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On some locally finite groups which are sharply triply transitive

(0] HEKOTOPRIX NOKAJbHO KOHEYHBIX I'pynmnax,
SIBJSONINXCH CHAbBHO TPHIKALI TDAHSHTHBHBIMH

We classify the groups I' satisfying the following conditions:
i) T is locally finite;
i1) T is a sharply triply transitive permutation group;
iiig all elements of I' have fixpoints.

Mur kiraccudunEpyeM rpynuel I, yAOBIETBOpPSIOMHE CAEAYIOMHM YCAOBHAM:
i) I' noxanpHO KOHe4YHE;
ii) I’ cTporo TPHXIH TPAHSHTHBHAS TPYNNA NOJCTAHOBOK;
iii} Bee 9JIeMeHTH H3 I' HMEIOT HeNMOIBHMKHBIE TOYKH. i

Mu Knacmi)ixyem rpyud I, ski 3af0BOJIEHAIOTE TAKI YMOBH:
I' noganpHo ckinyenHa;
11 T' crporo TpHYi TpaHSHTHBHA IpyNa NiACTAHOBOK;
iii) Bci exements i3 I' MaTs Hepyxomi TOTKH.

Introduction. In this paper we are concerned with (infinite) locally
finite permutation groups of low degree of transitivity. By local finiteness we
will be able to use counting arguments which allows us to make statements
about finite subgroups. It is well known that the groups PGL (2, K), in its na-
tural operation on the subspaces of the vectorspace of dimension 2 over the
field K, operate sharply triply transitively on the one-dimensional subspaces.
If furthermore all quadratic polynomials over K are reducible, then PGL (2, K)
does not possess fixpoint-free permutations. It is the object of this note to show
that these groups are the only such groups. To do this we will consider finite
subgroups and also sharply doubly transitive groups.

Notation is mostly standard. We will denote group ele-
ments (permutations) by small greek letters like e, p and subgroups by capital
letters T, A, for permuted objects we use latin letters a, b, ..., x, y and for
correspondlng subsets again capital letters A, B,

If T is a group, the set of all nomdentlty elements of T" is denoted by I'+.
A group is sharply doubly transitive on the set S, if it contains one and only
one element mapping the given ordered pair a, b onto the pair x, y; it is sharply
triply transitive if the same is true for any two ordered triplets. A group is
regular if it contains one and only one element mapping x onto y, for any x, y.
Np (Q) = (aja € T, g Q = Q) is the normalizer of @ in I'. The index I'
is mostly deleted. This paper is based on results by R. Ritthaler [1] and ex-
tends them.
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I.Sharply doubly transitive groups. We will see

that the situation here is similar to the case of finite groups. )
v Lemmal. Assumethat T is a locally finite group and also a sharply doubly
transitive permutation group of the infinite set R. Choose two permutations a, B
in I't having different fixpoints a and b. If Q is any finite subgroup of T' which
contains c and B, then the set of fixpoint-free elements of Q, together with the iden-
tity, forms a nontrivial normal subgroup B of Q.

Proof. Denote by L = {x|go € Q+ such that o (x) = x} the set of
fixpoints connected with Q. Since I' is sharply doubly transitive on R, no ele-
ment of Q@+ has more than one fixpoint, and |L] < [Q+ = |Q |— 1. The
subgroup £ is now a permutation group on L; and L will split into the domains
of transitivity T4, ..., T, with respect to Q. The set of permutations in  which
fix x will be denoted by @,.. The subgroups @, and @, with x, y € L are conju-
gate if and only if x and y belong to the same T}, so the conjugacy classes of
the subgroups @, correspond to the domains of transitivity of L. Now [T =
= |Q: D0, |forxinT;, and ®, N Oy = 1 if x 5= y. We deduce

et = Y ofl= ¥ IT:10% ],
xeL *i€T;

and since |Ty|-|®@,, |=|Q] and |OF [= 5| D, |, we have &= 1.

This means that Q operates transitively on the fixpoints in L. and that all
@, are conjugate, with pairwise trivial intersection. By the theorem of Frobe-
nius (see for instance M. Hall [2, Theorem 16.8.8, p. 293]), the fixpoint-free
permutations and the identity element form a normal subgroup, and a simple
calculation shows |L| = |E|.

Lemma 2. If T isa sharply doubly transitive locally finite group, then
the identity element and the fixpoint-free elements ftogether form a nontrivial
normal subgroup, provided that | I' | > 2.

Proof. It suffices to show that the product of any two fixpoint-free
permutations is the identity or fixpoint-free. For this, choose @ as in Lemma 1
but also containing the two fixpoint-free permutations.

