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EXISTENCE OF A MULTIPLICATIVE BASIS
FOR A FINITELY SPACED MODULE
OVER AN AGGREGATE
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It is proved that a finitely spaced module over a k-category admits a multiplicative basis tsuch o module
gives rise to a matrix problem, in which the allowed column transformations are determined by o module
structure, the row transformations are arbitrary, and the number of canonical matrices is finies
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It was proved in [1] that a finite-dimensional algebra. having finitely many isoclasses
of indecomposable representations, admits a multiplicative basis. In [2] (Sections 4.10
— 4.12), an analogous hypothesis was formulated tor finitely spaced modules over an
aggregate and an approach 1o its proof was proposcd. Our objective is to prove this
hypothesis. Throughout the paper. & denotes an algebraically closed ficld.

Let us recall some definitions from [2] (see also [3]).

By delinition. an aggregate A over k is a category that satisties the following
conditions:

a) Forecach X, Y e A4, the set A(X,Y) is a finite-dimensional vector space
over k:

b) The composition maps arc bilincar:

¢) A4 has finite direct sums:

d) Each idempotent ¢ € A(X, X) has the kernel.

As a consequence, cach X € A 15 a finite direct sum of indecomposables and the
algebra of endomorphisms of cach imdecomposable is local.

We denote by 74 a spectroid of AL ie.. a full subcatcgory formed by chosen
representatives of the isoclasses ol indecomposables. and let R, be the radical of 4.
We suppose that 74 has finitely many objects. For each . h e 49, the space
R q(a, b) consists of all irreversible morphisms of A (a, b). iherefore. A(a, b) =
= Ra(a,b) for a # b. A(u,a) = k1,8, R4(a,a).

A module M over an aggregate A consists of finite-dimensional vector spaces
M (X). one for each object X € A. and of linear maps M(f): M(X) - M(Y).
m +— fm. f € A(X, Y). which satisty the standard axioms: lym = m, (f+g)m =
= fm+gm, (gfym = g(fm). flam) = a(fm)=(of)m. o € k. It givesa k-
linear functor from A into the category mod & of linite-dimensional vector spaces
over k. A module M over A4 isfaithful if M (f) # 0 for each nonzero f e
e A(X.,Y).

Define the basis of (M, A) asaset {mf. £} consisting of bases m. m§. ...

- . I -
of the spaces M(a). a € JA. and bases f. f3°.... of the spaces R (a. b).

a,b e 94. The maximal rank of M(f}""') is called the rank of a basis. A basis is
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568 A. V. ROITER, V. V. SERGEICHUK

called a scalarly multiplicative basis if it satisfies the following conditions:

a) Each morphism f® isthin, ic. fP* = g+h implies rank M ( f°
< rank M(g) or r.mI\M(f;“ rankM(h} forall g, he A(a, b);

b) Each product ff ¢ has the form lm Ae k

¢) fPmd = lm;, _ﬁ m§ = ump. and ?L,]J. e K\{0} imply i = j.

We say that the basis is multiplicative if each nonzero product f;b“ m¢ is a basis
b 4
s
We denote by M the aggregate formed by all triples (V, h,X), where V €
€ modk, X € 4, and h € Homy (V, M(X)). A morphism from (V, h, X) to (V' I,

X’) is defined by the pair of morphisms ¢ € Hom,(V,V’) and § € A(X,X") such

that h'@ = M(E)h. We call these triples spaces on M. We say that M is finitely

spaced if M k has a finite spectroid.

The objective of the paper is to prove the following theorem:

Theorem. If M is a faithful finitely spaced module over an aggregate A, then
(M, A) admits a multiplicative basis of rank < 2

We wish to express gratitude to P. Gabriel, Th. Briistle, T. Guidon, and U. Hassler
for discussions and essential corrections.

1. Construction of a scalarly multiplicative basis. In Sections 1 —3, M always
denotes a finitely spaced module over an aggregate 4.

As shown in [2] (sections 4.7, 4.8), for each a € JA, the space M(a) has a
dimension d(a) < 3 and a sequence mj.m,, ... .My, where

m; € (Rala a))'~'"M(@)\(Ra(a, a))'M(a),
is a basis of M(a). It will be called a triangular basis because the matrix of each
map M(f), f € A(a, a). has a lower triangular form. We assume that each basis
3

vector m

my, ..., my,, inascalarly multiplicative basis is triangular (it is always triangular up
to permutations of vectors).

A scalarly multiplicative basis is called normed if it satlsflcs the following
condition:

d)y ffem® = lmf, and A ¢ {0.1} imply that 2 m¢ = ”'?” for some i’ < I.

