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Using the self-consistent field lattice model, polymer concentration ¢p and chain length N (keeping the length
ratio of hydrophobic to hydrophilic blocks constant) the effects on temperature-dependent behavior of micelles
are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at
fixed ¢p, micelles occur at higher temperature. The variations of average volume fraction of stickers ¢¢, and
the lattice site numbers Néf., at the micellar cores with temperature are dependent on N and ¢ p, which demon-
strates that the aggregation of micelles depends on N and ¢p. Moreover, when ¢p is increased, firstly a peak
appears on the curve of specific heat Cy for unimer-micelle transition, and then in addition a primary peak,
the secondary peak, which results from the remicellization, is observed on the curve of Cy,. For a long chain, in
intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak
tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way
of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation
process.
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1. Introduction

Polymeric micelles constitute a unique class of nanomaterials having a typical core-shell morphol-
ogy. They are formed from amphiphilic block- or graft-copolymers in a selective solvent, where the non-
soluble parts self-assemble to form the core of the micelles and the soluble parts form the solvated shell.
The properties of micelle can be changed by the solution conditions such as concentration, temperature,
and chain architecture. Such self-assembly phenomena of amphiphilic molecules are of principal impor-
tance in many biological and industrial processes. Recently, self-assembled bolaamphiphile nanotubes
have been used as templates to produce metal-coated nanowires [1]. A detailed understanding of the
aggregation process is crucial to understand and eventually control their formation for the related appli-
cations of micelles.

The triblock copolymers, made up of poly(ethyleneoxide) (PEO) and poly(propyleneoxide) (PPO)
blocks, which are experimentally studied as amphiphilic molecules, have been the subject of intense
research over the last two decades due to their unique solution behavior [2] [3]. Furthermore, the ar-
rangement of the PPO and PEO blocks in the chain is the key factor affecting self-aggregation and phase
behavior of these copolymers, which are well documented in literature [3H8]. The temperature induced
aggregation behavior of triblock copolymers in aqueous solutions has received great attention during the
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recent decades due to their fundamental and practical importance [3}/5H9]. Compared with experimental
studies, however, related theoretical studies are few, especially to account for the effect of chain archi-
tecture. Han et al. [10] investigated the effects of the length of each hydrophobic end block and polymer
concentration on micellar aggregation in amphiphilic symmetric ABA triblock copolymer solutions. It is
found that the broadness of transition is affected by the length of hydrophobic end blocks (i.e., chain
length). However, in associative polymers [11], when the total length of hydrophilic blocks is decreased,
keeping the chain length constant, the broadness of transition concerned micelles increases. It is an obvi-
ous conclusion drawn that the broadness of the transition changes due to the length ratio of hydrophobic
to hydrophilic blocks. The chain length is an important parameter to understand the thermodynamics
of block copolymers in a selective solvent. In amphiphilic triblock copolymer solutions, however, the ef-
fect of chain length on micellar aggregation behavior has not been clarified so far, the length ratio of
hydrophobic to hydrophilic blocks remaining constant.

As a mesoscopic polymer theory, the self-consistent field theory (SCFT) has its origin from the field
theoretical approach by Edwards [12] and was explicitly adopted to deal with block copolymer structures
by Helfand [13]. In recent years, Matsen and Schick proposed a powerful numerical spectral method that
could be used to deal with complex microphases [14][15]. This method is accurate enough but requests a
prior knowledge of the symmetry of an ordered structure, which has hindered its application in predict-
ing microphases of complex copolymer structures. Subsequently, Drolet and Fredrickson suggested a new
combinatorial screening method [16} [17], which involves a direct implementation of SCFT in real space
in an adaptive arbitrary cell. This method proves to be very successful and can be applied to complex
copolymer melts. It has also been extended to predict the nanostructures of polymer-grafted nanopar-
ticles [18], which have potential applications in the design and synthesis of hierarchical materials. In
addition, SCFT allows us to investigate the aggregate morphology of amphiphilic block copolymers and
their blends in a dilute solution [19H22]. Recently, Matsen extends SCFT to treat diblock copolymers with
nongaussian chain of low molecular weight [23].

