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This model considers reversible elementary acts of migration of point defects (interstitials and/or vacancies)

across the precipitate-matrix interface and enables one to derive equations for the rates of emission and ab-

sorption of solute atoms at the interface. The model predicts much stronger heterophase fluctuations and

higher nucleation rates than the classical nucleation theory does. However, asymptotically, for large precipitate

sizes and long ageing times, both models give the same results, being in agreement with the Lifshitz-Slyozov-

Wagner theory of coarsening.
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Quantitative studies of the kinetics of precipitation from solid solutions originate from the pioneering

work by Ostwald [1]. The late stage of this process, called coarsening, is governed by the theory elaborated

by Lifshitz, Slyozov [2] and Wagner [3] (LSW). At the same time, the general theory of precipitation is

mainly based on the classical nucleation theory (CNT), including its modifications and extensions (see

e.g., [4] and references therein), which is still debated in some of its aspects (see e.g., [5] and references

therein). In particular, one of the open questions is a method of determination of the rates of emission

and absorption in the master kinetic equation [5]. The present work is aimed at solving this problem.

This paper introduces a new phenomenological kinetic model for precipitation from solid solutions,

being an extension of the recently published model of homogeneous semicoherent interphase bound-

ary [6]. It considers the microscopic elementary acts of the reversible atomic rearrangements at the

precipitate-matrix interface mediated by point defects (PDs). This approach enables one to determine

the rates of emission and absorption in the master kinetic equation [see equations (29) and (30) below].

Consider an interphase boundary (Gibbs interface) between a precipitate consisting of one type of

atoms and a solution of these atoms in a solid inert matrix. Let the interface between the precipitate and

the matrix be coherent, i.e., most of the atomic planes be continuous across it. Since the bulk physical

properties of such a heterophase structure are discontinuous across the interface, the number density

(concentration) profiles of PDs are expected to be discontinuous as well. The PDs can penetrate across

the interface via thermal activation or some other mechanism. Therefore, the transfer of PDs across the

interface can be considered as a reversible surface chemical reaction.

A solute atom in the interstitial position located at one side of the interface can transfer to the other

side of the interface and vice versa. This process can be represented in the form of a reversible chemical

reaction:

i
p
s ⇋ im

s , (1)

where i
ϕ
s denotes an interstitial solute atom in the precipitate (ϕ= p) or in thematrix (ϕ= m). In this case,

the rate of transitions, represented by equation (1), in each direction, is proportional to the concentration

c
ϕ

is
of the interstitials i

ϕ
s in the corresponding phase. The normal component of the flux of solute atoms
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across the interface via the interstitial mechanism is as follows (hereinafter the normal unit vector is

supposed to be directed from the precipitate into the matrix):

jis =β
p

is
c

p

is
−βm

is
cm

is
, (2)

β
ϕ

is
being a phenomenological transition kinetic coefficient for the solute interstitials in the corresponding

phase.

A solute atom located at a regular lattice site at one side of the interface can transfer to the neigh-

bouring vacant site at the other side of the interface and vice versa. This process can be represented in

the form of a reversible chemical reaction:

l
p
s +vm

⇋ lm
s +vp, (3)

where l
p
s is a solute atom at a regular lattice site of the precipitate; vm is a vacant regular lattice site in

the matrix; lm
s is a solute atom at a regular lattice site of the matrix; vp is a vacant regular lattice site in

the precipitate. Therefore, the rate of transitions, represented by equation (3), in each direction, should

be bilinear in concentrations of the corresponding reagents. The normal component of the flux of solute

atoms across the interface via the vacancy mechanism is as follows:

jvs =βm
vs

c
p

ls
cm

v −β
p
vs

cm
ls

c
p
v . (4)

Here, c
p

ls
is the concentration of solute atoms that belong to the regular lattice sites of the precipitate, cm

v is

the concentration of vacancies in the matrix, cm
ls

is the concentration of solute atoms at the regular lattice

sites of the matrix, c
p
v is the concentration of vacancies in the precipitate and β

ϕ
vs

is a phenomenological

transition kinetic coefficient for vacancies in the corresponding phase.

An interstitial atom located at one side of the interface can recombine with a vacancy located at the

other side:

i
p
s +vm → lm

s ; im
s +vp → l

p
s . (5)

These are irreversible reactions because an energy threshold for production of the Frenkel pairs is usu-

ally large. The normal component of the flux of solute atoms via the recombination mechanism (5) is as

follows:

jRs =α
p

Rs
c

p

is
cm

v −αm
Rs

cm
is

c
p
v , (6)

where α
ϕ

Rs
is a phenomenological recombination kinetic coefficient in the corresponding phase.