A scalarly multiplicative basis can be reduced to a normed basis by means of
multiplication of f/® by scalars.

A scalarly multiplicative basis is called reduced if it satisfies condition d) and the
following condition:

e) if a morphism ¢ = Z: lif,”“ is a product of basis morphisms, then
rank M(@) = Zl;xﬁ rank M( f*). 4

At the end of this section, we shall prove that every multiplicative basis of (M, A4)
is reduced if char (k) # 2.

Let m{, ..., mg,, be a fixed triangular basis of M(a) for cach a € JA. For

m'; and m’-’, we define a linear map e,j : M(a) - M(b) such that a,",’“ m' m?

and e “mj, =0 forall j* # j.
t fe Rala, b), a be JA. We say that f is a short morphism |f f ¢

@ Rﬁ(c,b)ﬂa(a, ¢) forall c € JA, f is a prime morphism if M(f) = fj". and f

1
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EXISTENCE OF A MULTIPLICATIVE BASIS FOR A FINITELY SPACED ... 569

is a double morphism if
M(f) = e;’-a +7Le?j—'—, e,"_:“ g M(a,b), i<i’ j<j.0#kek
The coefficient A is called the parameter of a double morphism.
Proposition 1. A set { m{, f,b"} is a normed (reduced, respectively) scalarly
multiplicative basis if and only if the following two conditions are satisfied:
1) m{, m3, ... is atriangular basis of M(a), a € JA.
2) f,b“. fzb" + ... I8 the set of all prime and double morphisms of A (a,b).a, b €

€ 94, except a single double morphism (a single short double morphism,
respectively) if the number of double morphisms is equal to 3. Moreover, the

number of double morphisms of A (a, b) is equal to 0. 1. or 3, and, in the last
case, there exists a short double morphism.

The statement of Proposition 1 about a normed scalarly multiplicative basis follows
from Lemmas 1 and 5. The complete proof of Proposition 1 will be given in Section 3.

Lemma 1. If d(a) = 2, then M (a,a) = kly,,,+ kei. If d(a) =3, then

M(a,a) = klpyg + kesi + kess or
M(a,a) = kly, + k(5] + A, 055) + key (1)
and 0 # A, € k.

The proof of Lemma 1 is obvious.

For every linear map ¢ : M(a)— M(b), we denote by ¢, € k(’f;" lincar maps such
that ¢ = Z ;- We introduce an order relation on {12 coasdlDY} % {1, 2, 0. wda)}
by (i,j)2(Lr)if i<l and j 2 r. Apair ({,r) iscalled astep of ¢ € M(a, b)
if ¢, #0 and ¢, =0 forall (ij)>(lr). Apair (/.r) is called astep of
M(a, b) if y, # 0 forsome y € M(a,b) and ¢; =0 forall ¢ € € M(a, b) and
all (i,j) > (I,r) (I 2 r because cach basis m{. m3. ... is triangular).

Lemma 2. If a,be JA a # b. d(a) =d(b)= 3, and M(a, b) has two
steps (1,2) and (2.3), then M(b, a) = ke%,.

Proof. Let y € M(b,a). Thereis ¢ € M(a, b) having the steps (1,2) and
(2,3). By Lemma 1. there exist € € M(«a,a) and d € M(b,b) such that ¢ = @e +
+ 8¢ has the steps (1. 1), (2.2). and (3,3). The inclusion A(b,a)Al(a. b)C
C R 4(a, a) implics

M(b,a)M(a.b) T M(R (a,a)) = keS| ® ke ® keds.

Since y@ € M(RK ;(a, a)). all steps of y are not higher that (2, 1) and (3, 2).

ab

Since y@ € M(R 4(a,a)). we have y € key.
Therefore, M(b,a) C kc‘f]’. Assume that M (b, a) = 0. Let us examine the space
Hy, = (k®, hy, a?® b2 e M*, where

K= k®kOkOkDLkDL, a’=a®a, b X=b®b he k
and h;_is the linear mapping of £ into
M(a?@b2) = (km{)* ® (km§)* ® (km§)* @ (km})* ® (km5 ) ® (kmfy)’

with the matrix
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570 A. V. ROITER, V. V. SERGEICHUK

@e®el o i) (o)

We show that 4, # H, if A # p. Let (9,&) be an isomorphism H, — H,,.
The linear mapping M (&) has the block matrix (Kjj), i,j < 6, where K;; are 2Xx 2-
matrices. By M(b,a) = 0 and Lemma 1, we have K; = 0 if i < j. Evidently,
Ky = Ky = K33, Ky = K5 = Kg, and Ky3 = 0.

