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This model considers reversible elementary acts of migration of point defects (interstitials and/or vacancies)
across the precipitate-matrix interface and enables one to derive equations for the rates of emission and ab-
sorption of solute atoms at the interface. The model predicts much stronger heterophase fluctuations and
higher nucleation rates than the classical nucleation theory does. However, asymptotically, for large precipitate
sizes and long ageing times, both models give the same results, being in agreement with the Lifshitz-Slyozov-
Wagner theory of coarsening.
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Quantitative studies of the kinetics of precipitation from solid solutions originate from the pioneering
work by Ostwald [E|]. The late stage of this process, called coarsening, is governed by the theory elaborated
by Lifshitz, Slyozov ] and Wagner IE] (LSW). At the same time, the general theory of precipitation is
mainly based on the classical nucleation theory (CNT), including its modifications and extensions (see
e.g., [4] and references therein), which is still debated in some of its aspects (see e.g., IB] and references
therein). In particular, one of the open questions is a method of determination of the rates of emission
and absorption in the master kinetic equation [E]. The present work is aimed at solving this problem.

This paper introduces a new phenomenological kinetic model for precipitation from solid solutions,
being an extension of the recently published model of homogeneous semicoherent interphase bound-
ary [6]. It considers the microscopic elementary acts of the reversible atomic rearrangements at the
precipitate-matrix interface mediated by point defects (PDs). This approach enables one to determine
the rates of emission and absorption in the master kinetic equation [see equations and below].

Consider an interphase boundary (Gibbs interface) between a precipitate consisting of one type of
atoms and a solution of these atoms in a solid inert matrix. Let the interface between the precipitate and
the matrix be coherent, i.e., most of the atomic planes be continuous across it. Since the bulk physical
properties of such a heterophase structure are discontinuous across the interface, the number density
(concentration) profiles of PDs are expected to be discontinuous as well. The PDs can penetrate across
the interface via thermal activation or some other mechanism. Therefore, the transfer of PDs across the
interface can be considered as a reversible surface chemical reaction.

A solute atom in the interstitial position located at one side of the interface can transfer to the other
side of the interface and vice versa. This process can be represented in the form of a reversible chemical
reaction:

i =il )
where i(sp denotes an interstitial solute atom in the precipitate (¢ = p) or in the matrix (¢ = m). In this case,

the rate of transitions, represented by equation (), in each direction, is proportional to the concentration
ci(‘: of the interstitials i in the corresponding phase. The normal component of the flux of solute atoms
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across the interface via the interstitial mechanism is as follows (hereinafter the normal unit vector is
supposed to be directed from the precipitate into the matrix):

=Brc -~ B @

ig 1S
,6;’: being a phenomenological transition kinetic coefficient for the solute interstitials in the corresponding
phase.

A solute atom located at a regular lattice site at one side of the interface can transfer to the neigh-
bouring vacant site at the other side of the interface and vice versa. This process can be represented in
the form of a reversible chemical reaction:

B+vm =10 +vP, 3

where IP is a solute atom at a regular lattice site of the precipitate; v™ is a vacant regular lattice site in
the matrix; I" is a solute atom at a regular lattice site of the matrix; vP is a vacant regular lattice site in
the precipitate. Therefore, the rate of transitions, represented by equation (@), in each direction, should
be bilinear in concentrations of the corresponding reagents. The normal component of the flux of solute
atoms across the interface via the vacancy mechanism is as follows:

ﬁ\I}: 1p v ﬁvscl 4

Here, cp is the concentration of solute atoms that belong to the regular lattice sites of the precipitate, ¢ is
the concentratlon of vacancies in the matrix, c is the concentration of solute atoms at the regular lattice
sites of the matrix, ¢} is the concentration of vacancies in the precipitate and ,BVS is a phenomenological
transition kinetic coefficient for vacancies in the corresponding phase.

