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Using the group theory and the method of invariants, it is shown how the vibronic potential can be written in
a matrix form and the corresponding adiabatic potentials can be found. The molecule having D3, symmetry
is considered herein as an example. The symmetries of normal vibrations active in Jahn-Teller's effect were
defined. E-E vibronic interaction was considered to obtain vibronic potential energy in a matrix form and
thus the adiabatic potential. Significant differences are shown in the construction of a secular matrix D(K) for
defining a dispersion law for charge carriers in the crystals and the matrix of vibronic potential energy, which
depends on the normal coordinates of normal vibrations active in Jahn-Teller's effect. Dispersion law of charge
carriers in the vicinity of I" point of Brillouin zone of the crystal with ng symmetry was considered as an
example.
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1. Introduction

The method of invariants was originally introduced in electronic theory of solids by Luttinger [1]
while considering a Bloch’s electron in the magnetic field H. Luttinger presented a secular matrix
D(%, EI), (where k is a small vector which starts at a high symmetry point of the Brillouin zone with
wave vector ko) as a sum of invariants. These invariants are products of functions which depend on vec-
tor k components, intensity of magnetic field and operators of the momentum, which are presented in a
matrix form.

G.E. Pikus had formalized the construction of secular matrices for defining the dispersion laws for
charge carriers using group theory methods [2]. He had introduced a concept of basis matrices A;g, which
can be built using the irreducible representations of ko wave vector group.

Based on the group of ko wave vector, in the vicinity of which one considers the dispersion law for
charge carriers in [2], formulas were established to find irreducible representations 7. Basic matrices,
basic functions which depend on ky, ky, k., on the components of the strain tensor and on the compo-
nents of a magnetic field all transform according to above mentioned representations 7.

Basic matrixes which are used in constructing a secular matrix D(I;), form well known sets of ma-
trices. For a double degenerated energy state in the ko=0 point, basic matrices are the Pauli’s matrices
and the unit matrix of the second rank. Triple degenerated states have got a set of basic matrices which
correspond to momentum operators P/ for j = 3/2 written in a matrix form.

Thus, depending on the rank of a secular matrix D(7€), we have limited the number of the basic ma-
trices. Moreover, they can be the same for different irreducible representations which describe crystals
of different symmetry (space groups).

In this work we consider the possibility of applying the Pikus’ method of invariants, formalized in the
group theory terminology, in order to determine the vibronic potential energy and adiabatic potential in
highly symmetric molecules.
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We also analyze the similarities and differences in the construction of the vibronic potential energy
of molecules and the matrix of the dispersion law for a solid obtained in the center of the Brillouin zone.
For this reason, crystals with space group coinciding with the point group of a molecule are considered
herein.

2. Jahn-Teller’s effect

It is known that in highly symmetric molecules the Jahn-Teller’s effect [3] is often observed. This ef-
fect causes the reduction of symmetry of a molecule due to electron-vibronic interaction. This interaction
causes a split of a degenerated electronic term and a change of the configuration of a molecule. Energy
of a molecule, as a function of the distance between the cores, should have a minimum for a stable con-
figuration. Obviously, it means that the expansion of the energy of a molecule by small displacements of
cores has no linear terms. Generally speaking, such terms appear when the adiabatic approximation is
broken due to the so-called vibronic interaction.

Any complicated movement of cores of a molecule can be represented as a series of harmonic oscil-
lations. Each of those is described by normal coordinates. The number of normal coordinates is equal to
the number of degrees of freedom of a molecule.

Hamiltonian of an electronic subsystem now includes perturbational terms of vibronic potential en-
ergy. This potential energy is tailored by normal displacements as follows [4]:

U=) Vai(@Qai+ Y. Waipk(@)QuiQpr+---. 2.1

a,i a,i,fk

As it was mentioned above, the linear part is the most important in Jahn-Teller’s effect realization.
The first correction in perturbation theory is defined by a matrix element:

Voo =Zme‘I’;Vm(q)‘Pgdq, 2.2)
al

here, ¥,, ¥, are wave functions of a degenerate electron state and integration is performed over the
electronic configuration space {q}.

From the invariance of the Hamiltonian which includes the linear Q,; term it follows, that the co-
efficient V,, transforms by the elements of symmetry of a molecule in the same way as the normal
coordinates Qg; do. In formulas and , greek indices a, B, ... mean the number of irreducible
representation, and i and k — the number of base functions of this irreducible representation (taken in
the form of normal coordinates).

