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A new method of obtaining the interaction Hamiltonian of phonons at superfluid helium-solid interface is pro-

posed in the work. Equations of hydrodynamic variables are obtained in terms of second quantization if helium

occupies a half-space. The contributions of all processes to the heat flux from solid to superfluid helium are cal-

culated based on the obtained Hamiltonian. The angular distribution of phonons emitted by a solid is found in

different processes. It is shown that all the exit angles of superfuild helium phonons are allowed. The obtained

results are compared with experimental data and with previous theoretical works.
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1. Introduction

Superfluid helium has a whole number of unique phenomena that take place at superfluid helium-

solid interface. One of such phenomena is the thermal boundary resistance discovered by Kapitza P.L. [1].

It was discovered that there is a constant temperature difference between the contacting solid and super-

fluid helium when a solid emits heat. Since then, this phenomenon has been studied by different authors

because so far there is no satisfactory agreement between experimental data and theoretical research.

The first theoretical explanation of Kapitza gap was given by Khalatnikov [2–4]. According to works

[2–4], the heat flow occurs due to incident phonons in both superfluid helium and a solid. These phonons

with difficulty pass through the interface due to acoustic mismatch of the media and due to the small-

ness of incident phonon angle in liquid helium above which total internal reflection occurs. Transition

probability of phonon from onemedia to another which was obtained in [2–4] is proportional to interface

impedance ½
L




L

/½

S




S

. Critical angle is equal to 

L

/


S

, where 

L

and 

S

are the velocities of sound of liquid

and solid, respectively, ½
L

and ½
S

are densities of liquid and solid, respectively.

The results of many experiments obtained by various authors significantly differed from the calcu-

lated values of theories [2–4]. Particularly, experimental values of heat transfer rate of superfluid helium-

solid interface are more often by two orders of magnitude larger than theoretical values in works [2–4].

Large experimental values of heat transfer rate mean that there are other mechanisms of heat trans-

fer between superfluid helium and solid along with the so-called acoustic channel that was considered in

[2–4]. To our best knowledge, all theoretical works dedicated to the the search for such mechanisms were

based on the fact that the interface with superfluid helium surface of solid was not perfectly smooth and

clean and contained roughness, various defects and monolayers.

The imperfection of an interface leads to the assumption that phonons could pass into a solid at any

incident angles and not just in a narrow cone with a solid angle
(



L

/


S

)

2 which was formed by a critical

angle following from Khalatnikov theory [2–4]. In this case, heat transfer rate may increase by
(



S

/


L

)

2

times. This value is of the order of 102 for the superfluid helium-solid interface. This fact can reconcile

the theory with experiments.

In this regard, numerous experiments were carried out by different authors in which the role of

a solid surface in heat transfer between solid and superfluid helium was investigated. The results of
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such experiments are given in the review [5] and in later experimental works [6–9]. These experiments

indicated that the condition of a solid surface does substantially alter the heat transfer coefficient so that

it becomes larger than only an order of magnitude of the coefficient calculated in theory [2–4].

In order to understand the Kapitza gap problem, direct experiments [10–14] were performed inwhich

energy and angular distribution of the emitted phonons by a solid in cold (T Ç 100 mK) superfluid helium

were measured. In these experiments, phonon beams were emitted from a heated solid to superfluid

helium that was almost at zero temperature (i.e., superfluid vacuum). As the heaters there were used

both conductive metal films and cleaved surfaces of crystals that were almost perfect surfaces. It was

shown in works [10–14] that even with almost perfect solid surface there are two channels of phonon

transfer from solid to superfluid helium which are demonstrated in figure 1

Figure 1. Angular distribution of heat flow from heated solid to superfluid that is observed in [10–14].

The first channel formed a sharp peak of phonons emitted in a narrow cone of angles whose axis was

normal to the solid surface (see figure 1). The observed value in [11] of the angle of the cone coincideswith

the calculated values for different solids in the acoustic mismatch theorywhichwas based onKhalatnikov

theory [2–4]. This channel was called the acoustic channel.

The second channel, the so-called background channel, contained phonons emitted in all directions.

Moreover, it was shown that the contribution of a background channel was an order of magnitude larger

than the contribution of an acoustic channel during experimental data analysis.