Since h,¢ = M(E)h,, the matrix of the nondegenerate mapping ¢ also has the
block form (@), i,j < 5. where the blocks @, ®;y, P4y, and P55 are 1x 1-
matrices, the block @33 isa 2 x 2-matrix, and ®; = 0 if i <j. Moreover,

(e (s ()

(1 0|1 OJTQ & o K )(1 0|1 0]’"
g Lo p) F T SWEUELe g e 1) "

(e sl (o)

By the third equality, we obtain K33 = Ky, by the first and second equalities, we get

Ky=Kn=..=Kg= [a 0)
=82 = ... = Re = | B)
and, by the forth and fifth equalities, @ = B and A = p. We have infinitely many
nonisomorphic indecomposable spaces #5, X € k, on M. This proves Lemma 2.
Let (/;,r)..... (I, r,) beall steps of M(a, b). Set

S(a, b) = z(}IJ.)keE" (resp. §(a.b) = Z{‘.‘“kefj-" ),

where the sum is taken over all (i,/) such that there exists a step (/,, 7,) > (i.))
(( lp. 1,) 2 (i, j). respectively).

Lemma 3. Let a # b and M(a, b) have the steps (1,1), (2,2), and (3,3).
Then there is no y € M(a, b) suchthat M(a,b) = ky+S(a, b).

Proof. Assume that there exists y € M(a, b) such that M(a,b) = ky +
+ S(a, b). By the form of M(a, b) and A(b,a)A(a, b) C K4(a,a), we have
M(b,a) C ke3h + ke$s + ke$s.

Let us examine the space H = (k3. hy,a®b), where A € k and h; is the

linear map from &3 into

M(a®b) = km{ @ kms ® km§ ® km} ® km’ & km}

with the matrix
1 0 0]0 0 0\
10 1 0oflo 1 of.
1

0 0 0 0 A

Let (¢.&) be an isomorphism #, — ﬂ{p. It follows from the conditions imposed
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EXISTENCE OF A MULTIPLICATIVE BASIS FOR A FINITELY SPACED ... 571

on M(a,a), M(a, b), M(b,a) and M(b, b) that the matrix of M(E) has form

o 0 0 0 0 0
[0 5] o 0 T 0 0
0y 03 o [ Y3 Y2 O

o, O OB 0 of

8 & 0 [P B O

8 O & [ By By B _
Moreover, 8, = 3¢, 8, = 8¢,, and §; = de;, where 8 ¢ &k and €, €,, and €,
are the diagonal elements of the lower triangular matrix of w. By h @ = M(E)h;,
we find succesively that & = 0, the mapping ¢ has the lower triangular matrix with
the diagonal (o, 0, 03), 0y = B, and A = W

Hence H, # #, for A # 1 and M is infinitely spaced. We arrive at a
contradiction that proves Lemma 3.

Lemmad. S(a, b) T M(a,b).
Proof. We must show that if (/, r) is astepof M(a, b), then

Spla,b) = Y kel ©Ma,b).
(i, )< (,r)

By Lemma 3, there existsa y € M(a, b) having the step (/, r) but not more than
lwo steps. If y and M(a, b) have the steps (1, 2) and (’? 3), then, by Lemma 2,
e31\|.l € M(a, a) has the unique step (3. 2). Hence,

M(a ﬂ') s klM(a]®kC‘)] @ke G’)L(’:}"I

In all other cases, by Lemma 1, §,,(a, b) is contained in the space generated by all

Sdwye, where € € M(a,a) and 8 € M(b, b). This proves Lemma 4.
By Lemma 4, we have the following lemma.

Lemma 5. Let a,be 94, a # b, and M(a, b) # S(a, b). Then only three
cases can occur (Ag, # 0 # Ugp):
a) M(a, b) has two steps (I, r)) and (15, r,). |, < l,, and is equal to

k(e  F ldbehh)‘@S(a b);
b) M(a, b) has the steps (1, l) (2,2). and (3,3) andis equal to
kel + A e25) ® keys ® S(a.b).
or
k(eff + A e5%) @ keys @ S(a,b),
or
k(eds + 2, e2%) @ kel ®S(a, b):
¢) M(a, b) has the steps (1,1), (2,2), and (3,3) and is equal to
k(elf +A,,e2) ® k(e +p,,e23) ®S(a, b).