A lattice model is introduced to self-consistent mean-field theory to treat microphase separation for
rod-coil block copolymers [24H26]. In our previous papers [10}[11} 27} 28], we have used the SCFT lattice
model to study the phase behavior of physically associating polymer solutions. It is found that chain
architecture and polymer concentration are important factors which affect the property of temperature-
dependent aggregation behavior. Now, in amphiphilic ABA symmetric triblock copolymer solutions, we
study chain length and polymer concentration effects on aggregation behavior. It is found that although
the length ratio of hydrophobic to hydrophilic blocks remains constant, the increase in the aggregation
degree of micelles is also dependent on the chain length, and it is explained by the way of aggregation of
amphiphilic triblock copolymer.

2. Theory

This section briefly describes the self-consistent field theory (SCFT) lattice model for np amphiphilic
symmetric ABA triblock copolymers which are assumed to be incompressible. Each block molecule con-
sists of Ny nonsticker segments forming the middle B block and Ng; sticker segments forming each end
A block, distributed over a lattice. At the same time, n;, solvent molecules are placed on the vacant lattice
sites. Polymer monomers and solvent molecules have the same size and each occupies one lattice site.
The total number of lattice sites is N; = nj, + np N. The transfer matrix A is used to describe the polymer
chain, which depends only on the chain model used. We assume that

2.1

rs=ry_y 1/(z—1), otherwise.

A%~ ¥s-1 _ { 0, As = A1,
Here, r’ denotes the nearest neighboring site of r. ry and a; denote the position and bond orientation of
the s-th segment of the copolymer, respectively. a can be any of the allowed bond orientations depend-
ing on the lattice model used. z is the coordination number of the lattice. This means that the chain is
described as a random walk without a possibility of direct backfolding. Although self-intersections of a
chain are not permitted, the excluded volume effect is sufficiently taken into account [29]. G%s(r, s|1) is

23604-2



Polymer concentration and chain length effects

the end segment distribution function of the s-th segment of the chain. Following the scheme of Schen-
tiens and Leermakers [30], it is evaluated from the following recursive relation:

as — As—As—1 HAs5— I e
G (r,sIl)-G(r,s)r/ZaZ})LrS_rb,;lG 1, s= 1|1, (2.2)
=17

where G(r, s) is the free segment weighting factor and is expressed as

expl-ws(rs)], sest,

G(r,s):{ expl—wns(rs)l, SeEns.

The initial condition is G* (r,1|1) = G(r, 1) for all the values of a;. Y . ZaH means the summation over
—

all the possible positions and orientations of the (s — 1)-th segment of the chain. Another end segment

distribution function G%(r, s|N) is evaluated from the following recursive relation:

GH(r,sIN) = G(r,9) ) ) AL UG (1, s+1IN), (2.3)

Ie
I« s+l 'S
Toi1 s+1

with the initial condition G*¥ (r, N|N) = G(r, N) for all the values of a .
In this simulation, the free energy in the canonical ensemble F is defined as

Flwy,w-] :Z

1
. {—aﬁ (r)—w+ (r)} —npInQplws, wns] — npInQplwpl, 2.9
BT r L4y

where y is the Flory-Huggins interaction parameter in the solutions, which equals ﬁe, z is the coor-
dination number of the lattice used. Qy, is the partition function of a solvent molecule subjected to the
field wy(r) = w4 (r), which is defined as Qj, = nlhzr exp [— wp(1)]. Qp is the partition function of a non-
interaction polymer chain subjected to the fields ws(r) = w4 (r) —w-_(r) and wys(r) = w4 (r), which act on
sticker and nonsticky segments, respectively. Qp is expressed as Q, = NLL%Z ry Zay G¥V (1, NI1), where
ry and ay denote the position and orientation of the N-th segment of the chain, respectively. >, >4,
means the summation over all the possible positions and orientations of the N-th segment of the chain.
Minimization of the free energy function F with w_(r) and w,(r) leads to the following saddle point
equations:

w-(r) =2x¢pst(r), (2.5)
Gt (1) + s (1) + (1) =1, (2.6)
where 11 G% (1, s|]1)G% (1, s|N)
np s(r, s s(r, s
- _rr 2.7
o) = N 2 G Gr9 @7
and - hGe |
1 1np s(r, sI1)G*s (r, sIN)
=——-— 2.8
Pns(1) NL zQp sEZns;; G(r,s) @8

are the average numbers of sticker and nonsticky segments at r, respectively, and ¢ (r) = (1/N)(ny/ Q,)
x exp [— wy, (r)] is the average numbers of solvent molecules at r.

In our calculations, real space method is implemented to solve the SCFT equations in a cubic lattice
with periodic boundary conditions, which is similar to our previous paper [27]. The configuration from
SCFT equations is taken as a saddle point configuration. By comparing the free energies of the observed
states from different initial fields, a relative stability of the observed morphologies can be obtained.

3. Result and discussion

In our studies, the property of symmetric ABA triblock copolymers is characterized by three tunable
molecular parameters: y (The Flory-Huggins interaction parameter), N (The chain length of copolymer)
and Ng/ Nps (the length ratio of each hydrophobic end block to hydrophilic middle block). In this paper,
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Figure 1. The phase diagram for the amphiphilic symmetric ABA tribolck copolymers with different
chain length N. The boundary between homogenous solutions and micelle morphology is obtained. The
squares, triangles and diamonds correspond to the boundaries for N = 17,26, 34, respectively.

when the chain length is changed, the value of Ny / Nps(= 0.23) remains constant. The aggregation behav-
ior of micelle morphologies is focused when the length of copolymer is changed. Figure[I]shows the phase
diagram of the systems with different chain length IN. When y is increased, the unimer-micelle transition
occurs. At fixed N, the y value on micellar boundary increases with decreasing ¢». When N is increased,
at fixed ¢p, the y value on micellar boundary shifts to a small value. It is noted that although the length
ratio of each hydrophobic end block to hydrophilic middle block remains constant, the increase in the
chain length of copolymer is also favorable to the occurrence of micelles in the system.

In order to demonstrate the effects of the chain length N and polymer concentration ¢p on aggrega-
tion of micelles, the variations of the average volume fraction of stickers ¢2, and the lattice site numbers
N at the micellar cores (¢S, = 0.5) with y, (the y deviation from micellar boundary) in various polymer
concentrations, for N = 26 and N = 34, are presented in figure [2| (a) and figure [4] (a), respectively. For
N =26, at (Z)p =0.1, J)io, as well as the corresponding N(l:f), smoothly rises with ¥, and then remains con-
stant. When y, = 0.5, Né?, does not change with y,, and the aggregation degree of micelles strengthens
from the increase in ¢$,. When ¢p is increased the change of ¢S, with y, is not monotonous. At ¢p = 0.3
and ¢p = 0.5, when y, is increased, ¢3, firstly rises, and then a ¢S, -lower region occurs in the range of
¥r» and ¢S, finally tends to be constant. The corresponding Néf) firstly rises, and then a jump occurs at the
onset of the above lower region. When ¢p = 0.8, ¢, always goes up with y,, going with the slight surge
of NI It is seen that, at intermediate concentrations, when y, > 1.1, micelles dissolve and remicellize,
which is demonstrated by a decrease of the average volume fraction of stickers at micellar core with in-
creasing from y, = 1.3 to y, = 1.4 (see figure3). This can accelerate the further aggregation of micelles.
At high concentrations, the behavior of micellar dissolution and remicellization is restrained. Only a few
micelles dissolve to strengthen the aggregation degree of micelles. It is shown that the way of an increase
in aggregation degree of micelles depends on polymer concentration. It is noted that when y, = 0.6, ¢2,
at fixed y, decreases with an increase in ¢p for N = 26.