The total flux of solute atoms across the interface is a sum of the contributions given by equations (2),

(4) and (6):

js = jis + jvs + jRs . (7)

A total concentration of solute atoms in the corresponding phase consists of the concentrations of the

atoms in both the interstitial and regular positions: c
ϕ
s = c

ϕ

is
+c

ϕ

ls
. One can consider the following relations

between the concentrations of solute atoms in different lattice positions:

c
ϕ

is
= x

ϕ
s c

ϕ
s ; c

ϕ

ls
=

(

1− x
ϕ
s

)

c
ϕ
s , (8)

where x
ϕ
s is a dimensionless constant taking its value from the range 0 É x

ϕ
s É 1. The lower and upper

limiting values correspond to the cases when the solute atoms reside only in the regular and interstitial

lattice positions, respectively. Then, taking into account equations (2), (4), (6) and (8), one can represent

equation (7) as follows:

js = c
p
s

[

β
p

is
x

p
s +βm

vs
cm

v

(

1− x
p
s

)

+α
p

Rs
x

p
s cm

v

]

−cm
s

[

βm
is

xm
s +β

p
vs

c
p
v

(

1− xm
s

)

+αm
Rs

xm
s c

p
v

]

. (9)
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The state of kinetic equilibrium at the interface is determined by the condition of solute balance

between the precipitate and the matrix:

j
eq
s = 0. (10)

Taking into account equation (9), one can find from equation (10) the relation between the equilibrium

solute and PDs concentrations at the interface:

c
m eq
s

c
p eq
s

=
β

p

is
x

p eq
s +

[

βm
vs

(

1− x
p eq
s

)

+α
p

Rs
x

p eq
s

]

c
m eq
v

βm
is

x
m eq
s +

[

β
p
vs

(

1− x
m eq
s

)

+αm
Rs

x
m eq
s

]

c
p eq
v

. (11)

Provided that the thermal equilibrium between the precipitate and the matrix holds (which is usu-

ally true for solids that exhibit high thermal conductivity), the conditions of kinetic and thermodynamic

equilibrium should be equivalent. Therefore, equation (11) is equivalent to the Gibbs-Thomson relation

for the equilibrium solute concentration near the interface:

c
m eq
s

(

rp

)

= c
m eq
s exp

(

a
/

rp

)

, (12)

where c
m eq
s is a thermodynamic equilibrium solubility, rp is the radius of the precipitate and

a = 2γω0

/

kBT (13)

is the Gibbs-Thomson parameter with a dimension of length. Here, γ is the coefficient of the surface ten-

sion at the interface, ω0 is the mean atomic volume, kB is the Boltzmann’s constant and T is temperature.

Now, we consider the problem of solute diffusion in the matrix near the spherical precipitate of ra-

dius rp. A steady-state solute concentration profile in the matrix is subjected to the following diffusion

equation:

div j m
s = 0; j m

s =−Dm
s ∇cm

s , (14)

where Dm
s is the solute diffusion coefficient in the matrix.

The normal component of the solute flux across the interface is given by equation (9). In the first

order in a deviation of the solute concentration at the interface from its kinetic equilibrium value (11),

equation (9) becomes

j m
s

(

rp

)

= Dm
s

[

c
m eq
s

(

rp

)

−cm
s

(

rp

)]/

l , (15)

where

l = Dm
s

/{

βm
is

x
m eq
s +

[

β
p
vs

(

1− x
m eq
s

)

+αm
Rs

x
m eq
s

]

c
p eq
v

}

(16)

is the model parameter with a dimension of length. One can notice a similarity between equation (15)

and the Ohm’s law. By this analogy, the parameter Dm
s /l can be considered as a “conductivity” of the

interface, which comprises the interstitial, vacancy and recombination mechanisms of mobility of solute

atoms.

One can consider the second boundary condition as follows:

cm
s (∞) = c̄m

s , (17)

where c̄m
s is an average concentration of single solute atoms (momomers) in the matrix.

The solution of the diffusion equation (14) with the boundary conditions, given by equations (15) and

(17), gives:

cm
s

(

rp

)

= c̄m
s + rp

[

c
m eq
s

(

rp

)

− c̄m
s

]/(

rp + l
)

. (18)

A total number N = 4πr 3
p

/

3ω0 of atoms entering the precipitate is subject to the following kinetic

equation:

dN
/

dt =−4πr 2
p js

(

rp

)

=−4πr 2
pDm

s

[

c
m eq
s

(

rp

)

−cm
s

(

rp

)]/

l . (19)
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This equation can be reformulated in terms of the rates of emission and absorption of solute atoms [i.e.,

the rates of direct and inverse reactions (1), (3) and (5)] at the interface in the following way:

dN
/

dt = wa −we , (20)

where

we = 4πr 2
pDm

s c
m eq
s

(

rp

)/

l ; (21)

wa = 4πr 2
pDm

s cm
s

(

rp

)/

l (22)

are respectively the rates of emission and absorption of solute atoms obtained by decomposition of the

right-hand side of equation (19) into the negative and positive parts.

