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A new method of obtaining the interaction Hamiltonian of phonons at superfluid helium-solid interface is pro-
posed in the work. Equations of hydrodynamic variables are obtained in terms of second quantization if helium
occupies a half-space. The contributions of all processes to the heat flux from solid to superfluid helium are cal-
culated based on the obtained Hamiltonian. The angular distribution of phonons emitted by a solid is found in
different processes. It is shown that all the exit angles of superfuild helium phonons are allowed. The obtained
results are compared with experimental data and with previous theoretical works.
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1. Introduction

Superfluid helium has a whole number of unique phenomena that take place at superfluid helium-
solid interface. One of such phenomena is the thermal boundary resistance discovered by Kapitza P.L. [1].
It was discovered that there is a constant temperature difference between the contacting solid and super-
fluid helium when a solid emits heat. Since then, this phenomenon has been studied by different authors
because so far there is no satisfactory agreement between experimental data and theoretical research.

The first theoretical explanation of Kapitza gap was given by Khalatnikov [2-4]. According to works
[2-4], the heat flow occurs due to incident phonons in both superfluid helium and a solid. These phonons
with difficulty pass through the interface due to acoustic mismatch of the media and due to the small-
ness of incident phonon angle in liquid helium above which total internal reflection occurs. Transition
probability of phonon from one media to another which was obtained in [2-4] is proportional to interface
impedance py.cL/pscs. Critical angle is equal to ¢,/ cs, where cp, and cg are the velocities of sound of liquid
and solid, respectively, pr, and ps are densities of liquid and solid, respectively.

The results of many experiments obtained by various authors significantly differed from the calcu-
lated values of theories [2-4]. Particularly, experimental values of heat transfer rate of superfluid helium-
solid interface are more often by two orders of magnitude larger than theoretical values in works [2-4].

Large experimental values of heat transfer rate mean that there are other mechanisms of heat trans-
fer between superfluid helium and solid along with the so-called acoustic channel that was considered in
[2-4]. To our best knowledge, all theoretical works dedicated to the the search for such mechanisms were
based on the fact that the interface with superfluid helium surface of solid was not perfectly smooth and
clean and contained roughness, various defects and monolayers.

The imperfection of an interface leads to the assumption that phonons could pass into a solid at any
incident angles and not just in a narrow cone with a solid angle (cr./ cs)2 which was formed by a critical
angle following from Khalatnikov theory [2-4]. In this case, heat transfer rate may increase by (cs/ cL)2
times. This value is of the order of 107 for the superfluid helium-solid interface. This fact can reconcile
the theory with experiments.

In this regard, numerous experiments were carried out by different authors in which the role of
a solid surface in heat transfer between solid and superfluid helium was investigated. The results of
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such experiments are given in the review [5] and in later experimental works [6-9]. These experiments
indicated that the condition of a solid surface does substantially alter the heat transfer coefficient so that
it becomes larger than only an order of magnitude of the coefficient calculated in theory [2-4].

In order to understand the Kapitza gap problem, direct experiments [[10-14] were performed in which
energy and angular distribution of the emitted phonons by a solid in cold (T < 100 mK) superfluid helium
were measured. In these experiments, phonon beams were emitted from a heated solid to superfluid
helium that was almost at zero temperature (i.e., superfluid vacuum). As the heaters there were used
both conductive metal films and cleaved surfaces of crystals that were almost perfect surfaces. It was
shown in works [10-14] that even with almost perfect solid surface there are two channels of phonon
transfer from solid to superfluid helium which are demonstrated in figure[]

Figure 1. Angular distribution of heat flow from heated solid to superfluid that is observed in [10-14].

The first channel formed a sharp peak of phonons emitted in a narrow cone of angles whose axis was
normal to the solid surface (see figure[I). The observed value in [11] of the angle of the cone coincides with
the calculated values for different solids in the acoustic mismatch theory which was based on Khalatnikov
theory [2-4]. This channel was called the acoustic channel.