It is known that the secular equation, built on Hamiltonian D(K) in a matrix form, is used to find the
dispersion law E (k) for charge carriers in crystals.

The same procedure is used in case of a vibronic interaction in a molecule. Adiabatic potential can
be found after solving the secular equation that is built on a matrix of the vibronic potential energy
D(Qq,Qy,...). Here, Q1, Qy, ...— are normal displacements of vibrations which are active in Jahn-Taller’s
effect.

In general, the adiabatic potential predicts that there can be several stable and metastable configura-
tions of a molecule.

There are some fundamental differences in constructing the matrix D(k) and vibronic interaction
potential energy operator in a matrix form. The first one is the difference between coefficients at the
components of k wave vector and coefficients at the components of normal displacement.

The construction of D(k) matrix which is used to find E(k), is based on k - ﬁ-approximation and
on the method of perturbation theory [5]. It is obvious that coefficients of D(k) matrix are integrals of
S WIPyW;dr type. These expressions are of two kinds (let us denote them I and II, respectively) which
corresponds to the first and second perturbation corrections. In terms of type I, P, is a component of
the operator of an impulse, ¥; and ¥; are functions that describe the one degenerate electronic state, for
which the dispersion law E (k) is investigated, while in terms of type II, these functions belong to different
states of a crystal. This means that if we want to define whether the integral equals zero or not we should
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investigate the antisymmetrized product of an irreducible representation that is built only on functions
of this degenerate electromc state. Antisymmetrization is connected with the imaginary nature of the
momentum operator p (the perturbing part of k p-approximation includes the operator p) [50.

Potential energy of vibronic interaction (2.1) has two terms that are built on linear combinations of
components of normal displacements and their quadratic terms. Constructing the matrix of potential
energy of vibronic interaction [unlike the constructing of D(K)] requires only the first correction of per-
turbation theory. It means that the matrix element of D(K) matrix is built only on the eigenfunctions of
the chosen degenerate state. Potential energy is an operator of multiplication [Vy; and Wy; in equation
(2.1)]. Matrix elements built on the functions of a degenerate term of this operator will be evaluated by
constructing the character of a symmetrized product of irreducible representation that describes a degen-
erate electronic term. Irreducible representation (denoted by 75) for transformation of the components
of normal displacements and their quadratic combinations is determined by equation [6]:

1
o Z(;xs(g){[x(g)]zw(gz)} =1, 2.3)
ge

where y(g) is taken from the table of irreducible representations of a group of symmetry G of a molecule.

The above statements contain the main differences in constructing the matrix of vibronic potential
energy and the matrix D(%).

Furthermore, unlike the matrix of vibronic potential energy, in order to construct a secular matrix
which consists of a sum of invariants (the product of basic matrixes and functions that depend on the
components of a wave vector ky, ky, kz), one needs to consider not only equation but also the fol-
lowing formula [7, 8]:

1
n L X® {v@’-x(e?)}=1. (2.4)
g€

Equation gives us 7 for even combinations of components of a wave vector and equation (2.4)
provides 75 for odd combinations. Basic matrices that form the D(k) matrix are defined from the ob-
tained 7s.

3. Implementation of theory to ethane molecule

The symmetry of the ethane molecule is described by D3, point group which has two-dimensional
irreducible representations. These representations correspond to double degenerated electronic states
(see table[T). In a crystal belonging to a crystallographlc class with the same point symmetry D34, we will
consider the group of the wave vector ko = 0. In table[1 both types of notations (i.e., molecular and for
point I') for an irreducible representation are presented. Also in table 2] we present the matrices of two-
dimensional irreducible representations I's and I's in the real form (unlike the complex one presented in
the book by 0.V. Kovalev [9])).

Table 1. Characters of irreducible representations of a point group D3, and a group of wave vector k=0
for the space group D§ ;4 (denotation of elements of symmetry is in correspondence with 0.V. Kovalev,
hq3 is the operation of inversion [9]]).