Remarks. 1) In a normed scalarly multiplicative basis, each long double morphism
¢ € A(a, b) is the product of double basis morphisms. Indeed, let ¢ = Ty, where
ye Ryla,c) and T € K (e, b). Then y is the unique double morphism of
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572 A. V. ROITER, V. V_SERGEICHUK

A(a, c) (otherwise, ¢ is the sum of prime morphisms). Therefore, Wy is a basis

morphism. Similarly, T is also a basis morphism.
2) A normed scalarly multiplicative basis is reduced if and only if all long double

morphisms are basis morphisms. Indeed, let a long double morphism ¢ € A(a, b) be

not a basis morphism. Then A4 (a, b) has two double basis morphisms and ¢ is their
linear combination. But this contradicts the definition of a reduced basis.

3) Lemma 1 and Lemma 5 imply the statement of Proposition 1 about a normed
scalarly multiplicative basis. By Remark 2, to complete the proof of Theorem 1 we

must prove that each A(a,b) (a,be JA) does not contain three long double
morphisms.

4) If char (k) # 2, then every multiplicative basis is reduced. Indeed, otherwise,
there is, by Remark 2, a long double morphism ¢ € A(a, b), which is not a basis
morphism. By Lemma 5, ¢ = y — 1, where y and T are basis long double

morphisms of A(a, b). Hence, M(¢) = eﬂ” - t’;" By Remark 3, ¢ is a product of
basis morphisms; hence, M(p) = e,-?“ + ei}" and char (k) = 2.
2. The graph of a scalarly multiplicative basis. In this section, we study some

properties of a scalarly multiplicative basis and give the proof of Proposition 1.

Following [2] (Section 4.9), we define a poset P, whose elements are the spaces
a; = (R al(a, a))"_lM{a) (ae JA, 1 <i<d(a)) and where g; < b; if and only if
A(b,b)fa; = b; for some f'e A(a,b). The clements ¢; € P are in a one-to-one
correspondence with the basis vectors m{ of every scalarly multiplicative basis
{mf‘.f;b"}, moreover, a; < b; if and only if eme = Amf for some f;b" and
0 # Ae k. We decompose the poset P into disjoint totally ordered subsets
{ay.....a54} (@) < ay < ... < ayy, d(a) < 3); each of them is called a double
if d(a) =2 and arripleif d(a) = 3.

The following three lemmas were given in [2] without proofs.

Lemma 6 (see [2] (Lemma 4.12.1)). The union U {ay, as, a3} of all triples is
totally ordered.

Proof. The elements of a triple are totally ordered.

Let {ay,ay, a3} and { b}, by, by} be triples and let some a@; be not comparable
with some b;. We shall construct indecomposable spaces H, = (kS, hy, a>®b%) on
M., ) € k, suchthat H; # H, for A # p.

For i = 3 and j = 1, the spaces #; were constructed in the proof of Lemma 2.
For arbitrary i and j, H, is constructed analogously with the block

1010)’*“
[0101

of hy:k® — M(a2 ® b2) located in the rows of

km? @ km{ @ km_? @ kmf C M(a?®b2).

Let (¢.&): H, = .‘H;l and let (M;) be the block matrix of M(E). Then (M) is
not upper block-triangular, but we can reduce (M;;) to the upper block-triangular form
by means of simultaneous transpositions of vertical and horizontal stripes, since the set
{ay, a,, as, by, by, b3 } is partially ordered. Hence, M is infinitely spaced. We arrive
at a contradiction that proves Lemma 6.
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EXISTENCE OF A MULTIPLICATIVE BASIS FOR A FINITELY SPACED ... 573

Lemma 7 (see [2] (Lemma 4.9)). There are no elements a;. ap, bj‘ and bJ-»
such that a; # ap, b; # b;», a; is not comparable to b;., and b; is not
comparable to a;. There are no elements a;, ap, bj, b;j-. ¢;. and ¢, such that
a; # ap, by # bpr, ¢; # cpv. a; is not comparable to by, b; is not comparable to ¢,
and c; is not comparable to a;.

Proof. In the first case, we set

Hy, = (ke, ® ke,, hy. a®b) e M~

where he, = m{ + mj-’» and e, = mj-’ + Am{. In the second case., we set

Hy, == (ke, @ ke, ® ke, hy, a® b c).

where hye, = mf + mj-’-, hye, = m_‘;-’ + myp, and hyey = mj+Amj. Obviously,
Hy, # H, for A # p.

Lemma 8. (see [2] (Lemma 4.12.2)). Each triple contains at least two elements
comparable with all elements of all doubles.

Proof. Assume that Lemma 8 is not true for a triple { a,a,, a3} and doubles
{b.by} and {c|.c,}.