The second channel, the so-called background channel, contained phonons emitted in all directions.
Moreover, it was shown that the contribution of a background channel was an order of magnitude larger
than the contribution of an acoustic channel during experimental data analysis.

In work [15] which was performed based on the results of experimental work [16] it was shown that
the phonons emitted by a heated and rather rough gold surface in superfluid helium were also distributed
through two channels observed in [10-14].

Accordingly, a question has arisen: what is the physical reason for the existence of such a large back-
ground channel at almost perfect surface solid? Great hope to explain the existence of the background
channel and large observed values of the heat transfer coefficient in Kapitza gap experiments was en-
trusted to the processes in which there was a different number of phonons in the initial and the final
states. These are the so-called inelastic interaction processes. A possible diagram of inelastic process can
be found in the experimental work [12], where one phonon of a solid transforms into two phonons of a
liquid that could pass at any angles to the interface. One of the possible inelastic processes that differs
from the one illustrated in [12] was considered by Khalatnikov [4] who showed that the contribution of
this process was relatively small. It is worth pointing out that the inelastic process considered in [4] does
not contribute to the heat flux from solid to superfluid helium which is almost at zero temperature.

In this regard, consideration of all possible inelastic processes turns out to be relevant as well as the
calculation of their contribution to the background channel. This is the focus of the present work.

The first attempts to solve the above mentioned problem was made in works [17,[18] in which it was
suggested to create a microscopical theory of Kapitza gap at the He II-solid interface. However, it was a
failure to create a self-consistent approach capable of yielding the results in accord with the acoustic the-
ory [2-4] corresponding to elastic phonon processes. This is apparently connected with the calculations
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that were not brought to final analytical formulas and to specific numerical values in works [17] and [18].

The original results of constructing a unified self-consistent theory describing both elastic and in-
elastic processes at the superfluid helium-solid interface were presented at the QFS2012 conference] by
the authors of this paper. These first results were published in the materials of the conference [19]. The
contribution of inelastic processes to Kapitza gap was considered in the work [20].

The main goal of this paper is to investigate all possible inelastic processes that contribute to the
heat flow from the solid to the superfluid helium and to consider the angular distribution of the emitted
phonons in different processes.

2. Interaction Hamiltonian of helium phonons with an oscillating sur-
face of a solid

For the interaction Hamiltonian of helium phonons with an oscillating surface of a solid, we calculate
the density of the energy of superfluid helium in the presence of an oscillating interface. The obtained
Hamiltonian will essentially differ from the Hamiltonians used in works [4,[17,/18] and will yield a correct
result regarding the heat flow due to the elastic process that is equal to the result obtained in [3].

Oscillations of interface excite in helium oscillations of density p; and velocity v; along with the in-
trinsic oscillations of p and v in the liquid. In this case, the interaction energy is

1 2
E:E[pL+p+pi)(v+vi) +Ey (pr+p+pi), 2.1)

where E,, is the density functional.

To simplify the problem, we restrict ourselves to longitudinal phonons in the solid. The inclusion of
transverse phonons does not cause fundamental difficulties, but all the calculations become more cum-
bersome and lead to the appearance of a factor F in the final calculations that depends on the elastic
constants of the solid. F varies over small limits and remains of the order of 2 for different solids.

Now we reduce the equation (Z.I) to the form of an expansion accurate to cubic terms in the small
parameters pj, vi, p and v:

2 2

1 2 1 C 3
E=Fg,+— +vi)2+ == (p+pi)°+ = (o+pi) V+vi)2 + == Qu—-1) (p+pi)°, 2.2
0.1+ 5pL(VHVI) oo (o+pi) 5 (0 +pi) v+wi) 507 ( ) (0 +pi) 2.2)
where u = p—cE g% is the Gruneisen constant, which equals 2.84 for helium,
6Ep (Pt)
Ey1=E +— + pj 2.3
0,1 =Ep (p1) TR (p+pi) (2.3)

is the sum of zero and the first terms of the expansion which does not contribute to the interaction of the
liquid and the solid, p¢ = p1.+ p + pi-

Then, the contribution to the interaction of helium with a wall will yield a term that simultaneously
contains parameters characterizing both the solid and the liquid. In this case, the interaction energy is as
follows:

62 i 62
Ein = prvvi + = ppi + 2 (2vv; +v2) + 2 (2vw; +v2) + —= 2u—1)ppi (p+pi). (2.4)
pL 2 2 2pL

The first two terms in the equation (2.4) describe the two-phonon interactions and the remaining
terms describe the three-phonon interactions (in terms of secondary quantization).