[ 1| hs,hs | hg, hio, hiz | s | his, haz | hoo, haz, hos

Ag, I 1 1 1 1 1 1
Ay, T 1 1 1 -1 -1 -1
Bg, T3 1 1 -1 1 1 -1
By, Iy 1 1 -1 -1 -1 1
Eg, T 2 -1 0 2 -1 0
Ey Te 2 -1 0 -2 1 0
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Table 2. Irreducible representations I's (Eg) and I's (Ey,) written as real matrices.

n hs hs hg ho hia
1 V3 1 V3 1 V3 1 V3
T (1 0) 3 T3 3 3 (1 0) 3 3 3 3
> 0 1 i1 _v3 _1] |l -1 Vi1 Vil
2 2 2 2 2 2 2 2
his his hi7 hoo hyo hoy4
1 V3 1 V3 1 V3 1 V3
r (1 0) 3 T3 3 3 (1 0) 3 3 -3 3
> 0 1 i1 _v3 _1] |l -1 Vi1 Vil
2 2 2 2 2 2 2 2
n hs hs hg ho hia
1 V3 1 V3 1 V3 1 V3
T (1 0) 3 T3 -3 3 (1 0) 3 3 3 3
6 0 1 i1 _v3 _1] |l -1 Vi1 Vi1
2 2 2 2 2 2 2 2
his his hi7 hyo hoo ho4
1 V3 1 V3 1 V3 1 V3
T (—1 0) 2 2 2 T2 (—1 0) 2 T2 2 T2
Sl1lo -1)|{_v 1 Vi1 o 1| |(_vs _1 V31
2 2 2 2 2 2 2 2

Thus, we will consider the so-called E — E vibronic bonding, because the vibrational states will obvi-
ously transform according to the same irreducible representations of D3, group.

To construct the vibronic potential energy matrix of the ethane molecule (C,Hg) having a D34 point
symmetry we will define normal vibrations active in Jahn-Teller’s effect. These normal vibrations should
be chosen from the following set: 3A1g, 1A1y, 2A2y, 3Eg, 3E,, [4].

Calculations show that normal oscillations which are active in the Jahn-Teller’s effect have A;g and
Eg symmetry. Normal oscillation A;g should be excluded whereas the configuration of the molecule does
not change with such a normal displacement.

In case of the so-called Eg — Eg vibronic bonding in electron-vibrational interaction, there participate
a double degenerate electronic state with E; symmetry and a normal oscillation of the molecule with E,
symmetry .

Hence, the matrix of potential energy of vibronic interaction depends on two variables Q; and Q. It
can also include squared combinations of Q; and Q.. The method of projective operator was used to find
those squared combinations [10]. Calculations show that such combinations are functions Q% - Qg and
20Q1Qz.

The following matrices transform in accordance with representation Eg, i.e., basic matrixes o, and
0, Pauli’s matrices chosen from the set and the identity matrix of the second rank o;. Such a result is
gained after applying matrix transformation rules under symmetry elements.

One can get a D(Q1, Q2) matrix having built the invariants from basic matrices and functions

Loy o o 2 2
D(QLQZ):E(U (QI+Q3)o1+VQiox+ WQ1Qox+V Qo0+ W (Q7 —Q3)02, (3.1

here, V and W are coefficients of linear and quadratic parts of the operator of potential energy of vibronic
interaction, %wz (Qf + Qg) is potential energy of normal oscillation of a molecule which is described by
Eg representation, without getting vibronic interaction to account.

We should note that the same matrix of potential energy of vibronic interaction was obtained by us
in [11] for a molecule of methane (CH4) whose symmetry is described by the point group Cs,,.

Despite the identical matrices of vibronic potential energy, normal displacements Q; and Q» for sym-
metric molecule C,Hg and non-symmetric molecule CH, [11] differ significantly. The point is that normal
displacements Q; and Q- for C;Hg molecule are even functions, while in case of CH4 molecule they have
undefined parity. Even functions Q; and Q> are the base for irreducible representation Eg (I's) of a point
group D3,. In case of CH4 molecule (a point group C3,) Q; and Q; are the base for representation E (I'3).
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4. Constructing the adiabatic potential

It is known that adiabatic potential is defined by solving the secular equation constructed on the
matrix of vibronic potential energy. Adiabatic potential should reproduce the symmetry of a chosen
molecule. To fulfill this condition, one needs to replace the basic functions Q; and Q> of Eg represen-
tation with basic functions of an equivalent representation written in cartesian coordinates: x* — y?, 2xy.
Due to the fact that Cs, group does not include the operation of inversion, Cartesian coordinates x and y
can additionally be the base for representation E of this group (besides x* — y2 and 2xy).