An interstitial atom located at one side of the interface can recombine with a vacancy located at the
other side:

v =17 i 1. (5)

These are irreversible reactions because an energy threshold for production of the Frenkel pairs is usu-
ally large. The normal component of the flux of solute atoms via the recombination mechanism () is as
follows:

Jre = ag cpcm—ocﬁ1 cmcf,’, (6)
where aﬁ is a phenomenological recombination kinetic coefficient in the corresponding phase.
S

The total flux of solute atoms across the interface is a sum of the contributions given by equations @,

(@ and (©:
jS:jis+jVs+sz‘ (7)

A total concentration of solute atoms in the corresponding phase consists of the concentrations of the
atoms in both the interstitial and regular positions: ¢! = c‘p + c . One can consider the following relations
between the concentrations of solute atoms in different lattlce positions:

< =x¥c?; clfz(l—x;p)c;p, 8)

where x;p is a dimensionless constant taking its value from the range 0 < x;p < 1. The lower and upper

limiting values correspond to the cases when the solute atoms reside only in the regular and interstitial
lattice positions, respectively. Then, taking into account equations (2), @, (€ and (8), one can represent
equation (7) as follows:

js=cP ,Bf + By S xs)+aRxS m]—c [ﬁmx +,3vsz( )+a§“xmcg] 9)
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The state of kinetic equilibrium at the interface is determined by the condition of solute balance
between the precipitate and the matrix:

jst=o. (10)

Taking into account equation (@, one can find from equation the relation between the equilibrium
solute and PDs concentrations at the interface:

p.ped  [om pedqy, p .peq| meq
C;neq_ﬁisxs +[,6Vs(l—xS ) +ag x ]cv

P e

. an
m e m e m e e
B e [ B0 (1- 2 %) + a2 9] o

Provided that the thermal equilibrium between the precipitate and the matrix holds (which is usu-
ally true for solids that exhibit high thermal conductivity), the conditions of kinetic and thermodynamic
equilibrium should be equivalent. Therefore, equation (1) is equivalent to the Gibbs-Thomson relation
for the equilibrium solute concentration near the interface:

m eq

cs “Urp)=c5 “exp(a/rp), (12)

where ;" “? is a thermodynamic equilibrium solubility, rp, is the radius of the precipitate and
a=2ywo/ksT (13)

is the Gibbs-Thomson parameter with a dimension of length. Here, vy is the coefficient of the surface ten-
sion at the interface, wg is the mean atomic volume, kg is the Boltzmann’s constant and 7 is temperature.

Now, we consider the problem of solute diffusion in the matrix near the spherical precipitate of ra-
dius rp. A steady-state solute concentration profile in the matrix is subjected to the following diffusion
equation:

divj" = 0; j=-DIVced, (14)

where D" is the solute diffusion coefficient in the matrix.

The normal component of the solute flux across the interface is given by equation @. In the first
order in a deviation of the solute concentration at the interface from its kinetic equilibrium value (1),
equation (@ becomes

B (rp) = DS [ * (1) = 5" (rp) ] /1, (15)
where
lzDén/{ﬁiTx;n Ay [,658 (1-x"Y) +ag x" eq] c? eq} (16)

is the model parameter with a dimension of length. One can notice a similarity between equation
and the Ohm’s law. By this analogy, the parameter DY'/! can be considered as a “conductivity” of the
interface, which comprises the interstitial, vacancy and recombination mechanisms of mobility of solute
atoms.

One can consider the second boundary condition as follows:

¢ (00) = ¢y 17

where ¢} is an average concentration of single solute atoms (momomers) in the matrix.
The solution of the diffusion equation (I4) with the boundary conditions, given by equations and
@D, gives:

C;n(rp)zéén"'rp[cén eq(rp)_één]/(rp"'l)- (18)

A total number N = 4ﬂr§ / 3wy of atoms entering the precipitate is subject to the following kinetic
equation:

dN/dt =—4nr} js(rp) = —4nry DR [ “ (rp) — & (rp)] /1. (19)
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This equation can be reformulated in terms of the rates of emission and absorption of solute atoms [i.e.,
the rates of direct and inverse reactions (1), ) and (3] at the interface in the following way:

dN/dt = w, — we, (20)

where
we =4nry DY e Y (rp) /15 (1)
wa = 4nry DR (rp) /1 (22)

are respectively the rates of emission and absorption of solute atoms obtained by decomposition of the
right-hand side of equation into the negative and positive parts.