For N = 34 (see ﬁgure@(a)), when polymer concentration (¢p = 0.1 and 0.3) is not high, the tendencies
of ¢, and N to y, are similar to those of N = 26. At intermediate and high polymer concentrations,
they are different from those of N = 26. When ¢p = 0.5, ¢, and N always smoothly increase with . At
¢p = 0.8, 5, always smoothly increase with y,, but Néf, goes down slowly with y,.Itis demonstrated that
micelles almost do not dissolve at ¢p = 0.5. Consequently, the micellar further aggregation is restrained
in a way near the micellar boundary. ¢, at ¢, = 0.5 is larger than that of ¢, = 0.8 until y, > 1.5, which
is larger from the case of N = 26. It is demonstrated that, at intermediate and high concentrations, the
further aggregation of micelles is markedly affected by the increase in V.

The heat capacity is an important thermodynamic signature to test the occurrence of a phase tran-
sition in a system. The shape of specific heat peak may also be a characteristic of transition. [11}[31]. In
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Figure 2. (Color online) The variations of average volume fractions of stickers ¢t and lattice site num-
bers N%% at the micellar cores in different amphiphilic ABA tribolck copolymers with the y deviation
from micellar boundary y, for various ¢p at N = 26 is presented in figure [2| (a). The open and solid,
open and solid triangles, open and solid diamonds, and open and solid hexagons denote the ¢t and
Né% for ¢p = 0.8,0.5,0.3,0.1, respectively; The changes of heat capacity for different ¢p in figure [2[(a)
with y, are shown in figure [2[ (b). The squares, triangles, diamonds and hexagons denote the case of
¢p =0.8,0.5,0.3,0.1, respectively.

this work, the heat capacity per site of amphiphilic symmetric ABA triblock copolymers is expressed as
(in the unit of kg):

_(9Y _ 1 20 2)
= (57, = (50 o

The Cy(x,) curves for the unimer-micelle transition in various (,Bp at N =26 and N = 34 are shown in
figure|2|(b) and figure 4| (b), respectively. For unimer-micelle transition, an asymmetric specific heat peak
appears. For N = 26, when ¢p = 0.1, there is only a peak on Cy(y,) curves. when ¢p is increased, a
primary and a secondary peaks, are observed as shown in figure |2|(at intermediate and high concentra-
tions). When ¢p = 0.3 and 0.5, the primary peak is higher than the corresponding secondary peak. When
¢p = 0.8, a primary and two secondary peaks occur, and one of them is nearly as high as the primary
peak. The primary and secondary peaks tend to be similar. The occurrence of the secondary peak is ac-
cording to the saltation of the y, curves of the average volume fraction of stickers ¢, and the lattice site
numbers Néf) at the micellar cores. Ignoring the secondary peak, the specific heat peak becomes broad
with increasing ¢p. For N = 34, when polymer concentration is low, the peak is narrow and similar to the
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Figure 3. (Color online) The distributions of the numbers of micellar core sites with ¢, at ¢p = 0.3 and
N = 26. The squares, triangles, diamonds and pentacles correspond to y, = 0.7, 1.3, 1.4, 2.4, respectively.

corresponding case of N = 26. When ¢p is increased, the peak shape changes and the peak also becomes
broad. With increasing (I_)p, the maximum of Cy shifts to a big y, and the curves of Cy(y,) tend to be
not smooth, thus the broad peak seems to be a primary peak. For a long chain, the peak shape changes
markedly at intermediate and high concentrations.

