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The features of a completely homogeneous external electrostatic field effect on the
properties of a quasiparticle of the electron type injected into the conduction band of a
semiconductor or dielectric are considered. As applied to this case (completely homogene-
ous external field), the equations obtained earlier are analyzed, which provide a consistent
quantum (basic) and classical (in terms of quasiparticles) descriptions. It is shown that
these equations reflect regularities that do not allow the “"direct” application of the
external field both in the basic (quantum) and in the effective (in terms of quasiparticles)
descriptions. These regularities and the corresponding equations are one of the possible
causes for the experimentally observed anomalous splitting of the conductivity state in
strong fields. In the article this splitting was called a dynamic splitting. A satisfactory
agreement with the experiment was obtained.
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PaccmorpeHsl 0CO0EHHOCTH BJAMSHUSA IIOJHOCTHIO OJHOPOTHOI'O BHEIITHErO 3JIEKTPOCTATH-
YEeCKOro IO HA CBOMCTBA KBASUYACTHUIILI THIIA 3JIEKTPOHA, WHIKEKTHPOBAHHOTO B 30HY
IIPOBOAMMOCTHY IIOJYIIPOBOJHUKA HJIN IUIJIEKTPUKA. [[pMMEHUTEIbHO K dTOMY caydar (IIoJi-
HOCTBIO OJHOPOJHOIO BHEIIHEro II0JA) IPOAHAJIM3NPOBAHBI IIOJYUYEHHBIE DaHee ypPaBHEHU,
KOTOpbIe 00ecIIeuMBAIOT COIJIACOBAHHOE KBaHTOBOoe (6a30Boe) m KJjaccumuecKoe (B TepMHHAX
KBASHYACTHUI]) ONucaHms. IIoOKasaHo, UTO 3TH YPABHEHUS OTPAKAIT 3aKOHOMEPHOCTH, HeE
IOIIyCKAKIIME HnpAMoe’ IIPUMCEHCHUE BHEIIHEIo I0Js KAk B 06a30BOM (KBAHTOBOM), TaK U B
ohderTBHOM (B TEPMHUHAX KBA3WYACTHI[) OIHCAHUSIX. ITHU SAKOHOMEPHOCTH U COOTBETCT-
BYIOII[ME UM YPABHEHHUS ABJISIOTCA OJHOU M3 BOSMOKHBIX IIPUYHNH 9KCIEPUMEHTAIbHO HAOIIO-
JaeMOT0 AHOMAJBLHOIO PACIICIJIIEHUSI COCTOSHUA IPOBOAMMOCTH Y CHJIBHBIX IOAAX. Iloaydue-
HO YZLOBJIETBOPUTEJIBHOE COIJIACHE ¢ DKCIIEPUMEHTOM.

Edexr nuHaAMiYHOrO pO3IMIEIUIEHHSI CTAHY NPOBITHOCTI B OJHOPITHOMY €JEKTPHUYHOMY
moui. AJ]. Cynpyu, JI.B. [IImenvosa

Posrasauyro 0cobJauBOCTI BIJIMBY IIOBHICTIO OJHOPIZHOIO 30BHIIIIHBOIO €I€KTPOCTATHUHO-
ro I0JA Ha BJACTHUBOCTI KBa3iUaCcTMHKU THUIIY €JeKTPOHA, iHXEKTOBAHOI'O B 30HY IIPOBigHOCTI
HamiBrmpoBiguuka ab6o mienmexrpuxa. CTOCOBHO 10 I[bOro BHUHAAKY (IOBHICTIO OZHOPiZHOTO
30BHIIIHBOrO II0JIf) IIPOAHAJNIZ0BAHO OTPUMAHI paHimie piBHAHHSA, AKi 3a0esmeuyoTh ysroi-
skeHe KBauToBe (06asoBe) 1 Kaacmune (y TepMminax xKBasiwacTmHOK) onmcu. Ilokasano, mio i
piBEAHHA Bigo6pakarTh 3aKOHOMIPHOCTI, IO HE AOINYCKAITH IpAME 3aCTOCYBAHHS
30BHINTHBOrO mONA AK y 0asoBoMy (KBaHTOBOMY), Tak 1 B edextuBHomy (y Tepmimax
kBasivacTuHOK) ommcax. IIi saxoHomipHOCTi I BigmoBixui iM piBHAHHS € OXHICI 3 MOMKJIU-
BUX IIPAYUH EKCIEPUMEHTAJbHO CIIOCTEPEIKYBAHOIO AHOMAJBLHOIO POSIIEIIeHHA CTAaHY
OpoBigHOCTL B CcHIbHUX OoaaX. OTpPpUMAHO 3aJ0BlibHE Y3rOJKeHHA 3 eKCIIEPUMEHTOM.
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1. Introduction