Case 1. Assume that b # c. For definiteness, we suppose that a, is not
comparable to b, and a; is not comparable to c,.

For each representation #

&
Al
By ke Az, k" &g

k" Z, k‘: ¢

B] C1

s ks 2 s

of the quiver E; (see [2], (Section 6.3)). we construct the space
H o= (k"5 b a" ® b2 @ ') e MK,
where

_ A\ (A
v=a0(§)o (&) on0c.

is a linear mapping of " "% into
M(a" @ b @ ¢'*) = (km{)" ® [(km§)" @
® (km})*] @ [(km5)" ® (km§)"] @ (kmb)* ® (km§)"s.
The functor H — H on the representations A with injective Al A, Ay, By,

and C, preserves indecomposability and heteromorphism (i.e., H=H' if H =

~ H'). Indeed, let (¢.&): H = H'. The nondegenerate lincar maps @ and
M (&) have the block forms (®;). i,j <5, and (K!-j)‘ i,j € 7. The equality
h'@ = M@E)h implies A{®,, = K A,

A2 Ky K\ (A2 A3 Ky Kys\ (A3
. [P = ' . [P33 = »
B K3 Kiy3)\ B G Ksy Kss)\Cy
By®yy = KesBy  C3®s5 = KipCs.
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Since {a,ay a3} isawipleand {b,.b,} and {¢,.c,} are doubles, we have
K, = Ky = Ky, K33 = K¢, and K5 = K. Since a, is not comparable to b,
and a, is not comparable to ¢,, we have K,; = 0, K3, = 0, K;s = 0, and Ky, =0,
Hence, the diagonal blocks of (®;) and (K;) determine a morphism H - H.

We shall show that this morphism is an isomorphism, i.e., the diagonal blocks @;
and K;; are invertible. By strengthening the partial order relation in {a,, a,, a3, by,
by, ¢y, ¢, }, we obtain a total order relation << such that a, << b, and a; << ¢,
(these pairs are not comparable with respect to <).

We transpose the horizontal stripes of the matrices of A and A" according to the
new order. Then we transpose the vertical stripes to get lower trapezoidal matrices.

Correspondingly, we transpose the blocks of (®;) and (K;). Then the new matrix
(K;;) has a lower triangular form. The upper nonzero b]oc,ks of vertical stripes are the
1nJecuve maps A,, A,, A;, B,, and C, (since a, << b; and a; << ¢)). It follows
from k'@ = M(E)h that (®;) also has a lower triangular form. Hence, the diagonal
blocks @;; and K;; are invertible and H = #’.

But the quiver £; admits an infinite set of nonisomorphic indecomposable
representations of the form # with injective A,, A,, A;, B,, and C, (and
surjective B; and C,, which will be used in case 2). These representations are
determined by the matrices

I all 0 0/0 0 0

1 1]0 1 0|0 01
@ldala) =11 610 0 1]o 1 of
0 1/o0 0 0|1 00

0 1
(81I82}=(Cl|cg)=[ |0]

and they are nonisomorphic for different o € k. This contradicts the assumption that
M is finitely spaced.
Case 2. Assume that b = ¢. By Lemma 7, if @; is not comparable to b, and gq;

is not comparable to b,, then i = j. Let a, and a3 be not comparable to b;. Then
a) < bl and dy < bg.
As in case 1, for each representation # of the quiver E; with injective A, A,,

Ay, B,, and C, and surjective B, and C,. we construct the space H =
= (K"t h,oa" @ b)) e MK, where

h=A %[A )ea[A:‘]&)B ®C
Bl CI 2 2
is a linear mapping of k"%’ into
M(a" ® b2*"5) = (km®)' @ [(km3)" ® (km})?] @
® [(km$)" @ (kmb)3] © (kmB)? @ (kmb)">.

-

Let (@, &), H > H’. 1t follows from the order relation for {ay, a5, a3,b),b,}
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EXISTENCE OF A MULTIPLICATIVE BASIS FOR A FINITELY SPACED ... ) 575

that all blocks over the diagonal of the block matrix K = (K h pm %3 0E the
mapping M(&) are zero except the blocks K35 = Kg;. Let us prove that they are
zero, 100.

Indeed, by comparing the blocks with index (2, 3) in the equality h'¢ = M(E)h,
we obtain A3®,3 = 0 and ®y3 = 0 since A is injective. By comparing the
blocks with index (3.3), we obtain B{®,; = K35C, and K35 = 0 since C; is
surjective.

Hence K is the lower block-triangular matrix. Theretore @ also is a lower block-

triangular matrix the diagonal blocks K;; and ®;; of which are invertible, H =
This proves our lemma.