In this problem, the velocity and density of solid and liquid phonons are specified for a half space,
whereas there are problems expanding them in Fourier series and with the subsequent use of the second
quantization method. The following method for analytic continuation of the solutions is proposed to
overcome these difficulties and make it possible to use the Fourier expansion and secondary quantization.

1QFSZOlZ: International Conference on Quantum Fluids and Solids, 15-21 August 2012, Physics Department, Lancaster Univer-
sity, UK.
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To this end, we carry out calculations on the entire axis z that is perpendicular to the superfluid helium-
solid interface. Moreover, due to boundary conditions at z = 0, v, is oddly extended to the entire space
so that v, (z>0) = —v,(z<0) and vy, vy, p and vj are evenly extended to the entire space.

However, we should note that the helium perturbations generated by oscillations of the interface, on
the one hand, contribute to the energy of helium, and, on the other hand, are determined by the param-
eters which characterize the vibrations of a solid interface (amplitude and displacement velocity). The
relationship between these parameters is given by standard boundary conditions for a normal compo-
nent of the velocity at the solid-superfluid liquid interface, which is superfluid helium. Thus, parameters
describing the vibrations of the interface after the second quantization and the change of helium en-
ergy caused by these vibrations will contain the creation and annihilation operators of solid phonons.
In this respect, those perturbation operators of density and velocity of helium and velocity of interface
vibrations are Hermitian after the second quantization. We get the final form of these operators:

ik;z —ik.z
R A I

A At A At k|
( a_k+a_k—ak) (—)e1 i,

V2

+00 Aw k N N eik;z _ e—ik;z &
— v + 4 +ad L+a v Hr\l,
v k;okzﬂ' 2001 k (ak ot Ak ak) ( V2 ©
+00 nQ R R . R 1b z 4 —ibzz\ |
-y ¥ i (bg = btq+ boq - by eTEe T efanm, @.5)
g=oq; | 2PsVs q V2

where k and q are wave vectors of helium and solid phonons, respectively, w and Q are frequencies of
helium and solid phonons, respectively, V1, and Vs are volumes that liquid and solid occupies, d; ()
and B; (Eq) are operators of creation (annihilation) of helium and solid phonons, respectively; axis z
is directed perpendicular to the interface, and k;; and q;; tangential components of the wave vectors of
helium and solid phonons, respectively. Equations and permit to submit Hamilton operator

L

I:Iint:fdzdeEint (2.6)
0

in terms of the second quantization. In equation 2.6), integration is over the volume of the liquid V1, = LS,
where S is the area of the superfluid helium-solid interface. The Hamiltonian equation describes the
creation and annihilation of phonons at the He II-solid interface, which is caused by vibrations of the
interface.
After these procedures, the Hamiltonian will have the following form to within the cubic terms
I:Iint H(Z) H(3) 2.7

int int*

Here, the first term

A =i, /p va ZZ (ak+dfk+d_k+d;)(i)q—qu+l3_q—l3;)6k”,q” 2.8)

contains a single phonon annihilation (creation) operator and a single creation (annihilation) operator
for the solid.