In article [1], the features of the dynamics of a free electron in the conduction band of a crystal were
analyzed. It was shown that they are based on such a basic characteristic of excited media, as the energy
or frequency dispersion from the wave vector [2 - 7]. Later in [8], a general analysis of the effect of an ex-
ternal electrostatic field of weakly variable spatial configuration on the features of free electron dynamics
in the conduction band was made. In this case, special attention, as before [1], was paid to the fact that
the quantum (basic) and classical descriptions were in compliance. In [9] some important applications of
the results were analyzed.

Here we present the case of an electron in a completely homogeneous electrostatic field. It requires
an individual consideration. It is shown that this case, at first glance, should not have features, but they
are exist. Similar features are observed during experiment [10]. As it is shown in the article, they occur
due to the fact that the "behaviour"of an electron in the conduction band as a quantum object and as
a classical object must be coordinated. This, in turn, does not allow for the "direct"application of the
external field for describing electron dynamics in both descriptions (both quantum and classical) and is
one of the possible causes of the experimentally observed anomalous splitting of the conductivity state in
strong fields. A satisfactory compliance with the observed splitting was obtained in experiments for PNB
polymers. If the considered splitting mechanism is unique, then on the basis of the results obtained, the
width of the conduction band for these polymers can be evaluated, which in this case is 0.8 eV. It is also
shown that in one of the states obtained, the electron velocity is practically half than in the other. On
the basis of this, the possibility of the existence of an anomalous current behaviour is shown.

2. Materials and methods

2.1. General conditions for consistent quantum and classical descriptions of an electron in a
solid in an external field

These conditions for the case of a weakly variable spatial configuration of the field have the form
of four relations, discussed in detail in [8, 9]. The analysis of an electron dynamics (as a quasiparticle)
injected into the conduction band is based on the equations of motion:

r=4(p), P-G. (1)

Here B (p) is the dimensionless velocity of a quasiparticle with components 8 (p,,): 8 (P) = €48 (Pa),
where 8 (p,) = sin (p,). Components of a dimensionless momentum p are marked with p,. G is dimen-
sionless representation of the force produced by an external field in a "global"frame of reference (associated
with a crystal lattice). Further consideration of the "electron in a solid — external field"system as conser-
vative and potential, we confine to the fact that this force depends only on rg. In this sense, the variables
p and rp are canonically conjugated.

In [8, 9] it was shown that these equations have exactly the form (1) only under the conditions

— o€ or,
e 8 (a.00),
( apoz apa <2>

(e 5 GE)) o

(p~é)+<{s—ro}~e>0; (3)
iF- G0 (4)
P+ G =11, (5)

where o is a vector with components:
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Op = ;7*1F~ﬁ + <I>~ar* +
oz oz 6)

+(le-m) o (5'F))

were a=1,2,3 and é‘ , as usual, represent the total time derivative. It was shown that these conditions are
essentially the conditions for the dynamics of the quasiparticle to be Hamiltonian. On the one hand, they
ensure the consistency of the general consideration with the case of a free quasiparticle (G = 0), and on
the other hand, the consistency of the quantum and classical descriptions.

Equations (2) — (5) are formulated with respect to four unknown vector quantities: G, F, & and
r.. Two of these vectors are dimensionless forces G and F. The force G, as it was already noted, is
a representation of the force created by the external field in the "global"frame of reference (associated
with the crystal lattice). And the force F is a dimensionless representation of the same force, but in the
"local"frame of reference, associated with the point rg of conditional localization of a quasiparticle (an
electron in the conduction band).