Herein below, we study the case of homogeneous precipitation from a solid solution within the frame-

work of the Becker-Döring approach [7]. In further considerations it is convenient to change to a dimen-

sionless time variable

τ= t ·4πr0Dm
s c

m eq
s , (23)

where r0 = 3
p

3ω0/4π.

A distribution function g (N ,τ) of precipitates in the dimension space is subject to the next kinetic

(master) equation [7], valid for N > 1:

dg (N ,τ)
/

dτ= JN−1,N − JN ,N+1 ; (24)

JN−1,N = wa (N −1) g (N −1,τ)−we (N ) g (N ,τ) . (25)

As a boundary condition, the following expression is used:

g (Nmax,τ) = 0. (26)

Here, Nmax stands for the number of atoms in the biggest precipitate under consideration. It is assumed

that for all N Ê Nmax the distribution function is zero. According to Lifshitz and Slyozov [2], at the late

stage of the precipitation process, the value of Nmax grows linearly with time. The results presented

herein below in figures 2 and 3 are obtained with Nmax = 1012.

The system of equations (24) must be supplemented with an additional equation for the value

g (1,τ) = c̄m
s (τ)

/

c
m eq
s , (27)

in order to satisfy the law of conservation of the total amount of solute atoms q [see equation (35) below]:

dg (1,τ)
/

dτ=−
Nmax
∑

N=2

N dg (N ,τ)
/

dτ. (28)

From equations (21), (22), taking into account equations (12), (18) and time renormalization (23), one

finds:

we (N )=
3p

N 2

λ
exp

(

α
3p

N

)

; (29)

wa (N ) =
3p

N 2

λ
exp

(

α
3p

N

){

1+
[

g (1,τ) exp

(

−
α

3p
N

)

−1

]

λ

λ+ 3p
N

}

, (30)

where α= a
/

r0 and λ= l
/

r0 .
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Equations (29) and (30) for the rates of emission and absorption at the interface are the key result of

the presentmodel. They need to be compared to the corresponding equations derived in the CNT (see e.g.,

[4] and references therein), when the interface kinetics is taken into account. In the present notations,

the CNT expressions for the rates of emission and absorption are as follows:

wCNT
e (N )=

3p
N 2

λ+ 3p
N

exp

(

α
3p

N

)

; (31)

wCNT
a (N ) =

3p
N 2

λ+ 3p
N

g (1,τ) . (32)

From equation (32) one can see that wCNT
a = 0 for c̄m

s = 0, while, according to equation (18), the steady-

state concentration of solute atoms at the interface remains finite in this case: cm
s

(

rp

)

=
c

m eq
s

(

rp

)

rp

/(

rp + l
)

. It means that, once the solute atom has crossed the interface (via one elementary

jump), within the framework of CNT it has no chance to jump back. On the contrary, the present the-

ory considers reversible elementary acts at the interface [see equations (1) and (3)]. On the other hand,

from general speculations it follows that the rate of emission (“evaporation”) should be proportional to

the area of the interface, i.e., we ∝
3p

N 2. In the present model, this condition is satisfied for any N [see

equation (29)], while in CNT it is satisfied only for
3p

N ≪ λ [see equation (31)].Therefore, by neglect-

ing reversible elementary acts at the interface, CNT underestimates the rates of emission and absorption

of solute atoms. At the same time, the value dN
/

dτ = wa − we, which is determined by the diffusion-

controlled net solute flux in the matrix, is equal both in CNT and in this model. That is why both models

give the same result in the asymptotic coarsening regime, but differ in the range of ultrafine precipitates

(see figure 2 below). It should be noted that the results of this model are asymptotically equivalent to

those of the CNT for λ≫ 3p
N [cf. equations (29), (31) and (30), (32)]. Great values of the parameter λ cor-

respond to the interface-limited precipitation regime, when the “conductivity” of the interface is small

compared to the bulk one.