In work [15] which was performed based on the results of experimental work [16] it was shown that

the phonons emitted by a heated and rather rough gold surface in superfluid heliumwere also distributed

through two channels observed in [10–14].

Accordingly, a question has arisen: what is the physical reason for the existence of such a large back-

ground channel at almost perfect surface solid? Great hope to explain the existence of the background

channel and large observed values of the heat transfer coefficient in Kapitza gap experiments was en-

trusted to the processes in which there was a different number of phonons in the initial and the final

states. These are the so-called inelastic interaction processes. A possible diagram of inelastic process can

be found in the experimental work [12], where one phonon of a solid transforms into two phonons of a

liquid that could pass at any angles to the interface. One of the possible inelastic processes that differs

from the one illustrated in [12] was considered by Khalatnikov [4] who showed that the contribution of

this process was relatively small. It is worth pointing out that the inelastic process considered in [4] does

not contribute to the heat flux from solid to superfluid helium which is almost at zero temperature.

In this regard, consideration of all possible inelastic processes turns out to be relevant as well as the

calculation of their contribution to the background channel. This is the focus of the present work.

The first attempts to solve the above mentioned problem was made in works [17, 18] in which it was

suggested to create a microscopical theory of Kapitza gap at the He II-solid interface. However, it was a

failure to create a self-consistent approach capable of yielding the results in accord with the acoustic the-

ory [2–4] corresponding to elastic phonon processes. This is apparently connected with the calculations
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that were not brought to final analytical formulas and to specific numerical values in works [17] and [18].

The original results of constructing a unified self-consistent theory describing both elastic and in-

elastic processes at the superfluid helium-solid interface were presented at the QFS2012 conference1 by

the authors of this paper. These first results were published in the materials of the conference [19]. The

contribution of inelastic processes to Kapitza gap was considered in the work [20].

The main goal of this paper is to investigate all possible inelastic processes that contribute to the

heat flow from the solid to the superfluid helium and to consider the angular distribution of the emitted

phonons in different processes.

2. Interaction Hamiltonian of helium phonons with an oscillating sur-

face of a solid

For the interaction Hamiltonian of helium phonons with an oscillating surface of a solid, we calculate

the density of the energy of superfluid helium in the presence of an oscillating interface. The obtained

Hamiltonianwill essentially differ from the Hamiltonians used in works [4, 17, 18] andwill yield a correct

result regarding the heat flow due to the elastic process that is equal to the result obtained in [3].

Oscillations of interface excite in helium oscillations of density ½
i

and velocity v

i

along with the in-

trinsic oscillations of ½ and v in the liquid. In this case, the interaction energy is
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, (2.1)

where E
½

is the density functional.

To simplify the problem, we restrict ourselves to longitudinal phonons in the solid. The inclusion of

transverse phonons does not cause fundamental difficulties, but all the calculations become more cum-

bersome and lead to the appearance of a factor F in the final calculations that depends on the elastic

constants of the solid. F varies over small limits and remains of the order of 2 for different solids.

Now we reduce the equation (2.1) to the form of an expansion accurate to cubic terms in the small

parameters ½
i

, v
i

, ½ and v:
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where u Æ
½
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is the Gruneisen constant, which equals 2.84 for helium,
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is the sum of zero and the first terms of the expansion which does not contribute to the interaction of the

liquid and the solid, ½
t

Æ ½

L

Å½Å½

i

.

Then, the contribution to the interaction of helium with a wall will yield a term that simultaneously

contains parameters characterizing both the solid and the liquid. In this case, the interaction energy is as

follows:

E
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. (2.4)

The first two terms in the equation (2.4) describe the two-phonon interactions and the remaining

terms describe the three-phonon interactions (in terms of secondary quantization).

In this problem, the velocity and density of solid and liquid phonons are specified for a half space,

whereas there are problems expanding them in Fourier series and with the subsequent use of the second

quantization method. The following method for analytic continuation of the solutions is proposed to

overcome these difficulties andmake it possible to use the Fourier expansion and secondary quantization.