The other two unknown vectors are € and r.. Vector € and its components &1, £, &3 have a meaning
of dimensionless length, to which this feature of the considered system is transferred, as "local"(in the
frame of reference connected with the point rp) eigenvalue in accordance with definition:

c=(€-0'F), @)

where ¢ is a "local"eigenvalue. And i hereinafter— is the dimensionless diagonal tensor of the dynamic
effective mass with components:

to = 1/cos (pg). (8)

Vector r, is a dimensionless representation of the point of conditional localization of the source of
the field in a linear approximation in quantum space variables. And, finally, the vector ® is determined

through its components as follows:
oTl,
q)aE(r* . —*), (9)

oz

where I, is a dimensionless representation of a given external force, which, in general, depends on the
variable r, with components z.

Conditions (2) — (4) (condition (4) with taking into account of the definition (6)), have the form of
differential equations for determining the vector functions F, € and r... Equation (5) actually determines
the force G: G =11, — i 'F.

2.2 Reduction of the basic relations for the case of a completely spatial homogeneous external field
The term “completely spatial homogeneous external field” is usually meant a situation where a given
force, determined by the relation II, = V (v, ), is reduced to the condition I, = II = const. In this

case it is obvious that the dimensionless potential energy: v, = (r, - II), and from the definition (9) it
follows that & = 0. Then condition (2) and definition (6) are simplified to the form:

Vo ({€ —ro} - 7i 'F) = 0;

o= "F+V,, {¢—xo} -1 'F),
and the whole system (2) — (5) takes the form:

Vo ({¢ —ro} i 'F) = 0; (10)
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(p~é) (€=} G) =0 (1)
G=-Vy, ({&€—ro} i 'F); (12)
G-=I-i'F, (13)

and now defines the vectors F, &, G (vector r, “fall out” from consideration due to constraint IT,, = IT =
const). As p and rg are considered as independent Hamiltonian variables (canonically conjugate pair),
then equation (10) has a general solution (the integral of motion): ({& —xo} - 7 'F) = U (ro), where
U (rp) —an arbitrary function that has the meaning of potential energy. Equation (12), in this case, takes
the form: G = =V, (U (rg)), thereby transferring the uncertainty from the function G to the function
U (I‘o).

After some transformations, the problem under consideration, consisting of the equations of motion
(1) and system (10) — (13), can be reduced to such working form:

(p€) - (€m0} Vo (U () 0 (14)
ro=B(p), P=-V (U(ro)); (15)
[€-x0} + (Vi (U (1)) +11} — U (x0): (16)
Q= Vi, (U (r0), a7

F (T4 Vs, (U (r,10)) (18)

Equations (15) determine the dynamics of the point ro of conditional localization of the excitation,
if the function U (rg) (dimensionless potential energy) is known. Equations (14), (16), (17), and (18)
determine the vector function &, scalar function U (rq), as well as vectors G and F (dimensionless forces).
Moreover, the relations (17), (18) for vectors G and F, if the function U (rg) is known, now are not the
equations but equalities. That is, there are actually two equations: (14) and (16), defining functions &
and U (ro), as well as equations (15), which determine the dynamics of the quasiparticle.

3. Results and Discussion

3.1. Statement of the problem for the potential field and analysis of its solution

“Global” force G must have a physical nature, similar to a given external force II, in the sense that
they both belong to the frame of reference of the crystal. That is why the force G must be a constant,
and the energy U (rq) can be defined by the equation: U (rg) = — (G - rq). Now the constant G is to be
determined, and the operation V., (U (r¢)) = —G converts equality (17) into an identity. The remaining
five of the relations given in (14) — (18) take the form:

(p ~ é) L (€10} - Q)= 0; (19)
f=8(p), P=G; (20)
(€ {IL—G}) - (ro - {Il - 2G}) — 0; (21)
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F—7i(l-G). (22)

For constant force G there is only one non-trivial way of its selection: G = %H. This selection is due
to the fact that in equation (21) the constant factors: IT and G, “are mixed"with multipliers: £, ro, which
depend on the time. If G = §H’ then the equation (21) takes the form, where they are separated. In this
case (19) — (22) take the form:

(p&) + 3 e —ra) -0 0 (23)
[ hd 2
ro=08(Pp), P= gH; (24)
L et =0, (25)
F L oIl 2
—3 pe il (26)

Without loss of generality, the coordinate system can always be selected so that the external preset
force was directed along the axis 3 (axis z). Thus: IT = (0,0,1T). Then the relations (23) and (25), from
which we begin our analysis, take the form:

1
51l (¢a+28) =0;

(27)
* 2
(P'E) - §H<xg —&)=0.
Here z9 is z-component of the vector ro = {9, z3, 25}, and & is z-component of the vector
€ = {&1, &, &}. Taking into account that in the equations (27) II # 0, the solution of the first (upper) of
them can be written down with respect to &3: &3 = —=z3. This solution is written relative to &3, since the

components z (=1, 2, 3) of the vector rg together with the momentum p are defined by equations
(24). Therefore, prior of solve the second (lower) of the equations under consideration, which, taking into
account the solution &3 = —xg, takes the form:

(p-€) = gm1at (25)

it is necessary to analyze the solutions of the system (24).