Herein below, we study the case of homogeneous precipitation from a solid solution within the frame-
work of the Becker-Doring approach [7]. In further considerations it is convenient to change to a dimen-
sionless time variable

m eq

T=t-4nrgDgcs O, (23)

where ry = v/3wo/47.
A distribution function g (N, 1) of precipitates in the dimension space is subject to the next kinetic
(master) equation [ﬁ], valid for N > 1:

dg(N,7) /dt = Jn-1,§ = JN,N+1; (24)

IN-1,N = Wa(N=1)g(N=1,7) = we (N) g (N, 7). (25)
As a boundary condition, the following expression is used:
8 (Nmax, 7) = 0. (26)

Here, Nmax stands for the number of atoms in the biggest precipitate under consideration. It is assumed
that for all N = Npax the distribution function is zero. According to Lifshitz and Slyozov ], at the late
stage of the precipitation process, the value of Npnax grows linearly with time. The results presented
herein below in figuresZland[@ are obtained with Nyax = 10'2.

The system of equations (24) must be supplemented with an additional equation for the value

g7y =M (1) /cg" 9, X))

in order to satisfy the law of conservation of the total amount of solute atoms ¢ [see equation belowl]:

NmaX
dg,7)/dr=- ) Ndg(N,7)/dr. (28)
N=2

From equations 1), 22), taking into account equations (12}, and time renormalization @23), one
finds:

VN2 a
we (N) = N exp(%); (29)
\/3 N? a a A
wa(N) = —3 e"p(s—m){“ g“'”e"p(‘s—m)‘l m}’ 30

where a =a/rpand A=1/ry.
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Equations and for the rates of emission and absorption at the interface are the key result of
the present model. They need to be compared to the corresponding equations derived in the CNT (see e.g.,
[EI] and references therein), when the interface kinetics is taken into account. In the present notations,
the CNT expressions for the rates of emission and absorption are as follows:

3/_N2
WSNT(N)=m6XP(3Lm); 31
3/_N2
wiNT (N) = T 8. (32)

From equation one can see that wiNT = 0 for ™ = 0, while, according to equation @), the steady-

state concentration of solute atoms at the interface remains finite in this case: ¢®(rp) =
¢ “V(rp) rp/ (rp + ). It means that, once the solute atom has crossed the interface (via one elementary
jump), within the framework of CNT it has no chance to jump back. On the contrary, the present the-
ory considers reversible elementary acts at the interface [see equations (I) and @)]. On the other hand,
from general speculations it follows that the rate of emission (“evaporation”) should be proportional to
the area of the interface, i.e., we W In the present model, this condition is satisfied for any N [see
equation (9], while in CNT it is satisfied only for VN < A [see equation 3I)].Therefore, by neglect-
ing reversible elementary acts at the interface, CNT underestimates the rates of emission and absorption
of solute atoms. At the same time, the value dN / dr = w, — we, which is determined by the diffusion-
controlled net solute flux in the matrix, is equal both in CNT and in this model. That is why both models
give the same result in the asymptotic coarsening regime, but differ in the range of ultrafine precipitates
(see figure [21 below). It should be noted that the results of this model are asymptotically equivalent to
those of the CNT for A > v/N [cf. equations (29, 1) and B0, 32)]. Great values of the parameter A cor-
respond to the interface-limited precipitation regime, when the “conductivity” of the interface is small
compared to the bulk one.

Under the condition of a detailed balance, when the flux of precipitates in the dimension space
turns to zero for any N:

JN-1,v=0, VN (33)
a stationary distribution function gp (IV) is given by the expression:
&M, N=1

(N) = N .
5 g0 I wa =1 /we(®), N>1.
i=

(349

Provided that lim y—c o (V) = 0, the condition may be satisfied in the range 0 < g (1) < 1, which
corresponds to the case of undersaturated and saturated solute concentrations [see equation @2)].

A total concentration of solute atoms in the matrix (expressed in the units of c5" 1) can be calculated
as follows:

Nmax
q= ) Ng(N). (35)
N=1

In the limiting case g; (1) = 1, corresponding to the saturated solute concentration, equation with
g(N) = g(’)‘ (IN) can be utilized to calculate the total solubility limit, taking into account both the solute
monomers and heterophase fluctuations (subcritical precipitates).