1QFS2012: International Conference on Quantum Fluids and Solids, 15–21 August 2012, Physics Department, Lancaster Univer-

sity, UK.
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To this end, we carry out calculations on the entire axis z that is perpendicular to the superfluid helium-

solid interface. Moreover, due to boundary conditions at z Æ 0, v
z

is oddly extended to the entire space

so that v
z

(
z È 0

)
Æ¡v

z

(
z Ç 0

)
and v

x

, v
y

, ½ and v
iz

are evenly extended to the entire space.

However, we should note that the helium perturbations generated by oscillations of the interface, on

the one hand, contribute to the energy of helium, and, on the other hand, are determined by the param-

eters which characterize the vibrations of a solid interface (amplitude and displacement velocity). The

relationship between these parameters is given by standard boundary conditions for a normal compo-

nent of the velocity at the solid-superfluid liquid interface, which is superfluid helium. Thus, parameters

describing the vibrations of the interface after the second quantization and the change of helium en-

ergy caused by these vibrations will contain the creation and annihilation operators of solid phonons.

In this respect, those perturbation operators of density and velocity of helium and velocity of interface

vibrations are Hermitian after the second quantization. We get the final form of these operators:
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where k and q are wave vectors of helium and solid phonons, respectively, ! and ­ are frequencies of

helium and solid phonons, respectively, V
L

and V

S

are volumes that liquid and solid occupies, �
a

Å

k

(

�
a

k

)

and �

b

Å

q

¡

�

b

q

¢

are operators of creation (annihilation) of helium and solid phonons, respectively; axis z

is directed perpendicular to the interface, and k

jj

and q

jj

tangential components of the wave vectors of

helium and solid phonons, respectively. Equations (2.4) and (2.5) permit to submit Hamilton operator

�

H

int

Æ

L

Z

0

dz

Z

dSE

int

(2.6)

in terms of the second quantization. In equation (2.6), integration is over the volume of the liquidV
L

Æ LS,

where S is the area of the superfluid helium-solid interface. The Hamiltonian equation (2.6) describes the

creation and annihilation of phonons at the He II-solid interface, which is caused by vibrations of the

interface.

After these procedures, the Hamiltonian (2.6) will have the following form to within the cubic terms
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contains a single phonon annihilation (creation) operator and a single creation (annihilation) operator

for the solid.

Thus, �

H

(2)

int

describes the conversion of a liquid (solid) phonon into a solid (liquid) phonon at the su-

perfluid helium-solid interface. In this transition, the phonon retains its energy. We refer to this kind of a

process as an elastic one. The second term in equation (2.7) has the form
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where !
1,2

and k

1,2

are frequencies and wave vectors of the superfluid helium phonons and ­
1,2

and

q

1,2

are frequencies and wave vectors of the solid. Equation (2.9) describes the processes in which there

are different numbers of phonons in the initial and final states. We shall refer to these kinds of processes

as inelastic phonon processes.

3. Heat flow through the superfluid helium-solid interface

In order to calculate the heat flow from a solid to a liquid, it is necessary to write down the proba-

bility of a phonon conversion process at the liquid helium-solid interface. From the Hamiltonian equa-

tions (2.7), (2.8) and (2.9), there are four possible three-phonon inelastic processes along with one elastic

process. We enumerate these processes with a subscript k equal to 0 for the elastic process and 1¥ 4

for the four possible inelastic processes. Here are diagrams of all possible processes. The diagrams for

reverse processes are obtained by reversing the directions of all the arrows in the diagram for a forward

process.

Figure 2. Diagram for a direct elastic phonon conversion process at a superfluid helium-solid interface

(k Æ 0).

Figure 3. Diagrams for direct inelastic processes (k Æ 1¥4).

The second inelastic process does not give a contribution to the heat flow from the heated solid to

superfluid helium that is at zero temperature. Therefore, we will consider only the first, the third and the

fourth inelastic processes along with the elastic process.

The probability w
k

of process k, which is determined by the matrix element M (k)

f i

Æ h f j

�

H

int

ji i for a

transition from the initial state i to the final state f , if a particular process results from the Hamiltonian
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equation (2.7), is given by
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Here, E
f

and E
i

are the total energy of the phonons in the final and initial states, respectively. The quan-

tity (3.1) is the probability that phonons transfer from state i into state f per unit time through unit area

of the interface surface.