When temperature drops to a certain extent, micelles appear, and with a further decrease in tem-
perature the aggregation degree of micellar cores markedly strengthens. It is indicated above that the
temperature-dependent aggregation behavior of micelles depends on polymer concentration and the
chain length. The micellization of hydrophobic end blocks of triblock copolymer can be considered in
the following ways. One is that both end blocks of each individual molecule could be incorporated into
the same core, the other is that the two hydrophobic ends of triblock copolymer could be incorporated
into two adjacent micelles. For a short chain, atlow concentration, the first micellization way is dominant.
When polymer concentration is increased, the possibility of the two hydrophobic ends of triblock copoly-
mer to be incorporated into two adjacent micelles will rise markedly. At the same time, the aggregation
degree of micelles on micellar boundary tends to decrease. Therefore, at intermediate concentrations,
the further micellization of triblock copolymers is delayed for a while due to the correlations from chain
connection among micelles. When temperature is decreased to some extent, many micelles will be dis-
solved, and then remicellize. On remicellization, the distribution width of the volume fraction of stickers
at micellar cores increases which is different from the general variation of distribution for volume frac-
tion of stickers at micellar cores with y,. At the same time, the relationship among the micelles becomes
stronger, as shown in figure[5] At high concentrations, the correlations among micelles strengthens com-
pared with intermediate concentrations, only a few micelles dissolve and some new micelles form, which
is demonstrated by keeping the tendency of ¢ (x,) to increase and the surge of Nj(x,) with y,. For a
long chain, when concentration is low, the case is similar to that of a short chain. When the polymer
concentration is increased, the chain length effect emerges. The two hydrophobic ends of triblock copoly-
mer will be almost absolutely incorporated into two adjacent micelles or small aggregates (¢?, < 0.5 in
figure . When ¢p = 0.5, quite a few small aggregates form. The increase in aggregation degree of mi-
celles is caused by dissolution of small aggregates, and thus the corresponding Néf, does not surge. At
high concentrations, micelles form easily, and the quantity of small aggregates decreases notably. Thus,
the further aggregation of micelles results from the dissolution of a few micelles. In summary, at interme-
diate concentrations for a short chain, the increase in aggregation degree of micelles is by its dissolution
and remicellization. When polymer concentration or chain length is increased, the way of dissolution
and remicellization is restrained, and thus the temperature-dependent aggregation behavior of micelles
is changed.

In the end of paper, the validity of self-consistent field theory for the above results should be illu-
minated. Capture can be an essential feature for the accounted effect of polymer concentration ¢p and
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Figure 4. (Color online) The variations of the average volume fractions of stickers (Z)S( and lattice site
numbers Né% at the micellar cores in different amphiphilic symmetric ABA tribolck copolymers with the
x deviation from micellar boundary y r, for various ¢p at N = 34 is presented in ﬁgure(a). The open and
solid squares, open and solid triangles, open and solid diamonds, and open and solid hexagons denote
the ¢t and NS for ¢p = 0.8, 0.5, 0.3, 0.1, respectively; The changes of heat capacity for different ¢p in
figure 4 (a) with x, is shown in figure 4 (b). The squares, triangles, diamonds and hexagons denote the
case of pp =0.8, 0.5, 0.3, 0.1, respectively.

chain length N. The chain accounted in the work should belong to gaussian chain. Using a self-consistent
field lattice model, the phase diagram of coil-coil diblock copolymers for N = 20 in the three dimension
space [24] is consistent with the Matsen-Schick phase diagram. [14], and the results for the solution of
homopolymer length N = 30 in a two dimensional square lattice is also in reasonable agreement with
the theoretical prediction [27]. Furthermore, the effect of relative chain length is also accounted for poly-
mer blends [15]. The above effects from chain length N =26 and N = 34 should be reasonable. SCFT is
extensively applied to the study of the phase behavior of dilute amphiphilic block copolymer solutions,
and the obtained results at ¢p = 0.1 have been proved by experimental observations [22]. The specific
heat peak for the transition concerned with micelles is also calculated in physically associating polymer
solutions [27], and the effect of concentration on specific heat peak (not shown) is in reasonable agree-
ment with that of the related system [32]. Therefore, the concentration effect accounted for in the work
by self-consistent field theory is reasonably qualitative.
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Figure 5. (Color online) The cross sections of the system are presented in figure [5 Figure[5|(a) and (b),
which demonstrate the changes concerned with remicelliztion, correspond to the cases of y, = 1.3 and
Xr = 1.4, respectively, for ¢p = 0.3 and N = 26.