Now fix a normed scalarly multiplicative basis { m?. f,*"’} and define the
oriented graph T, the set of vertices I, of which is the poset P und there is an arrow

a, > b, (a, b, e€T) if and only if M(fP) = le e File ba " for some short

qp
-ba

double morphlsm (then there is an arrow a, — bq» and we shall say that the

P

arrows a, — bq and a, > bq' are connected). An arrow a3 bq will be

called a weak arrow if A(a, b) centains three double morphisms. Each weak arrow
is connected with two arrows. The others will be called strong arrows, each of them
is connected exactly with one arrow.

Lemma 9. Let a, < bj <c, and a; = c, be an arrow. Then a # b # ¢ # a,
i =r, the spaces A(a,b), A(b,c) and Al(a, ¢) contain exactly 1, 1 and 3
double morphisms respectively, and there exists a pair of oriented paths
(@~ .. = b}- = .. DG @y 2. D by > L o ¢y) consisting of connected
strong arrows, and a pair of connected weak arrows (a; = ¢, ap = ), i° # 0",
In the case of a reduced scalarly multiplicative basis, there is no other arrow from
{a} 10 {c¢}.

Proof. Since a; < bj < c,. there are morphisms g € A(a,b) and h € A, c)
such that M(g) = ue;“' + ﬁfj"f and M (h) = 'ye‘;f + 68‘,‘%» (a.B.y.8 € k and
o # 0 #v). If hg is a prime morphism, then M(hg) = aye; contradicts the
existence of the arrow a, — c,. Hence hg is a double morphism, [ # 0 # 8,
j7=j” and g and h are the unique double morphisms of A(a, b) and A (b, c)
respectively. The space A (a, ¢) contains the double morphism hg and the short
double morphism corresponding to the arrow a; — ¢,, hence M(a, ¢) has the form
from item c) of Lemma 5.

If the basis is reduced then by Remark 2 of Sect. 1, the double morphism hg isa

basis morphism and there is only one pair of connected arrows from {a,} to {¢}.
This proves our lemma.

Proof of Proposition 1. By Remark 3 of Sect. 1, we must prove that each space
A(a,c) (a, c € JA) does not contain three long double morphisms. By contradiction

let fl‘fé .f3 € A(a, c) be three long double morphisms and et f, = h,g,. where g, is
a short double morphism and r = 1,2, 3. The morphisms g,. ¢, and g, correspond

to the pairs of connected arrows (@, — x;, @, = xp0), (@ = y; a3 > y;) and

(ay, = z;, a3 = zp).
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Let x; < Yj By putting (a,, b, ¢,) = (a), x;, y;) in Lemma 9, we obtain that
A(a,y) contains three double morphisms. By putting (a;, bj-. ¢,)=(ayy,c,) in
Lemma 9, we have that 4(a, y) contains exactly one double morphism.

Hence x; is not comparable to ¥ Similarly x, is not comparable to z; and y;, is
not comparable to z,. This contradicts Lemma 7 and proves Proposition 1.

We shall now assume that the graph T is obtained from a reduced scalarly
multiplicative basis.

Lemma 10. If two arrows start from (stop at) the same vertex, then the arrows
connected with them start from (stop at) different vertices.

Proof. By contradiction, let b; « a; = ¢, and by « ay = ¢y be connected
arrows. If b; < c,. then a; < b; < ¢, and, by Lemma 9, the arrows connected with
a; = b; and a; — ¢, must start from different vertices, but they start from a;.
Analogously b+ is not comparable to ¢,. This contradicts Lemma 7.

Lemma 11. There are no two arrows starting from (stopping at) the same vertex
of a double. There are no three arrows starting from (stopping at) the same vertex
of a triple.

The proof follows from Lemma 10.

Lemma 12. There are at most two different pairs of connected arrows starting
from (stopping at) the same triple.