Thanks to the symmetrical matching of Q; and Q. with functions x% - y2, 2xy, one can rewrite the
matrix of vibronic potential energy for D3, group in the form of a dependence on Cartesian coordinates.
Matrix elements of the above mentioned matrix are written as follows:

Dy = %wz (X +y%) +2Viy + W (x* + y* —6x°y%),
1
Dy = sz (X% +y%) —2Vyy - W (x* + y* - 6x%)7),
Dip = Doy = V (x* = y?) +2W (x* - y*) 2xy. 4.1)

Such a denotation of the matrix makes possible the transformation to polar coordinates: x = pcos¢,

y=psineg.
Having solved the secular equation obtained from D(p, ¢) matrix one gets the adiabatic potential:

24

€12(0,9) = +[Vp*+2VWp°sin6gp + szs]% . 4.2)
The presence of sin6¢ in the expression for adiabatic potential indicates the six minima in its structure
in contrast to the three minima in case of non-centrosymmetric molecule CHy [11]. The structure of adi-
abatic potential for the considered centrosymmetric molecule reflects its symmetry.

As a result of Jahn-Teller’s effect, the lowering of symmetry can occur in two ways: the loss of centre of
symmetry or the loss of elements of symmetry (rotations C3 and C§). Namely, the lowering of symmetry
occurs from D3, to Cs, group or from D3y to Cyj, group.

Let us consider constructing the secular matrix D(K) in the vicinity of E) =0 for a crystal having a
Dg 4 symmetry. We will choose an irreducible representation Eg (I's), that describes a degenerate energy
state. Such a choice is conditioned by the aim to analyze the similarities in a matrix of potential energy
of vibronic interaction of molecules and a secular matrix of the energy spectrum of a crystal. According
to Pikus’ method of invariants, as it was mentioned, one can find 7s-representation, according to which
the basic matrices as well as linear and square functions of the wave vector get transformed.

To find 7, the following equation is used [7]:

ns= Yy 1x(@Fxsg. (4.3)
gEGEO

Trial characters ys(g) are taken from the table of characters of a group of wave vector ko = 0 (table .
Calculation shows that ng # 0 only when 74 =1'1,I'3,I's.

Thus, we find that the basic matrices as well the f (%) functions get converted by representations I'y,
I3, Is.

There is another significant difference in constructing a D(Q1, Q2) matrix and a secular matrix D(K).
From the selection rules [equations and (2.4)] one gets different irreducible representations 75 =
I'1,I'3,T'5 that describe the functions and basic matrices of invariants on which D(7€) matrices are built. In
case of constructing the matrix of potential energy of vibronic interaction, only one normal displacement
responsible for the vibronic interaction of electronic and vibronic states is chosen out of all possible
normal displacements that were gained from selection rules of irreducible representations. In our case,
it is the Eg — Eg interaction.

We should note that irreducible representations 74, gained from equation (4.3) should be redis-
tributed to those that describe even and odd f (k) functions. We use equations and <b for this
purpose.
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Table 3. Matching the representations I'; and I's with f (k) functions and basic matrices included in con-
structing the invariants.

, %)
representatlon Y= 1 ‘ Y= 1 Als
r Bk | - b 3
1 0 0 1
Ts keks, kyk, | - (O _1), (1 0)

Calculations show that a symmetrical squared character of representation I's [equation (4.3)] includes
representations I'; and I's while antisymmetrical one includes I's representation. Thus, antisymmetrical
function of a wave vector should be transformed by I's representation, which is impossible (see table[T).

Using the method of projective operator, one gets combinations of components of a wave vector that
correspond to representations I'y and I's.

It is clear that functions kfc + ki, k§ and an identity matrix are transformed by I'; representation and
functions kyk. and kyk_ are the base for representation I's.

As it was shown before, in constructing the D(Qq, Q2) matrix, the basic matrices that are transformed
by representation Eg are o, and 0. As representation E matches I's, these matrices also correspond to
representation I'g.

The calculated functions and matrices included in invariants are presented in table[3]

Based on data from table|3] we construct a secular matrix D(%):

a(kZ2+ 2) + bKZ + ckk ckyk,

D(k) =
ckyk, a (k2 + k2] + bk - ckyk,

(4.4)

By solving a corresponding secular equation we obtain an expression for the dispersion law of charge
carriers in point ky = 0 for the state described by I's representation:

E(R) = a(k,% + ki) + D2+ \/2R2 (K24 K2). 4.5)

From equations and (4.5), we conclude that solutions of corresponding secular equations repro-
duce the point symmetry of the crystal and the molecule.