Thus, ﬁfﬁg describes the conversion of a liquid (solid) phonon into a solid (liquid) phonon at the su-
perfluid helium-solid interface. In this transition, the phonon retains its energy. We refer to this kind of a
process as an elastic one. The second term in equation has the form

n32s ko q: ko
A® = VornQ 2 E s (g - + a4 -y,
int = ,/VsPSlgl 8 g 2k, artkerrand{fla T8 T T g
~ ~ ~ ~ h3/2\/ LS lql qg
x(ak2+“sz+a—k2+a;2)(bq_btq+b—q_b;) CLVL\/_psZ Vo Qy— =0y a0
x (e + i+ &y ) (byy — b, +boq, by )(bay — B q, + bog, ~ B3, ), (2.9)
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where w12 and k; » are frequencies and wave vectors of the superfluid helium phonons and Q, > and
q1,2 are frequencies and wave vectors of the solid. Equation describes the processes in which there
are different numbers of phonons in the initial and final states. We shall refer to these kinds of processes
as inelastic phonon processes.

3. Heat flow through the superfluid helium-solid interface

In order to calculate the heat flow from a solid to a liquid, it is necessary to write down the proba-
bility of a phonon conversion process at the liquid helium-solid interface. From the Hamiltonian equa-
tions .70, 2.8) and @2.9), there are four possible three-phonon inelastic processes along with one elastic
process. We enumerate these processes with a subscript k equal to 0 for the elastic process and 1 +4
for the four possible inelastic processes. Here are diagrams of all possible processes. The diagrams for
reverse processes are obtained by reversing the directions of all the arrows in the diagram for a forward
process.

Liquid

Solid

Figure 2. Diagram for a direct elastic phonon conversion process at a superfluid helium-solid interface
(k=0).

1) Liquid 2) Liquid

Solid
Solid
3) Liquid 4) Liquid
Solid Solid

Figure 3. Diagrams for direct inelastic processes (k=1 +4).

The second inelastic process does not give a contribution to the heat flow from the heated solid to
superfluid helium that is at zero temperature. Therefore, we will consider only the first, the third and the
fourth inelastic processes along with the elastic process.

The probability wj of process k, which is determined by the matrix element M}'? =(f Iﬁiml iy for a
transition from the initial state i to the final state f, if a particular process results from the Hamiltonian
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equation 2.7, is given by ) ,
_ ,
Wy = %|Mﬁ |5 (E - ). 3.1)

Here, Er and E; are the total energy of the phonons in the final and initial states, respectively. The quan-
tity 3.I) is the probability that phonons transfer from state i into state f per unit time through unit area
of the interface surface.

The expression for a heat flux per unit time through unit area of the interface surface in the nor-
malization of the operators to the energy of a single phonon for the k-th process that we have chosen
is

w = f wkZEfCOSGfH (1+n(ef)] del_[ n(e;)drl;, (3.2)
f ! i

where the sum is taken over all the final phonons, while the products [[r and []; are taken over all
the final and initial phonons, respectively, 7 and ¢; are the energies of the final and initial phonons,
respectively, 7(¢) is the Bose distribution function, dTI" = d3 pd3r/ (27h)3 is the number of quantum states
in an element of phase space, and /7 is the exit angle for a final phonon with energy €. Here, and in what
follows, all the angles are reckoned from the normal to the superfluid helium-solid interface boundary.
We consider the heat flow due to an elastic process. The matrix element of this process is as follows:

) _ ZiCLhS PL gz

VW \ ps g

For the heat flow from a solid at temperature Tg into superfluid helium, which is at zero temperature,
we begin with equations (3.1, (3.2), and (3.3) and obtain

3.3

4_7[49LcL 1

WO =
15 pscg 3(2m)2h3

(kp Ts)" . (3.4)
According to conservation of energy and conservation of tangential impulse component of phonon,
it follows that in an elastic process, the heat flux will fill a narrow cone of angles with solid angle
(er! cs)z, whose axis is directed normal to the interface.
The first inelastic process, which corresponds to a transition from a state with one solid phonon to a
state with two liquid phonons, is calculated in a standard way and is as follows:

3
2V2h2S k5 k? q
MY =220 o10,Q 22 - 1z L Sk ik 0- (3.5)
1 Vi Vops (G, -K) k(i —H,) | g ke

On the assumption of B.1), and [B.5), the heat flow from a solid at temperature Tg into a liquid
helium at zero temperature is as follows:

8 1 cosf;
whS—1) = ———— (kT 8fdxd sinfdf sin 6, d6, cos® §—— +(x—
( ) (2n)4pscfcgh5( bT5) y e e*—1 ycosGZ (x=y
(x—y)cos? Bz + ycos? B,
3.3
- 3.6
Xy alx=y) (x—y)2cos? 0, — y2cos? 6, (3.6)

where x =1Q/kgTs, y = w1/ kg Ts and hw,/ kg Ts = x — y are from the conservation of energy law, 8, »
are the exit angles of liquid phonons, 6 is the incident angle of a solid phonon. The numerical value of the
dimensionless integral is independent of temperature, but it does depend on the ratio of the speeds
of sound of the solid and the liquid. For the value cr./cs = 0.1, that will be used further, dimensionless
integral (3.6) is equal to 4.78- 10?. As will be shown below, this value weakly depends on the ratio c /cs.

It should be noted that in integrals (3.6) and further, integration of the azimuthal angle is replaced
by multiplication by 27 for simplicity. The limits of integration in these integrals and the function of the
integration variables 6> = 62(6,60,, x, y) are determined by the conservation of energy and by tangential
component of impulse laws. Equation for sinf, is as follows:

1 C
sinfy = —— [ ysinf,; +x—L sinf]. 3.7)
x—y cs

The conditions of exit phonon angles with energies w; could be obtained from equation G.7).
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1. Osels%,forxs%(l—g—gsine).

2. 0<6, <arcsin [% (1 - % sin@) - 1], for x = %’ (1 - %Ssine).
Consider the limiting cases of these conditions.

a) The elastic case: w; =Q, wy = 0. The condition on the exit angle is as follows:

c
0 <6, <arcsin (—L sin9) R (3.8)
Cs

which coincides with the condition in the elastic process.

b) Weak-inelastic case: w; = Q—A, w2 = A, considering that A < Q, but A > Q'é—I; sinf. The condition
takes in account the smallness of cp./cs

0<0;<—. (3.9)

0<0;<—. (3.10)

This shows that if the energies of the created phonons are equal to each other, all the exit phonon
angles are allowed in the first inelastic process. The ban on these angles is determined by the proximity
of the liquid phonon energy to the energy of a solid phonon. According to the conditions on the incident
phonon angles, the ratio of velocities ¢y /cs gives a small contribution both to integration limits and to the
value of integral (3.6).

Unlike the elastic process, the phonons which were born in this inelastic process will move in all
directions relative to the normal to the interface. Then, the phonons that were emitted in all directions
should be observed in the angular distribution of phonons emitted by a heated solid to superfluid helium
along with a sharp acoustic peak (see figure [1). The rate of the heat flow due to the elastic (3.3) process
and the first inelastic (3.6) process is as follows:

W[O) 1 ”6PLCEh3
Wm 1.08-10% (kgTg)*

Equation shows that for Ts = 5 K, the heat flux through the superfluid helium-solid interface
produced by the first inelastic process is 2.3 times greater than that produced by the elastic process. This
value is by a factor of four smaller than the one observed experimentally [10-14]. For Ts = 1 K, the contri-
bution of the heat flux from the first inelastic process is by a factor of 272 less than that from the elastic
process. Thus, the first inelastic process cannot completely explain the relatively large experimentally
observed [10-14] level of background emission.

Analogously, for the third process and the fourth process, the heat flow will be as follows:

(3.11)

32pL 1

w® = W (kg TS)dexdysiHGdG sinf;d6; o1 yzx3 (x—1) cosf cosBs cos® 0y, (3.12)
L
w@ = & (kBTS)BfdxdysinGdGsin@ldGI;;yzx%x— 1) cosO cos O, cos? 01,
@m)*picgcind ef—ley*-1

(3.13)

where x = hQ,/kgTs, y = hw/kgTs and /Qy/ kg Ts = x — y from the conservation of energy law. Numer-
ical values of integrals that are in and (3.13) are 6.32- 10 and 8.53- 103, respectively. The ratio of
contributions of the third and the second processes to the contribution of the first process due to (3.6),
and are, respectively, as follows:

——==5.21 , ——=7.07 . (3.14)
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The investigation of angular phonon distribution emitted by a heated solid in the third and the fourth
processes similar to those that were presented for the first process shows that phonons are emitted in
all directions to the superfluid helium. According to equation (3.14), the third and the fourth processes
give contributes into the heat flow from solid to superfluid helium of the same order of magnitude. This
contribution is by an order of magnitude less than contribution of the first process.