Proof. By contradiction, let there be three pairs of connected arrows from a triple
{ajas, a3} 10 {b;}. {¢;}. {d;}. Since there exist at most two pairs of connected
arrows from a triple to a triple, then there are no three coinciding objects among a, b,
¢, d. Hence there exist five possibilitics up to a permutationof b, ¢, d: 1) a = b #
2c#2d,a#d.2)a=b#c=d-3arb=d#c, a#c 4 a, b, c, d are

distinct and there are two arrows ¢; — b; and a; = ¢,. b; < ¢, 5) a, b, ¢, d are

distinct and for cach pair of arrows a; — x, a; — y. the vertices x and y are
incomparable. :
By Lemmas 9 — 1 1. we have the following subgraphs of I' incases 1, 3 and 4:

d

/ J apr —> ¢

dy djn—>> b‘: "
u\ d,
cy Cyr
bj‘
/(d.! ~ .
1) a3 2) ap—=>by 4) ay S~
A ¢
€j d,
b.
I
L a,—>b, / i

Consider these cases. .
DIf ¢;<ay or d},- < @y, then by Lemma 9, A(a, a) contains three double
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morphisms, which is a contradiction. If @, < ¢; or a3 < d;, then by Lemma 9, there

is an arrow a; — ¢; or ajl}—) d;, in contradiction with Lemma 11. Hence a, is
incomparable with ¢; and a3 is incomparable with d;. which is impossible by

Lemma 8.
2) This case is similar to the previous one,

3) The inequality b;s < ¢; is impossible, by Lemma 9, because A (a, b) contains

three double morphisms. The inequality by > ¢; is impossible, by Lemma 9, because

there are four arrows from {a;} to { b;}. Hence b, is incomparable with c;.
Analogously b, is not comparable to ¢; in contradiction with Lemma 7.

4) The inequalities ¢y < d, and c;» <d, are impossible, by Lemma 9, because
A (a, c) contains three double morphisms. If d, < ¢y or d < ¢, then the double
morphism Mf‘f +peii, (A # 0 # Q) isaproduct of double morphisms in 4 (a, d)
and A(d, c¢), hence A(a, ¢) contains two long double morphisms in contradiction
with the arrows a; — ¢; and a, - ¢,.. Hence ¢, is not comparable to d, and -qw is
not comparable to d,, in contradiction with Lemma 7.

5) This case is impossible by Lemma 7. The proof of Lemma 12 is thus complete.

3. A construction of a multiplicative basis. In this section we shall prove
following proposition.

Proposition 2. From every reduced scalarly multiplicative basis, we can obtain a
reduced scalarly multiplicative basis by means of multiplications of the basis vectors
by non-zero elements of k.

Let T be the graph of a reduced scalarly multiplicative basis { m{. f,b"i and let

I'; be the set of its arrows. An integral function z: I’y = Z will be called a weight
function and its value at an arrow will be called the weight of the arrow if:

a) z(o,) = —z(w,) for cach pair of connected arrows 0. Oyl

b) the sum of the weights of all arrows stopping at a vertex v € I, is equal to the
sum of the weights of all arrows starting from v (this sum will be called the weight of
v and will be denoted by z(v)).

Lemma 13. There exists no non-zero weight function. "e

Proof. By contradiction let z: T;; — 2 be a non-zero weight function. An
arrow o will be called nondegenerate if z(a) # 0.

Let v, < ... < v, be the setof all vertices of the triples of T". For cach vertex v,

we denote by v, v, the two vertices such that {v,v,. v, } isatriple,

By an elementary path of length s we shall mean a sequence of arrows of the
form

A As € A,
DU —> u, > ... U, —>V (2)

v 3 q*

P

where u, ....u,_, are vertices of doubles (they may be absent, i. .. a path may

s
consist of exactly one arrow) and :(7&.,) # (. Then by Lemma 11 and item b) of the
definition of a weight function, z(X,) = z2(A;) = ... = z(A,). this non-zero integer

we shall call the weight of parh (2). We shall say that the ¢lementary path (2) avoids
avertex v, if p <i < ¢g. Now we establish some properties of clementary paths:

A. The intersection of two elementary paths does not contain any vertex of a
double.

B. Each nondegenerate arrow is contained in an elementary path.
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C. Ifavertex v, isavoided by an elementary path (2) having length at least 2, then
the v, is incomparable with some vertex u, in this path. Otherwise, v, < u; < ...
. <u;_y <v, implics onc of the following conditions: v, <wv, <u or u <

< v <u,, forsome j or u_ < v <, This contradicts Lemma 9 because the

J+ 1
vertices u, ... . i, | arc¢’contained in doubles.

D. If a vertex of a triple is avoided by an elementary path of length at least 2, then
all other vertices of this triple can not be avoided by any clementary path having length
> 2. This follows from property C and Lemma 8.

E. The sum of the weights of all elementary paths avoiding a vertex v, is cqual to
=z(v;). Indeed. this is obvious for v, becausc. by property B. only arrows having
weight 0 can stop at v,. If property E is true for v, then the sum of the weights of
all elementary paths avoiding v, and starting from v, is equal to 0. But the set of
these paths coincides with the set of all elementary paths avoiding v, | and stopping
at v, . Hence property E is true for v, .