The expression for a heat flux per unit time through unit area of the interface surface in the nor-

malization of the operators to the energy of a single phonon for the k-th process that we have chosen

is
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where the sum is taken over all the final phonons, while the products
Q

f

and
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are taken over all

the final and initial phonons, respectively, "
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and "
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are the energies of the final and initial phonons,
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3 is the number of quantum states

in an element of phase space, and µ
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is the exit angle for a final phonon with energy "
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. Here, and inwhat

follows, all the angles are reckoned from the normal to the superfluid helium-solid interface boundary.

We consider the heat flow due to an elastic process. The matrix element of this process is as follows:
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For the heat flow from a solid at temperature T
S

into superfluid helium, which is at zero temperature,

we begin with equations (3.1), (3.2), and (3.3) and obtain
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According to conservation of energy and conservation of tangential impulse component of phonon,

it follows that in an elastic process, the heat flux (3.4) will fill a narrow cone of angles with solid angle

(
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2, whose axis is directed normal to the interface.

The first inelastic process, which corresponds to a transition from a state with one solid phonon to a

state with two liquid phonons, is calculated in a standard way and is as follows:

M

(1)

f i

Æ

2

p

2ß

3

2

S




L

V

L

p

V

S

½

S

p

!

1

!

2

­

"

k

2

2z

k

2

¡

k

2

2z

¡k

2

1z

¢

¡

k

2

1z

k

1

¡

k

2

1z

¡k

2

2z

¢

#

q

z

q

±

k

1jj

Åk

2jj

Åq

jj

,0

. (3.5)

On the assumption of (3.1), (3.2) and (3.5), the heat flow from a solid at temperature T
S

into a liquid

helium at zero temperature is as follows:
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Æ x¡ y are from the conservation of energy law, µ
1,2

are the exit angles of liquid phonons, µ is the incident angle of a solid phonon. The numerical value of the

dimensionless integral (3.6) is independent of temperature, but it does depend on the ratio of the speeds

of sound of the solid and the liquid. For the value 

L
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S

Æ 0.1, that will be used further, dimensionless

integral (3.6) is equal to 4.78 ¢10

2 . As will be shown below, this value weakly depends on the ratio 
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.

It should be noted that in integrals (3.6) and further, integration of the azimuthal angle is replaced

by multiplication by 2¼ for simplicity. The limits of integration in these integrals and the function of the

integration variables µ
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Æ µ
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(µ,µ

1

,x, y) are determined by the conservation of energy and by tangential

component of impulse laws. Equation for sinµ
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is as follows:
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The conditions of exit phonon angles with energies !
1

could be obtained from equation (3.7).
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which coincides with the condition in the elastic process.
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This shows that if the energies of the created phonons are equal to each other, all the exit phonon

angles are allowed in the first inelastic process. The ban on these angles is determined by the proximity

of the liquid phonon energy to the energy of a solid phonon. According to the conditions on the incident

phonon angles, the ratio of velocities 

L

/


S

gives a small contribution both to integration limits and to the

value of integral (3.6).

Unlike the elastic process, the phonons which were born in this inelastic process will move in all

directions relative to the normal to the interface. Then, the phonons that were emitted in all directions

should be observed in the angular distribution of phonons emitted by a heated solid to superfluid helium

along with a sharp acoustic peak (see figure 1). The rate of the heat flow due to the elastic (3.3) process

and the first inelastic (3.6) process is as follows:

W

(0)

W

(1)

Æ

1

1.08 ¢10

4

¼

6

½

L




5

L

ß

3

(
k

B

T

S

)

4

. (3.11)

Equation (3.11) shows that for T
S

Æ 5 K, the heat flux through the superfluid helium-solid interface

produced by the first inelastic process is 2.3 times greater than that produced by the elastic process. This

value is by a factor of four smaller than the one observed experimentally [10–14]. For T
S

Æ 1 K, the contri-

bution of the heat flux from the first inelastic process is by a factor of 272 less than that from the elastic

process. Thus, the first inelastic process cannot completely explain the relatively large experimentally

observed [10–14] level of background emission.