4. Conclusion

In this paper we have derived the interaction Hamiltonian (Z.7)-(2.9) of phonons of superfluid helium
with an oscillating solid interface. The phonon field has been quantized in the half space, which made it
possible to write down this Hamiltonian in terms of annihilation and creation operators for phonons of
the superfluid helium and of the solid.

The probabilities both of the elastic process and all of the inelastic processes have been calculated
from the Hamiltonian. The derived equations allowed us to calculate the heat fluxes from the heated
solid to the superfluid helium. The equation for the heat flow, owing to the elastic process, is the same as
the result [3] obtained using the methods of classical acoustics.

It has been shown that all of the exit phonons angles in inelastic processes are allowed in a liquid he-
lium, which was observed in experiments [10-14]. According to (3.14), the first inelastic process gives the
main contribution to the background channel. The heat flow from the solid heated to 5 K to the cold
superfluid helium due to the first inelastic process is 2.3 times greater than the heat flow produced by the
elastic process. This flow decreases as T* when the temperature is lowered. Namely, when the temper-
ature of a solid increases, the contribution of the background radiation increases to the contribution of
the elastic process, which corresponds to the behavior observed in experiments [10-14,/16]. The absolute
values for the heat flux owing to the first inelastic process could only partially explain the big values of
the background radiation, which was observed in experiments [10-{14] (see figure [1). Calculated in [20]
the contribution to the heat transfer coefficient owing to inelastic processes has also proved to be rela-
tively small and could not explain the large values of the heat transfer coefficient, which was observed in
the experiments on the Kapitza gap.

Thus, an inelastic process has only partially justified the expectations, and a new investigation of
the heat transfer between solid and superfluid helium will be needed to reconcile the theory with the
experiments.

Acknowledgement

We thank A. F. G. Wyatt for useful discussions which led to the initiation of this work.

References

Kapitza P.L., Zh. Eksp. Teor. Fiz., 1941, 11, 1 (in Russian).

Khalatnikov .M., Zh. Eksp. Teor. Fiz., 1952, 22, 687 (in Russian).

Khalatnikov I.M., An Introduction to the Theory of Superfluidity, Addison-Wesley, Redwood, 1989.

Khalatnikov .M., Theory of Superfluidity, Nauka, Moscow, 1971 (in Russian).

Swartz E.T., Pohl R.O., Rev. Mod. Phys., 1989, 61, 605; doii10.1103/RevModPhys.61.605,

Anmrit J., Francois M.X., ]. Low Temp. Phys., 2002, 128, 113; doi{10.1023/A:1016341826786

Anmrit J., Thermeau J.P,, J. Phys.: Conf. Ser., 2009, 150, 032002; doi{10.1088/1742-6596/150/3/032002|

Amrit J., Phys. Rev. B, 2010, 81, 054303; doi{10.1103/PhysRevB.81.054303.

Amrit ]., Ramiere A., Low Temp. Phys., 2013, 39, 752; doi{10.1063/1.4821076.

Wyatt A.F.G., Page G.J., Sherlock R.A., Phys. Rev. Lett., 1976, 36, 1184; doi{10.1103/PhysRevLett.36.1184,

. Page G.J., Sherlock R.A., Wyatt A.F.G., Ziebeck K.R.A,, In: Phonon Scattering in Solids, L.J. Challis (Ed.), Plenum
Press, New York, 1976.