5. Conclusions

Thus, the secular matrix D(k) as well as the matrix of vibronic potential energy are built from the
sum of invariants. In both cases, each of these invariants is a product of the basis matrix (Pauli’s matrices
in our case) and the basis function which depends on corresponding variables.

In the case of a secular matrix, basis functions and basis matrices transform according to irreducible
representations, which form symmetrized and antisymmetrized squares of the irreducible representa-
tion connected with an active normal vibration or with a corresponding degenerated electronic term for
which the secular matrix is written down. Polynomials from which the basis functions are built are pow-
ers of wave vector’s components. This small wave vector originates from point in the Brillouin zone in
the vicinity of which one construct the dispersion law E(k).

In the case of vibronic potential energy construction, the basis matrices and functions are built solely
for irreducible representations which form a symmetrized square of the irreducible representation, de-
scribing the vibration which is active in Jahn-Teller’s effect. Corresponding basis functions are also built
on components of this vibration.
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In conclusion, we should note that the construction of vibronic potential energy and the adiabatic po-
tential can be achieved without using the method of invariants, solely by using the Clebsch-Gordan coef-
ficients [12]. A correct solution of the adiabatic potential construction problem by means of group theory
method and the method of invariants allows one to successfully apply adiabatic potentials for a quali-
tative explanation of a wide variety of phenomena connected with a vibronic interaction in molecules
and crystals. Moreover, the method of adiabatic potential construction can be adapted to the investiga-
tion of peculiarities of phase transitions in crystals with Jahn-Teller centers (for example, the CuInP,Sg
crystal [13]). The mentioned problem will be investigated in our next work.
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CninbHicTb i BiAMiIHHICTb Y N06YAOBI 3aKOHIB Ancnepcii HOCIiB
3apagy B HaniBNpoBiAHUKOBMX KpUCTanax i agiabaTu4yHnx
noTeHuianiB y Mmonekynax

C.A. Bepua, B.M. Pi3ak

JABH3 “Yxropoacbkuii HauioHanbHWUIA yHiBepcuTeT”, ByA. BonowwmHa, 54, 88000 Yxxropog, YkpaiHa

Y po6oTi nokasaHo K, BUKOPWCTOBYIOUMN TeOPETUKO-TPyrnoBriA MeTOZ i MeToZ iHBapiaHTiB, MOXHa ofepXaTtu
BIOPOHHWIA NOTeHLian, 3anncaHnii y MaTpPUYHOMY BUIAZI, Ta BigNOBIAHI agiabaTnyHi noTeHujiaan. B akocTi
npuKnagy pos3rnajacTbca Mosiekyna 3 cuMeTpieto Dgg. BU3HaueHo CMMETPit0 HOPMasIbHUX KOIMBaHb, aKTuB-
HUX B SIH-TennepiBcbkoMy edekTi. Po3rnsiHyto E — E Bi6POHHMIA 3B'A30K ANt OAepXXaHHS BiBPOHHOI noTeHLi-
anbHOI eHeprii y MaTpMYHOMY BUMISAI Ta afiabaTnyHWi noTeHLian. BkasaHo Ha iCTOTHI BiAMIHHOCTI y NobyA0Bi
ceKkynsapHoi MaTpuLi D(k) ANS 3HAXOKEHHS 3aKOHY AMcrepcii eneKTPOHHOro CnekTpy B KpMcTanax i MaTpuui
BiIBPOHHOI NOTeHLianbHOT eHeprii, 3a1eXHOI Bi HOPManbHVX KOOPANHAT aKTVBHOTO B AH-TeNNepiBCbKOMY ede-
KTi HOPManbHOIO KONMBAHHSA. B AKOCTi NpuKnagy po3rnafyeTbCs 3aKOH AMcnepcii HOCIB CTPYMY B OKOi TOUKM
I 30HU bpinntoeHa KpucTany 3 CUMETPIED D%d.

Knitouosi cnoBa: epext AHa-Tenniepa, MeTo4 iHBapiaHTIB, 3aKOH AVCNepCii, agiabatndHnii noTeHyian
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