Figure[Tlshows the total solubility limit

Nmax
q" =) Ng (N) (36)
N=1

as a function of two dimensionless model parameters a and A entering equations and @0). From
figure [T one can see that, within the present model, a contribution from heterophase fluctuations to
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Figure 2. (Color online) A distribution of precipitates at a given time calculated within the framework of

CNT and this model.
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Figure 3. (Color online) The concentration of precipitates as a function of time (37) calculated within the
1

framework of CNT and this model, together with the LSW asymptotic law 7~

the total solubility limit, depending on the values of the model parameters, may exceed the solubility of

monomers by several orders of magnitude.

Herein below, we compare the results of the present model for precipitation kinetics with those of
CNT, for the same values of solute concentration in the matrix g = 10* and the model parameters a = 3
and A = 1. In each calculation, the homogeneous state of a solid solution (only monomers, no precipitates)
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is taken as an initial condition.

Figure 21 shows a solution of the system of equations @24), at 7 = 10'°, with the rates of emission
and absorption, given by this model [equations @29), 0] and CNT [equations (31), (3Z)]. The low-N steep
part of the curves describes heterophase fluctuations, while the high-N part describes the precipitates
that evolve according to the LSW theory. One can see that this model gives a much wider range of het-
erophase fluctuations than CNT does. At the same time, in the high-N range, both models yield identical
results. This result is in a qualitative agreement with several recent observations of subnanometer-sized
clusters formed during ageing in supersaturated Fe-Cu ], [B] and Ni-Al [IE] alloys.

FigureBlshows the concentration of precipitates in the range Nmin < N < Npax:

Nmax

nm= Y gN,), (37
N=Nmin

where Npin is a lower limit cutoff, practically set by the resolution limit of an observation instrument.
One can see that within the present model, the nucleation stage of the precipitation process occurs earlier
than within CNT, and at the coarsening stage, the asymptotic LSW power law n(7) < 7~' is achieved
within the present model later than within CNT.

In summary, the present model, based on the consideration of reversible elementary acts of migration
of point defects across the precipitate-matrix interface in a solid solution, allows for a direct derivation
of the rates of emission and absorption of solute atoms at the interface and, therefore, makes it possible
to study the kinetics of homogeneous precipitation from solid solutions. Compared with the classical
nucleation theory, this model predicts much stronger heterophase fluctuations and higher nucleation
rates. The results obtained apply to the kinetics of phase transformations in any other system where the
boundary condition of the type of equation is applicable.
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HoBa KiHeTMYHa Mojesib ocag>XeHHA i3 TBEepAUX pOB‘-II/IHiB

O. bopuceHko

HauioHanbHWUIA HayKoBWIA LLeHTP “XapKiBCbKUA Gi3NKO-TeXHIYHWIA IHCTUTYT”, ByA. AKagemidHa, 1, 61108,
Xapkis, YkpaiHa

B Ui Mogeni npoBeseHO po3rasg 060poTHUX enemMeHTapHYX akTiB MirpaLii ToukoBux gedekTiB (MidKBY3eNbHMX
aTomiB Ta/abo BakaHCill) Yepe3 MixxdasHy rpaHVLIO0 BUAINEHHA-MATPULA, WO AA€ 3MOTY OTPUMATK PiBHAHHS
ANS WBWAKOCTEl BUBINBHEHHS Ta MOTIVHAHHA aTOMIB AOMILLKM Ha rpaHuLi. Y NMOpPiBHAHHI 3 K1acUYHOK Teo-
pi€to HykneaLji, us Mogenb nepesbayae 3Ha4YHO CUNbHILLI reTepodasHi GaykTyaLii Ta 6inbLui LWBWAKOCTI HyKe-
auii. MpoTe acMMNTOTUYHO, A5 BEKMX PO3MIPIiB BUAiNEHb Ta JOBroro yacy cTapiHHsa, obuasi Mogeni fatoTb
0/JHaKOBi pe3ynbTaTy, Lo 36iratoTbca 3 pesynbtatamu Teopii Jligpumua-Cnbo3oBa-BarHepa.

KntouvoBi cnoBa: romoreHHa Hykaeawisi, KiHeTKa ¢a3oBux nepeTBOPEeHb, 0CaAXKEHHS, TOYKOBI fepeKTy,
MiX@azHa rpaHnLs
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