. Wyatt A.F.G., Crisp G.N., ]. Phys. Colloques, 1978, 39, C6-244; doii10.1051/jphyscol:19786107,

Wryatt A.F.G., In: Nonequlubbrium Superconductivity, Phonons, and Kapitza Boundaries. NATO Advanced Study

Institutes Series Vol. 65, Gray K. (Ed.), Plenum Press, New York, 1981, 31-72; d0i:10.1007/978-1-4684-3935-9_2.

© PN,k W

=
= O

=
w N

13602-8


http://dx.doi.org/10.1103/RevModPhys.61.605
http://dx.doi.org/10.1023/A:1016341826786
http://dx.doi.org/10.1088/1742-6596/150/3/032002
http://dx.doi.org/10.1103/PhysRevB.81.054303
http://dx.doi.org/10.1063/1.4821076
http://dx.doi.org/10.1103/PhysRevLett.36.1184
http://dx.doi.org/10.1051/jphyscol:19786107
http://dx.doi.org/10.1007/978-1-4684-3935-9_2

Interaction of phonons at superfluid helium-solid interfaces

14.
15.

16.
17.
18.
19.
20.

Wyatt A.F.G., Sherlock R.A., Allum D.R,, J. Phys. C, 1982, 15, 1897; doi{10.1088/0022-3719/15/9/012
Adamenko I.N., Nemchenko K.E., Slipko V.A., Wyatt A.F.G., J. Low Temp. Phys., 2009, 157, 509;
d0ii10.1007/s10909-009-0011-z;

Smith D.H.S, Wyatt A.F.G, Phys. Rev. B, 2007, 76, 224519; d0i:10.1103/PhysRevB.76.224519,

Sheard F.W., Bowley R.M., Tombs G.A., Phys. Rev. A, 1973, 8, 3135; d0i{10.1103/PhysRevA.8.3135,
Zhukov A., Phys. Scripta, 2004, 69, 59; doi;10.1238/Physica.Regular.069a00059.

Adamenko I.N., Nemchenko E.K., ]J. Low Temp. Phys., 2013, 171, 266; d0i:10.1007/s10909-012-0754-9.
Adamenko I.N., Nemchenko E.K., Low Temp. Phys., 2013, 39, 756; d0i:10.1063/1.4821756.

B3aemogii $oHOHIB Ha NoBepXxHi po3giny
TBepAe TiNo-HAAMINHHNIA renii

.M. AgameHko, €.K. HEMueHko

XapKiBCbKWiA HauioHanbHWiA yHiBepcuTeT im. B.H. KapasiHa, nn. CBo6oau, 4, 61022 Xapkis, YkpaiHa

Y po60oTi 3aNponNoHOBaHO HOBWIA MeTOA OTPVMMAaHHS ramiNbTOHiaHa B3aeMOZii GOHOHIB Ha MOBEPXHi po3ainy
TBepAe TiNo-HaANAMHHWIA reniii. OTprMaHo BMpasmn Ana 36ypeHb MiApoANHaMIYHMX 3MIHHUX Y TepMiHax BTO-
PVHHOrO KBaHTyBaHHS Y BUNaAKY, AKLLO PiAMHa 3aliMae HaniBnpocTip. Ha 0CHOBi OTPMMaHOro ramiNbToHiaHa
obuncneHo BKAaAM Bif yCix npoLeciB y NOTiK Tenaa 3 Harpitoro TBePAOro Tina y HaANAVHHWIA reniid. OTpuMa-
HO KYTOBI PO3MNOAINU BUNPOMiHEHMX TBEPAMM TiNnoM GOHOHIB Y pi3HMX npouecax. MokasaHo, Lo y BUNaAKy
HenpyXHNX npoLecis HeMae 3ab0POH Ha KyTV BUALOTY GOHOHIB y HaANAUHHWUIA reniii. OTpuMaHi pesynbtatn
MOpPiBHIOOTLCA 3 pe3y/bTaTaMi eKCneprMMeHTaNbHIX Ta TEOPeTUYHIX POBIT.

KnrouoBi cnoBa: ¢poHOHU, KyTOBUII PO3MOZiA, NoTik Tenna, cTpubok Kanuvwi, moBepxHs po3giny
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