To construct such a solution it is important to note that in the general case the motion of a quasi-
particle in a constant field is always two-dimensional if it moves at an angle to the direction of the field.
In this case, the motion is so that the direction vector of the field and the direction vector of motion
always lie in the same plane, and the initial momentum of the quasiparticle (we denote it by q) has
two components. In this case the direction of one of them coincides with the direction of the field. For
example, it could be such a selection: q = {0, ¢2, ¢3}. First, let us consider this case.

Thus, considering equations (24) and taking into account IT = {0,0, 11}, lets write the second (right)
of these equations in the components:

. . . 2
p1:07 p2:07 p3:§H
If q={0, q2, g3}, then the solutions of these equations are:

2
p1=0, py=gq, p3(7)= gHTJr q3- (29)
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I.e., the motion is really two-dimensional, because the condition p; = 0 is always fulfilled. The first
(left) equation in (24), taking (29) into account, takes the form in components:
. .

xol :?7 LES = sin (qQ) ) (3())

95% = sin (p3(7)) .
If at the moment of the field activation the quasiparticle was at the point R = {R;, R,, Rs}, then
the general solution of equations (30) has the form:

x?:Rl, x8:R2+TSiH(QQ),
(31)
3

xg:Rngﬁ (cos(g3) —cos (pa(1))).

Further, taking (29) into account, the equation (28) can be reduced to the form:
° 2 * 4

@&t <§HT+ QS> 3= gl_[xg.

And, given that & = —x3, it reduces to a differential equation that determines the component &:

.

. 4 2
q2 &g = gnngr (gHTJrQS) -z,

This equation can be integrated taking into account that component z3 is fully defined in (31). But
here, when considering a quasiparticle that moves at an angle to the direction of the field, it is sufficient to
mark that the components & and &3 of the sought-for vector £ are different from zero, and component &;
is equal to zero. Then the amplitude part of the wave function corresponding to the quantum description
of the situation in question (IT = {0,0,11}), takes the form [§]:

@ (T,23) = ¢ ;—3|Ai (— 2| Fs|{zs — 2xg}) ,

where by the definitions (8) and (26): F5 = p311/3 = I1/3cos (p3), and ps is defined in (29). It is obvi-
ous that this solution is invariant with respect to the orientation of the initial momentum of the form:

q= {q17 07 CIS}

3.2. Interpretation of anomalous dynamic splitting of the conduction electron energy in a strong
electrostatic field

Under the conditions of a real experiment, the injection of an electron into the conduction band can be
carried out in such a way that the initial momentum of the electron is equal to zero: q = {0, 0, 0}. This,
for example, takes place for excitonic [10] or solitonic [11] injection methods, in particular, for polymers
[10] and polymer-like [12] structures. In this case the solutions (29) take the form:

2
Pr1 = 07 P2 = 07 pP3 = §H7—7 (32>

and solutions (31) are simplified to the form:

zy =0, z) =0,

3 2
z) = B <1 — cos <§HT>> .

Here, without loss of generality, we can assume the following: Ry = Ry = R = 0.
Then the system of equations (27) reduces to the form:

(33)
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dii' (1&) = xg, &= —xg. (34)

I.e. takes the form of two equations with respect to one unknown function &3. In the classical case,
such a redefinition is physically unacceptable. Therefore, one of the solutions would have to be deleted
as unphysical. However, the function {3 is an exclusively quantum parameter. Moreover, as noted above,
it defines a “local” (in a reference system associated with a point ro) eigenvalue. In particular, here, in

accordance with the definitions (7) and (26), this eigenvalue reduces to the form:

e = &ll/3. (35)
I.e. different functions &3 correspond to different quantum states. For a detailed consideration of this

problem, lets introduce two functions £0, £1 instead of the function &3, each of which is determined by
one of the equations (34). Namely:

d
(r0) = af; €= b,

Taking into account the explicit form of the function z3, specified in (33), and integrating the first of
the equations, one can obtain:

