the expres-
sion of Kp  in work [9]. M is the critical state 
stress ratio which is determined by the slope of 
the critical state line. Thus Kp  can be written 
as, 
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In eq. (18)-(21), λ  and κ are the slopes of 
the compression line and the swelling line in 
a volumetric strain-logarithmic mean stress 
plane, respectively. mi and mf  are material 
constants which are determined by fitting the 
stress-strain curve of triaxial compression. εv

p

is volumetric plastic strain rate and εq
p is de-

viatoric plastic strain rate. β  is a material con-

stant distributing the effect of volumetric and 
deviatoric plastic strain rates to the value of εd

p

. β  could be set to 0.5 as a default value. Si Sf
The initial values of Si  and Sf  are needed in 
calculating with the proposed model. The initial 
isotropic destructuraion parameter Si0 is deter-
mined by one-dimensional compression test 
and initial frictional destructuraion parameter 
Sf0 is determined by triaxial compression test. 
e0  is the initial void ratio.

The plastic modulus at the current stress 
point, that is pK , can be derived by substitut-
ing Eq. (18) into Eq. (6). 

3. Model verification
Natural soft clays are mainly in the state of 

K0 state which is an anisotropic state. To keep 
the proposed model simple, the anisotropy fea-
ture of natural soft clay is neglected. However, 
this model is believed to be able to well capture 
the behaviors of natural anisotropic clay when 
structure is the main feature of the clay. In or-
der to prove this statement and show the unim-
portance of neglecting anisotropy, the proposed 
model is used to simulate the undrained triaxial 
compression and extension tests on intact sam-
ples of Bothnennar clay following the in-situ 
K0 state. The mechanical response and stress-
strain relationship of Bothkennar clay have 
been studied by Smith et al. [12] and Taiebat 
et al. [8], respectively. The samples were tak-
en with Laval and Sherbrooke samplers from 
depths of 5.3-6.2 m and only the experimen-
tal data of Laval samples is used in this work. 
The samples were reconsolidated to in-situ K0 
state before shear test. The K0 state stresses 
are σ1 46= kPa , σ σ2 3 28= = kPa . Then, the 
initial mean effective stress p kPain = 34 . 

Fig. 2.  Stress paths and failure points of true 
axial tests of Pisa soft clay
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The stress-strain data of the undrained tri-
axial compression and extension tests on intact 
samples of Bothnennar clay following the in-
situ K0 state is shown in Figure 1 by discrete 
points. To simulate the experiments, the pro-
posed constitutive model proposed in this work 
is coded in FORTRAN. The parameters for the 
proposed model are obtained according to the 
study of Smith et al. [12] and Taiebat et al. 
[8] and shown in Table 1. The lines in Figure 
1 show the stress-strain curve obtained by the 
simulation.

In Figure 1, pin  is the initial mean effective 
stress which equal to 34 kPa, ε1  is the axial 
strain in compression or extension test. It can 
be seen in Figure 1 that the simulation stress-
strain curves of the triaxial compression and 
extension tests both show good match to the ex-
perimental data. Thus, The proposed model is 
accurate for simulating the destructuration of 

natural clay. From a practical point of view, it 
is acceptable to neglect the anisotropy feature 
in the proposed model for natural soft clay to 
keep the model simple.

The samples of the true triaxial compression 
tests performed by Callisto [2, 13] were sampled 
under the Pisa tower. All of them were recon-
solidated to the in-situ stress state at point O of 
Figure 2 (σ1 113 5= . kPa , σ σ2 3 75 5= = . kPa ). 
From point O, drained compression tests were 
performed along rectilinear stress paths with 
different orientations in the stress space. Tests 
are labeled with the prefix ‘T’, followed by a rel-
evant value of angle α . In Figure 2, the rect-
angular points are failure stress point normal-
ized in plane π . Choosing an appropriate value 
for the adaptive parameter µ  and fitting the 
failure points with the three-dimensional adap-
tive failure criterion gives the optimized fitting 
curve in Figure 2 with µ =1.5. Adaptive crite-

Table 1.  Parameters of the model for Bothkennar clay

l k n M Si0
Sf0 mi mf b V y

0.255 0.03 0.2 1.4 6.0 1.3 1.0 1.0 0.5 15.0 0.8

Fig. 3. Comparisons of experimental and simulation curves of the relationships of LSP versus following 
the T0, T60, T90 and T150 stress paths for Pisa clay.
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rion in Figure 2 means the three-dimensional 
adaptive failure criterion expressed by eq.(7). 
It can be seen in Figure 2 that the adaptive cri-
terion can fit the failure points better compared 
with the lade criterion, except of the failure 
point of test T150. The inaccuracy in fitting the 
failure point of test T150 is caused by the limit 
of the adopted three-dimensional adaptive fail-
ure criterion that this criterion is isotropic but 
natural soils are always anisotropic. It seems 
that the anisotropy of soil should be considered 
in later research. 

To verify the proposed constitutive model 
generalized by the three-dimensinal failure 
criterion, the model is computed in FORTRAN 
and used to simulate the true triaxial compres-
sion tests on natural Pisa clay. The optimized 
values of the parametersmi , mf , ς  and ψ are 
obtained by adjusting the values to fit the ex-
perimental curve of test T0 with the proposed 
model. The simulation of other tests takes the 
same model parameters with test T0. The model 
parameters are listed in Table 2. The compari-
sons of simulation (heavy line) and observa-
tion (thin line) of tests T0, T60, T90 and T150 
are shown in Figure 3. LSP and εs denote the 
lengths of stress path and the deviatoric strain 
invariant, respectively. The expressions are

 LSP = - + - + -( ) ( ) ( )σ σ σ σ σ σ1 2
2

1 3
2

2 3
2

and

ε ε ε ε ε ε εs = - + - + -2 3 1 2
2

1 3
2

2 3
2 1 2/ [( ) ( ) ( ) ] /

where ε1,2,3 are axial strains in true triaxial 
compression respectively. It can be seen that 
the simulation curves can well fit the experi-
mental curves. Therefore, the proposed model 
is demonstrated to be able to well capture the 
behaviors of natural soft clay under general 
stress conditions.

4. Conclusions
The three dimensional adaptive failure 

criterion incorporated in this model can cover 
the Lade-Duncan criterion and the Matsuoka-
Nakai criterion as its special ones. It is a good 
choice to use this failure criterion to generalize 
the bounding surface model into three-dimen-
sional space. 

The proposed model improved with the three 
dimensional adaptive failure criterion can cap-

ture the three-dimensional behaviors of natural 
clay, but neglect the anisotropy of natural soft 
clay. However, it can be proved by simulations 
of undrained compression and extension tests 
of K0 consolidation state Bothkennar clay, that 
it is not important to neglect anisotropy in this 
model. 

It can be verified by simulating the true tri-
axial tests of Pisa clay, that improved model 
can simulate the three dimensional behaviors 
of natural soft clay under true triaxial condi-
tions.
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