Lemm a. 3. In the situation of Lemma 2, the normal subgroup containing
all fixpoint-free elements is elementary abelian and regular.

Prooi. Choose two different elements x, y of R, we have to show that
there is exactly one fixpoint-free permutation which maps x onto y. Choose
first any fixpoint-free element o, it will map x onto z. Since T is doubly transi-
tive, there is a permutation p mapping x onto x and z onto y. Now p—1 op is
fixpoint-free and maps x onto y. If ® is another fixpoint-free permutation ma-
pping x onto y, then @—*p—? op has the fixpoint y, which contradicts Lemma 2.
So there is exactly one such permutation and the normal subgroup operates
regularly on R.

If o is the only fixpoint-free permutation mapping x onto y and B is any
permutation, them P—*«f is the only fixpoint-free permutation mapping
B (x) onto P (y). Since T' is doubly transitive we obtain that all fixpoint-free
permutations on I' are conjugate and, in particular, of the same order, which
is a prime number. tes

Lemma 3 is clearly true if the fixpoint-free elements have order 2. If
not, apply Lemma 1 to(e, B, 8, p, o) with «, p fixing a and b respectively, 8
exchanging a and b, and p, o fixpoint-free.

Now 6 operates by conjugation on the normal subgroup of fixpoint-free
permutations, with trivial centralizer. This is only possible if this normaly
subgroup is commutative, and o and p commute. Lemma 3 is shown.

We can see now that there is a one-to-one correspondence of ‘the sharply
doubly transitive groups and the nearfields, also for the locally finite case.
In particular we have.

Lemma 4. If I' is a locally finite sharply doubly transitive group and
6 is an abelian subgroup of T', then either

i) © consists of fixpoini-free elements only and © is elementary abelian, or

ii) O+ does not possess fixpoint-free elements, and © is locally cyclic.
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Furthermore, if © is a p-group, then © is abelian or locally generalized quaternion
(and p = 2).

Proof. By Schur’s Lemma (see Robinson [3; Theorem 8.14, p. 211])
abelian groups of fixpoint-free automorphisms of finite abelian groups are
cyclic. The generalized quaternion groups are the only noncyclic groups with
all abelian subgroups cyclic (see Huppert [4; Satz 8.2, p. 310?.

Corollary . If two elements of a locally finite sharply doubly transi-
tive group have the same order, then they also have the same number of fixpoints.
. 2. Finite subgroups of the triply transitive
groups. Here we consider groups satisfying the following hypothesis (*):
I' is locally finite and sharply triply transitive such that every element has
at least one fixpoint.

Theorem 1. Assume that T satisfies hypothesis () and

i) Q is a finite subgroup of T';
~ ii) no object of R is fixed by all alements of Q.

Then Q is a dihedral group or |Q|= @ +1)p (pf —1), or |Q|=

=—;— (0 + 1o (of — 1), where p is a prime number.

Remark. The last case |[Q]| = %(pf + l)pf {pf — 1) is impossible for

p=2.

Proof. We proceed by considering two different cases.

Case 1. Bveryelement in Q+ has two fixpoints. Choose some object
x in L,—the set of objects fixed by at least one element in Q+.If there is no se-
cond element y of L which is also fixed by all elements of @, we deduce a
contradiction from Lemma 1. So ®,= ®, for some x=z=y, and®, =®d,
or @, N ®,=1 for aq, b in L.

The finite set L splits into domains of transitivity Ty, ..., Tx, correspo~
nding to conjugacy classes of the subgroups @,.. We choose representatives
@, ..., D, of these conjugacy classes and obtain

(l)mﬂ—zm N (@) | @ |-

An element of 'the normalizer N (®D;) of ®; which is not contained in <D
itself will interchange the two fixpoints of CDi, so we have [N (@;) :@ [éQ

Since @; is non-trivial, we find furthermore | ®7| = 7!‘31 |. Using this

in equation 1, we obtain

(2) If s is the number of conjugacy classes of selinormalizing subgroups @,
and 7 is the number of the remaining ones, then 2s 4 r = 3. Assume first
s = 1, and @, of order n, selinormalizing, CD, of order n, not selfnormahzmg,
_and Q of order n. Then equation (1) yields

1 1
M s 1—7;+”2*(1—n—,)*

1 1 1 1
T Tw Ty

with ny, n, = 2.
From n,=2 we deduce n,<<4; and we obtain the two possibilities n,=2,
n = 2n, which leads to the dihedral groups of order 4k 4 2, and ny = 3,

pp=2 n=12= -5 (3—1)3 (3 4+ 1) which leads to the ‘alternating

group A4,.