Under the condition of a detailed balance, when the flux of precipitates in the dimension space (25)

turns to zero for any N :

JN−1,N = 0, ∀N (33)

a stationary distribution function g0 (N ) is given by the expression:

g0 (N ) =







g0 (1) , N = 1;

g0 (1)
N
∏

i=2
wa (i −1)

/

we (i ) , N > 1.
(34)

Provided that limN→∞ g0 (N )= 0, the condition (33) may be satisfied in the range 0 É g0 (1) É 1, which

corresponds to the case of undersaturated and saturated solute concentrations [see equation (27)].

A total concentration of solute atoms in the matrix (expressed in the units of c
m eq
s ) can be calculated

as follows:

q =
Nmax
∑

N=1

N g (N ) . (35)

In the limiting case g∗
0 (1) = 1, corresponding to the saturated solute concentration, equation (35) with

g (N ) = g∗
0 (N ) can be utilized to calculate the total solubility limit, taking into account both the solute

monomers and heterophase fluctuations (subcritical precipitates).

Figure 1 shows the total solubility limit

q∗ =
Nmax
∑

N=1

N g∗
0 (N ) (36)

as a function of two dimensionless model parameters α and λ entering equations (29) and (30). From

figure 1 one can see that, within the present model, a contribution from heterophase fluctuations to
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Figure 1. (Color online) A total solubility limit q∗ (36) vs model parameters α and λ.

Figure 2. (Color online) A distribution of precipitates at a given time calculated within the framework of

CNT and this model.

Figure 3. (Color online) The concentration of precipitates as a function of time (37) calculated within the

framework of CNT and this model, together with the LSW asymptotic law τ−1.

the total solubility limit, depending on the values of the model parameters, may exceed the solubility of

monomers by several orders of magnitude.

Herein below, we compare the results of the present model for precipitation kinetics with those of

CNT, for the same values of solute concentration in the matrix q = 104 and the model parameters α = 3

and λ= 1. In each calculation, the homogeneous state of a solid solution (only monomers, no precipitates)
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is taken as an initial condition.

Figure 2 shows a solution of the system of equations (24), (28) at τ = 1010, with the rates of emission

and absorption, given by this model [equations (29), (30)] and CNT [equations (31), (32)]. The low-N steep

part of the curves describes heterophase fluctuations, while the high-N part describes the precipitates

that evolve according to the LSW theory. One can see that this model gives a much wider range of het-

erophase fluctuations than CNT does. At the same time, in the high-N range, both models yield identical

results. This result is in a qualitative agreement with several recent observations of subnanometer-sized

clusters formed during ageing in supersaturated Fe-Cu [8], [9] and Ni-Al [10] alloys.

Figure 3 shows the concentration of precipitates in the range Nmin É N É Nmax:

n (τ) =
Nmax
∑

N=Nmin

g (N ,τ) , (37)

where Nmin is a lower limit cutoff, practically set by the resolution limit of an observation instrument.

One can see that within the present model, the nucleation stage of the precipitation process occurs earlier

than within CNT, and at the coarsening stage, the asymptotic LSW power law n(τ) ∝ τ−1 is achieved

within the present model later than within CNT.

In summary, the presentmodel, based on the consideration of reversible elementary acts of migration

of point defects across the precipitate-matrix interface in a solid solution, allows for a direct derivation

of the rates of emission and absorption of solute atoms at the interface and, therefore, makes it possible

to study the kinetics of homogeneous precipitation from solid solutions. Compared with the classical

nucleation theory, this model predicts much stronger heterophase fluctuations and higher nucleation

rates. The results obtained apply to the kinetics of phase transformations in any other system where the

boundary condition of the type of equation (15) is applicable.
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Нова кiнетична модель осадження iз твердих розчинiв

О. Борисенко

Нацiональний науковий центр “Харкiвський фiзико-технiчний iнститут”, вул. Академiчна, 1, 61108,

Харкiв, Україна

В цiй моделi проведено розгляд оборотних елементарних актiв мiграцiї точкових дефектiв (мiжвузельних

атомiв та/або вакансiй) через мiжфазну границю видiлення-матриця, що дає змогу отримати рiвняння

для швидкостей вивiльнення та поглинання атомiв домiшки на границi. У порiвняннi з класичною тео-

рiєю нуклеацiї, ця модель передбачає значно сильнiшi гетерофазнi флуктуацiї та бiльшi швидкостi нукле-

ацiї. Проте асимптотично, для великих розмiрiв видiлень та довгого часу старiння, обидвi моделi дають

однаковi результати, що збiгаються з результатами теорiї Лiфшиця-Сльозова-Вагнера.

Ключовi слова: гомогенна нуклеацiя, кiнетика фазових перетворень, осадження, точковi дефекти,

мiжфазна границя
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