21 21_[7'
3
€1 = % (cos <§HT> - 1) : (37)

For these two values, according to (35), we have two energies, the splitting between which is determined
by the difference: Ae = % (€0 — £1), and has such an explicit form:

Ae = % (2 - Sine(e) - cos(0)> . (38)

2
Here we introduce the notation for generalized dimensionless time: 6 = §H 7, which, according to

(32), formally coincides with the dimensionless momentum ps. Whereas 7 > 0, and the direction of the
field II coincides with the positive direction of the axis z (or z3), thus @ > 0. In this case, each of the
states €0 = €0 -11/3 and €1 = £1 - [1/3 has "own"wave function:

@0 (1, z3) =A (7) Ai (—)\ (1) {xg—ngrfO}) , (39)
wl(1,23)=A (1) Ai (—)\ (1) {xg—xg + 51}) , (40)

where A (1) = /4/|F3], A (7) = /2| F3|. These notations emphasize that the field F3, according to (8)
and (26), is defined by: F3 = pgll/3 =11/3cos(p3), and, in accordance with (32), is a function of time.
In addition, it follows from (33), (36), (37) that the quantities =3, €0, £1 are also depend on time.

Figure 1 shows the dependence (38) and its average value in the area of single-valuedness: 0 <6 < 7
(for dynamic characteristics, such as speed, wave impulse, etc.).

The presence in Fig. 1 of splitting mean value (solid line) in addition to the dynamic splitting (dotted
curve), is due to the duration of the process shown in Fig. 1 and is of the order of ;. = 10~ 3s. At such
short process times, the average splitting value is observed [10].

Let’s show that .« has the specified order of magnitude. Definition of dimensionless time 7 was
represented in [8]: 7 = %t. For estimates, we can use the typical value of the width of the conduction
band: |M| ~ 1 eV. Taking into account that 4 = 6.582 - 10716 eV - s, we can obtain an estimate for 7:
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Fig. 1. Dynamics of anomalous splitting Az (6) (dotted line) and its integral mean value Az (solid line)
for an electron injected into the conduction band at zero initial momentum.

t
= 41
T 658210 168 (41)
Maximum dimensionless time 7y, is evaluated by the single-valuedness condition [1]: fyax = g or

2
) : For the final evaluation 7. it is also necessary to estimate the dimensionless force II.

3 2
Db
To do this, we also use the definition given in [8]: II = %

M| ~ 1 eV:e = 1.6-10""C is electron charge; b ~ 1071%m = 10~%cm is crystal lattice constant;
D =925kV/em ~ 10°V/cm = 108V /m is applied field strength according to [10]. Then the estimate for

3
IT will be the following: IT ~ 10=2. With this consideration we can obtain: Tpay = é = 2,356 - 10°. For

, which contains the following, except of

a real dimensional time, according to (41), respectively, we can obtain: ty., = 1.551 - 1073 s,

A splitting analogous to the splitting, shown in Fig. 1, is discussed in [10]. There it is equal to 0.2 eV.
In our consideration, all energies were normalized [8] to the width of the conduction band |M| ~ 1 eV.
Then, as follows from Fig. 1, the dimensional value of the mean splitting is equal to: Ac ~ 0.25 eV. This
qualitatively coincides with the splitting obtained in [10]. Moreover, if the considered dynamic splitting
mechanism is single, then the width of the conduction band in the PNB polymer can be evaluated. Indeed,
for the average value of the dimensional splitting obtained here completely coincides with the analogous
splitting obtained in [10] for PNB polymers, the width of the conduction band should be |M| ~ 0.8 eV.

There are other indications that the splitting observed in [10] has the dynamical nature under con-
sideration. For example, in [10] it is mentioned that the presence of a field does not affect the occurrence
of splitting. It follows from (38) that the field does not really affect the mean (observed) value of the
splitting, regardless of the averaging method.