As a next step, assume s = 0 and 7 = m = 3. Proceeding as defore with
three representatives of orders ny, n,, ny with n, < n, < n, we obtain from
equation (1)
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1 1 1 /1 1 1
?+7=7(n—1 +n_2+71;)'

We deduce ny = 2 and n, < 3.

For n, = n, = 2 we obtain n==2n,, and this leads to the dihedral groups
of order 4k.

1 1

For ny =.2, n, = 3 we have =3 | 5=
12=|Q: @,|(6 —@,) with n,=|0,|=3.

We are left with the numerical possibilities
a) ny, =3, n=13,

b) 1'13-‘=4,.?1=24,

©) fy =15, n=060.-

Here there is no group for possibility a) since it would have two conjugacy
classes of Sylow-3-subgroups. The other two lead to S, and A;. Case 1 is now
completed.

Case 2. There is an element in Q with only one fixpoint. Choose a fix-
point x of such an element. The subgroup @, of all elements fixing x possesses
by Lemma 1 and Lemma 2 an elementary abelian normal subgroup ¥ consis-
ting of the identity and all elements fixing x only. Elements outside ¥, do
not commute with any element in W

This yields: |

(3) | @, : ¥, | divides |, |— 1,

(4) ¥, is a Sylow-p-subgroup of @,, and furthermore we know

®) ¥. N ¥,=1 for x5y, and from (4) we have

(6) the objects x occurring as signle fixpoints form one domain of transiti-
vity in L. :

Let| ¥, | = p'; by®, = N (¥,) and (5) we have

(7) |Q: @, =1+ ko,

We take an object y of L which does not belong to the domajin of transitivity

mentioned in (6). Then there is an object z in L such that every element in €

fixing y will also fix z. The corresponding subgroups of elements fixing objects
like y fall into conjugacy classes of Q, and we choose representatives &y, ...
.., 8, of these classes. Certainly | N (8;) : E;| < 2.

All complements of ¥ in @, are conjugate, and we choose a representative
A. Again |V (A) : A] < 2. Now we can count the elements of Q.

1
2n,

and 124+n=6|Q: @y,

11 = (1 + #0) (¢ — D+ |@: N | AT+ 319 N @) |BF| + 1 =

=1

= (A+kp") pT|A|.

€ase 2.1. A = 1. In this case we have m = 1 and
k' =19: N @) |2t | =12l

s0 p < 3.— For pf = 2 we find that |Q : N (E)| divides both |] =3 @
+ 38k) and 3k. If |Q : N (B)] = 3, then |E| = k + 1 which would be a di-
visor of 3 (1 + 3%) and further £ 4 1 divides 6. This leadsto £ = 1 and Q

et

2

IR

Fi'.or | Q: N (8) | = 1 we arrive at a contradiction.

For p' = 2 we find dihedral groups.

Case 2.2. A= N (A). Here we obtain again m = 1 and

1Q) = (1 +kp) (o — 1) + Q] — €L+ ko) pf +|Q: N (B)| | BT |+ 1,

kol =|Q: N (8) ;3+|>-}r1£2], so pl | A|< 4, which is impossible.
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Case 2.3:1 == A== N (A). Here we find

|~.s2]=(1+kpf)(p’~—1)—%[9]+~é—(1+kpf)p’—1 =

~ S0 N @) |5

i=l

Q]+ @k— 1) o' — k" =2 Y |Q: N@E)| | &,
=1

and since the left hand side of the equation is smaller than |Q] we have again
m =1 and N (B) = B. This yields

12|+ @k — 1) —kp" =[Q] —|RQ: B|

and |Q:B| = kpf — 2k — 1) p.

This must be a divisor of (1 4 kpf) o (pf —1), which is a multiple of
|2]. So kp' —(2k—1) is a divisor of (1 + Epf) (pf —1). But then kpf —
—(2k—1) is a divisor of 26— 2, and we have as the trivial possibility
k= 1. For this case |Q| divides (p'-+1)p’ (o —1) and is a multiple of
pf — 1, and |Q] is as given in the theorem. On the other hand, if ks~ 1,
we have p/ =3. For p/ =3 we have that & 4+ 1 divides 4, therefore & = 3,

and 1Q] = 60 = %6-5-4.

For pf = 2 we arrive at a contradiction.

The proof of Theorem 1 is complete.

Lemma 5. Assume that i) I' satisfies hypothesis (+); ii) Q is a finite
subgroup of I'; iii) no object of R is fixed by all elements of £2; iv) €2 does not
admit a domain of transitivity of length 2 in R; v) | €| > 120.