Analogously, for the third process and the fourth process, the heat flow will be as follows:
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Æ

32½
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(2¼)
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½
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S




4

S




3
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ß
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(
k
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)
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Z

dxdy sinµdµ sinµ

1

dµ

1

1

e
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¡1

y

2

x

3

(x¡1)
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os
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µ

1

, (3.12)
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Æ
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k
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Z

dxdy sinµdµ sinµ

1
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1

1
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¡1

1

e

y¡x

¡1

y

2

x

3

(x¡1)
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osµ

2


os

2

µ

1

,

(3.13)

where x Æ ß­
1

/k

B

T

S

, y Æ ß!/k
B

T

S

and ß­
2

/k

B

T

S

Æ x¡ y from the conservation of energy law. Numer-

ical values of integrals that are in (3.12) and (3.13) are 6.32 ¢10

3 and 8.53 ¢10

3 , respectively. The ratio of

contributions of the third and the second processes to the contribution of the first process due to (3.6),

(3.12) and (3.13) are, respectively, as follows:

W

(3)

W

(1)

Æ 5.21

½

L




L

½

S




S

,

W

(4)

W

(1)

Æ 7.07

½

L




L

½

S




S

. (3.14)
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The investigation of angular phonon distribution emitted by a heated solid in the third and the fourth

processes similar to those that were presented for the first process shows that phonons are emitted in

all directions to the superfluid helium. According to equation (3.14), the third and the fourth processes

give contributes into the heat flow from solid to superfluid helium of the same order of magnitude. This

contribution is by an order of magnitude less than contribution of the first process.

4. Conclusion

In this paper we have derived the interaction Hamiltonian (2.7)–(2.9) of phonons of superfluid helium

with an oscillating solid interface. The phonon field has been quantized in the half space, which made it

possible to write down this Hamiltonian in terms of annihilation and creation operators for phonons of

the superfluid helium and of the solid.

The probabilities both of the elastic process and all of the inelastic processes have been calculated

from the Hamiltonian. The derived equations allowed us to calculate the heat fluxes from the heated

solid to the superfluid helium. The equation for the heat flow, owing to the elastic process, is the same as

the result [3] obtained using the methods of classical acoustics.

It has been shown that all of the exit phonons angles in inelastic processes are allowed in a liquid he-

lium, which was observed in experiments [10–14]. According to (3.14), the first inelastic process gives the

main contribution to the background channel. The heat flow (3.6) from the solid heated to 5 K to the cold

superfluid helium due to the first inelastic process is 2.3 times greater than the heat flow produced by the

elastic process. This flow decreases as T 4 when the temperature is lowered. Namely, when the temper-

ature of a solid increases, the contribution of the background radiation increases to the contribution of

the elastic process, which corresponds to the behavior observed in experiments [10–14, 16]. The absolute

values for the heat flux owing to the first inelastic process could only partially explain the big values of

the background radiation, which was observed in experiments [10–14] (see figure 1). Calculated in [20]

the contribution to the heat transfer coefficient owing to inelastic processes has also proved to be rela-

tively small and could not explain the large values of the heat transfer coefficient, which was observed in

the experiments on the Kapitza gap.

Thus, an inelastic process has only partially justified the expectations, and a new investigation of

the heat transfer between solid and superfluid helium will be needed to reconcile the theory with the

experiments.
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Взаємодiї фононiв на поверхнi роздiлу

тверде тiло-надплинний гелiй

I.М. Адаменко, Є.К. Нємченко

Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, пл. Свободи, 4, 61022 Харкiв, Україна

У роботi запропоновано новий метод отримання гамiльтонiана взаємодiї фононiв на поверхнi роздiлу

тверде тiло-надплинний гелiй. Отримано вирази для збурень гiдродинамiчних змiнних у термiнах вто-

ринного квантування у випадку, якщо рiдина займає напiвпростiр. На основi отриманого гамiльтонiана

обчислено вклади вiд усiх процесiв у потiк тепла з нагрiтого твердого тiла у надплинний гелiй. Отрима-

но кутовi розподiли випромiнених твердим тiлом фононiв у рiзних процесах. Показано, що у випадку

непружних процесiв немає заборон на кути вильоту фононiв у надплинний гелiй. Отриманi результати

порiвнюються з результатами експериментальних та теоретичних робiт.

Ключовi слова: фонони, кутовий розподiл, потiк тепла, стрибок Капицi, поверхня роздiлу
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