3.3. Interpretation of anomalous dynamic "behaviour"of carrier

Let us analyze certain features of the quantum description of an electron under the conditions of
congideration (injection of an electron into the conduction band with an initial momentum equal to zero
and a completely unified external field). Such an analysis is based on the wave functions (39), (40). They
depend on time 7 and “global” spatial variables associated with the frame of reference of the crystal: ex-
plicitly of the component z3 and implicitly of the components z1, z2. In [8], quasi-stationary conditions
were analyzed, for which the wave functions (39), (40) with a specified accuracy § can be considered as
stationary in some space-time domain. In some cases, it is possible to find such values §, under which the
quasi-stationary conditions are satisfied at any time and at any point in space. Here is just such a case,
because quasi-stationary conditions can be reduced to the form:

d d
— [0 (T m3)] <& ——[l(7,23)| <4,
dr dr
and integrated:
|00 (7, 23)[ — |00 (0, z3)| — o7 < 0; (42)

|l (7, 23)| — |1 (0,z3)| — o7 < 0. (43)
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Fig. 2. Space-time distribution of wave functions ¢0 (T, X) and ¢1 (T, X). The following notations are
introduced here: T = II7 for a "time"variable, and X = x3 Y11 for a "space"variable.

A numerical-graphical analysis of these relations shows that when ¢ > 3.3 102 wave functions (39),
(40) can be considered as stationary with the indicated accuracy for any 7 and zs.

A general form of the space-time distributions for wave functions (39), (40) is shown in Fig. 2. Plots
2(a), 2(b) show general forms of wave functions ¢0, ¢1 in a three-dimensional space. It can be seen that
the electron density reduce “to the right” of the main maxima, i.e. practically absent. And the electron is
actually localized in the area "to the left"of the main maxima.

However, these general forms are not very informative from the point of view of the analysis of phys-
ical results. Therefore, the plots 2(c), 2(d) are projections onto the plane (T, X) (the variables T, X are
defined in the caption to Fig. 2). It can be seen that the space-time configurations of the main maxima
correspond with good accuracy to the classical trajectories of an electron motion in an external field. In
addition, there are many more "non-main trajectories the probability of which is less than the main one.

It is also seen that if the main maxima are interpreted as trajectories, then in the state ¢0 mean
electron velocity is half as much as in the state ¢1. That is, the effect of separation of electrons injected
into different states should be observed. It can be observed if, for example, we include such a current
suppression mechanism as the temperature. At a certain temperature and the free path of electrons from
the injection point to the electrode, the contribution to the current from the "slow"component 0 must,
under ideal conditions, suddenly disappear (in reality - to decrease rapidly). And the total current must
decrease to a level determined only by the "fast"component.

It also follows from the plots 2(c), 2(d) that when the quasi-stationary conditions (42), (43) are ful-
filled with the accuracy obtained (6 > 3.3 - 1072), the electron is delocalized not only in space, which is
already customary for quantum description, but also in time. This is due to the approximation of qua-
sistationarity, which allows the amplitude part of the wave function to depend on time. L.e. in quantum
analysis, an electron in its own frame of reference is delocalized not only in space, but also in time.
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4. Conclusions

In the article, obtained theoretical results were compared with the experimental data. It was shown
that the previously developed method [8, 9] for agreed quantum and classical description of an elec-
tron in the conduction band explains the experiment [10] on the splitting of the conduction state in
strong fields. Theoretical estimates show that, for a typical value of the width of the conduction band,
~ 1 eV, the splitting is ~ 0.25 eV, that is qualitatively coincides with the splitting obtained experimen-
tally (~ 0.2 eV). On the other hand, it became possible to estimate the width of the conduction band
for PNB polymers based on the splitting value. It consist ~ 0.8 eV. The experimentally observed fact
that the field magnitude does not affect the observed splitting value and arises immediately with the
appearance of the field is confirmed. Analysis of the wave functions for the states obtained showed that
in the region of the main maximum, the space-time distribution of the electron density, in the projection
to the "coordinate-time"plane, reproduces the classical trajectory of the electron motion in the external
field. Therewith there are a number of "non-main trajectories the probability of realization of which is
less than the "main". It is shown that the electron is delocalized not only in space, but also in time.
From the graphical-numerical realization of the theoretical results obtained, it follows that in one of the
two states of the obtained splitting, the electron velocity is practically half that of the other. This can
lead to anomalous current behavior when the temperature or other factors that suppress current are
altered. For example, if the temperature increases, then for a certain its value, the mean free path of the
"slow"component becomes less than the distance from the injection site to the electrode. In this case, the
current under ideal conditions, suddenly (in reality very quickly) should decrease to a level determined
only by the "fast"component.
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