If A== 1 is the set of all elements in Q which fix two different objects a,
b of R, then A is cyclic. _

Proof. According to Theorem 1,. & belongs to Case 2.3 of the proof and

1 7
Q="+ 1) (' —1) or |Q] == @I+ D' (¢ —1) with /' =5.

In both cases a subgroup A as in Case 2.3 satisfies the inequalities 1 5=
= A== N (A), and N (A) is treated in Case 1 of the proof of Theorem 1
(for p odd) or in Case 2.1 (for p = 2), and N (A) is a dihedral group. In both
cases A must be cyclic. ' ;

3. Thefamilyoftriplytransitive groups.

Lemma 6. If satisfies hypothesis (x) and O is the subgroup all of ele-
ments fixing a given object of R, ffen @ is countable and isomorphic to the group
of mappings x —ax + b, a== 0, a, b in F, where F is an infinite field of some
characteristic p, a prime number,

Proof. By Lemma 2, @ possesses an elementary abelian normal sub-
group containing the identity and all elements with exactly one fixpoint.
This is complemented in @ by a subgroup of all elements fixing two given
objects, and by Lemma 5 this is a locally cyclic group. So this complement is
eountable and R is countable. The group isomorphism follows since the quotient
modulo the elementary abelian normal subgroup is abelian and is sharply
doubly transitive. B

Corollary 2. IfT satisfies hypothesis (+), then T' is a countable group.

This follows from the countability of R.

Lemma 7. The subgroup Q mentioned in Lemma 5 is isomorphic to
PGL (2, pf) or PSL (2, pl). '

Proof. We recall that in this situation the elements of order p have
exactly one fixpoint and that these fixpoints form one domain of transitivity
with respect to © in R. Since there are pf -1 Sylow-p-subgroups in Q and these
have pair-wise trivial intersection, Q operates on the domain just mentioned

1064 ISSN 0041-6053. ¥xp. mar. scypx., 1991, 7. 43, MNe 7—8



as a doubly transitive permutation group, furthermore only the identity fi-
xes more than iwo of these objects. If p = 2 we may apply a result by Zassen-
haus [5; Satz 18, p. 39], and we have that Q is isomorphic to PGL (2,2f) =
= PSL (2,2f). If there is an element of order 2 in Q which fixes two of the Sy-
low-p-subgroup, we apply another result by Zassenhaus [5; Satz 19, p. 39}
and we have that Q is isomorphic to PGL (2, pf) or to PSL (2, p/) (since the
normalizer of the Sylow-p-subgroup is metabelian, the third alternative is
impossible). If no element of order 2 is contained in the normalizer of some
Sylow-p-subgroup, we choose an element of order 2 in Q and consider its fix-
points «, v, and we pick an element p of order p which has the fixpoint u. The

new subgroup (R, p) of order —é—(pm + 1) pm (p™ — 1) allows the application

of Satz 19 of Zassenhaus [5] so (R, p) is isomorphic to PSL (2, p™), and Q is
isomorphic to PSL (2, pf).

Theorem 2. If Q satisfies hypothesis (), then S is isomorphic fo some
group PGL (2, F) where F is a field of characteristic a prime number p in which
all polynomials of degree 2 are reducible.

Proof. We choose some method of labelling x;, x5, ..., ¥;, ... all ele-
ments of R. This is possible since R is countable. We begin with a subgroup &
as mentioned in Lemma 5. By Lemma 7 Q is isomorphic to PGL (2, p/) or
PSL (2,p/), and its commutator subgroup A is isomorphic to PSL (2, pf).

For each object x; of R we choose an element p; of order p having x; as
fixpoint, and we obtain the sequence

As (A p) =, 01 Po) S coveer SN, Pry vee 1 P S -eneen

By obvious induction on i we see that all subgroups of this series are iso-
morphic to some PSL (2, p'), where #;_; is a divisor of #. We consider
the set-theoretical union of the subgroups constructed

6= U(Q} P1s pg: [LER pi)_'

=l

Obviously, © is isomorphic to some PSL (2, F), where F is an infinite
field of characteristic a prime number p, and the normalizers of the maximal
p-subgroups fix one object in R, so that Q is doubly transitive on R since we
find a member of the series where a given pair «, v is mapped onto a given pair
u', v'. Since Q does not possess elements without fixpoints, the matrix des-
cription of SL (2, F) yields that no polynomial of degree 2 in F is irreducible.
But it F has this property, every element in F is a square and PSL (2, F) =
= PGL (2, F) == 0.

Also, O is sharply triply transitive on R. This proves Theorem 2.
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