4. Conclusion and summary

Using the self-consistent field lattice model, polymer concentration ¢p and the chain length N (the
length ratio of hydrophobic to hydrophilic blocks remains constant), the effects on the aggregation be-
havior of micelles are studied in amphiphilic symmetric ABA triblock copolymer solutions. When N is
increased, at fixed ¢p, micelles occur at a higher temperature. The variations of the average volume frac-
tion of stickers ¢, and the lattice site numbers N at the micellar cores with temperature depend on
N and ¢p, which is demonstrated by the change of the specific heat peak. For a short chain, when ¢p is
increased, firstly a peak appears on the curve of Cy for the micellar appearance, and then, in addition
to a primary peak, the secondary peak is observed. For a long chain, in intermediate and high concen-
tration regimes, the shape of a specific heat peak changes markedly, and it tends to a broader primary
peak, which is explained by the aggregation way of amphiphilic triblock copolymer. For a short chain, at
intermediate concentrations, the way of two hydrophobic ends of triblock copolymer to be incorporated
into two adjacent micelles is dominant. Therefore, the aggregation degree of the micelles increases by
its dissolution and remicellization. When polymer concentration or chain length is increased, the way of
dissolution and remicellization is restrained, and thus the temperature-dependent aggregation behavior
of the micelles changes.
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Camoysropa)xeHe TeOpeTUKO-N0/IbOBE MOAENI0OBaHHSA
aMPiPinbHNX TPN6/I0YHUX KOMONIMEPHUX PO3UYMHIB:
edpeKTn KOHLUeHTpaLii Ta AOBXXUHU NaHLora nosimepis

K.-T. FaH, M.-T. Ma

YHiBepcuTeT HayKu | TexHOAIOrii BHYTpiWwHbLOT MoHronii, baoty 014010, Kutali

BUKOPWCTOBYIOUM CaMOY3roJXKeHy NONLOBY IPaTKoBY MoAe/b, BUBUAOTLCA edeKTU KOHUeHTpauii ¢p i AoB-
XWHW naHutora N nonimepa (npy ¢ikcoBaHOMY BiHOLLEHHI JOBXWH rigpodobHuX i rigpodinbHMx 610KiB) Ha
TemnepaTtypo-3anexHy nosegiHky mMiuen B aMeidpinbHMNX cumeTpryHnX ABA TpMBA0UHUX KOMONIMEPHUX PO34YN-
Hax. AKLLO AOBXMHa NaHLora 3pocTac, Npy GpikcoBaHOMY ¢ p, MiLlenn yTBOPIOKOTLCA NpU BULLLY TemnepaTypi.
3MiHa cepeHbOi 06'eMHOI A0Ni CTUKepiB qﬁﬁo Ta umcna By3niB rpaTku NE, 3 TemMnepaTyporo Npu MiLleNpHUX KO-
pax 3anexatb Bif N i ¢p, L0 BKa3ye Ha 3anexHicTb arperauii miyen Big N i ¢pp. Kpim Toro, Ko ¢pp 3pocTae,
cnoyatky nik BUHMKAE Ha KpuBIi nuTomoi TennoemHocti Cyy Ana nepexojy MOHOMep-Milena, i NoTiM Aoja-
TKOBO CnocTapiraoTbcs Ha KpuBid Cyy OCHOBHMIA MiK, BTOPUHHUIA NiK, SiKi € pe3ynbTaToM pemivenisadii. Ans
[lOBroro laHLora npun pexviMax NPoOMiKHMX i BUCOKUX KOHLEHTPALLii 3Ha4YHO 3MiHI0ETLCA popMa NiKy NUTOMOI
TeNA0EMHOCTI, i NiK NPAMYE A0 LWMpLIoro niky. HakiHewb, arperayiiiHa noseAiHka MiLen NOSCHIOETLCS CMOCOo-
60M arperauii amidinbHoro TpubnoyHoro kononiMepa. OTpMMaHi pesynbTaTh € KOPUCHUMW ANS PO3YMiHHS
npotiecy arperawii miien.

KnrouoBi cnoBa: miyena, camoy3srogxeHe noae, am@ipinbHui kornonimep
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