F. Let a triple { b, by, by} satisfy the following conditions: 1) there is no
nondegenerate arrow starting from @ < b2 2) there is a pair of connected degencrate
strong arrows starting from (b, by) or (b, by). 3) there is a pair of connected
nondegenerate weak arrows starting from  (bs, by). Then there exists a triple
{ay. ay. ay} satisfying the same conditions and «; < b;. Indeed. let for definiteness
the pair of connected degencerate strong arrows start from (b, by). From z(b)) = 0.
z(by) = —z(by) # 0 and properties D and E. it follows that b, or by is avoided by a
nondegenerate arrow. Let by be avoided by a nondegencrate arrow «¢; — ¢, Then

a, < by < c;. By Lemma 9. there exists a path a; = ... 2 by = ... = ¢
consisting of strong arrows. But by Lemma 12, there is only a weak arrow starting
from by, Hence b, is avoided by some nondegenerate arrow «; — ¢, By Lemma 9,
itis a weak arrow. (= j and there is a path @, = ... = by — ... = ¢; consisling
of strong arrows. But there is only one strong arrow starting from b, and it is
connected with an arrow starting from b, Hence the arrows connected with
d, = ... = by = ... > ¢, compose the path ap — ... = by — ... = ¢,. The
triple {ay, ay, as } satisfics our requircments.

Let ¢; be the vertex such that there is a nondegenerate wrrow starting from ¢, and
there is no nondegencrate arrow starting from b < ¢, Then there is no nondegenerate
arrow stopping at ¢, hence =(¢;) = 0 and there are two arrows starting from ¢, and
having the weights # and —», morcover [ = 1 and the arrows connected with them
start from ¢, and 3. Since z(cy) = —z(e3) = £n # 0. the vertices ¢, and ¢3 are
avoided by clementary paths, and one of them is a nondegencrate arrow. Let for
definiteness ¢, be avoided by a nondegenerate arfow b, — d,. By Lemma 9. i =
and thercisapath b, = ... = ¢y = ... = d,. Since there exists exactly one arrow
starting from ¢ and this arrow is connected with an arrow starting from ¢, we have

“that the arrows connected with b, — ... = ¢35 — ... — d, compose the path

by = ... 5 ¢y = ... &> dp Since by < ¢, there is no nondegenerate arrow

starting from b, Hence the arrow b, — d, is connected with the arrow by —> dp,
53

where 7 # i, and (" = 1. By applying property F to the triple { by, by, by} we
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obtain a triple { ay,a;, a3}. By applying property F to the triple {a,, ay, a3 }. we

obtain another triple and so on. This contradicts the finiteness of the graph T'. This
proves our Lemma.

Proof of Proposition 2. We number all vertices and all arrows of the graph T°:
Io={ana....a.}, T={fi fiz..... fir f2}-

where fﬂ: dpiny = By and fj;: Aoy = Bjny ArC IWO connected arrows and
pity < Bpgy: Let the basis vector m; correspond to the vertex a, and let the double
morphism f; correspond to the pair (fy, f). Then fim, .\, =m, ., and fimyiay =
= A;m, ). where A, is the parameter of a double morphism f;.

By changes of the basis vectors

m; = x;m;, 0 # x; €k, (3)

we obtain a new set of double morphisms: f/ = ,tpu-”,r;['ﬁ,fj. I € < s, with the
parameters A} = A oy ql;l) rmz, 202
The change (3) gives a multiplicative basis if A} = A5 = ... = &, = 1, ie.,if

Xy, Xy, ..., X, satisfy the system of equations

=1 .
lxpyn*r’im = Xn¥e2e 1 SJ<s @

We shall solve the system by elimination: solve the first equation for some x; and

substitute the result in other equations. This amounts to the multiplication of each of
them by a rational power of the first equation. Futher we solve the second equation of .
the obtained system for some x; and substitute the result in other equations... There

are two possibilities:
1. After the sth step, we obtain the solution (xy, ....x,) € (k\{0})" of (4).

2. Afterthe (r—1I)thstep (1 <t < s). we obtain a system, the rth equation of
which does not contain unknowns. In this case, the rth equation of (4), up to scalar

multiples A, is the product of rational powers of the Ith,.... (7~ 1)th equations. It
means that there exist integers z;, ...z, such that z, # 0 and the equality

(a1 ‘“pm:) (X1 plm) & (lqll}'r;t‘ll?.])-l (X1 q qm: (5)
is the identity, i.e., each x; has the same exponents at the two sides of (5).

Define the integer function =: T} — Z by =(fj) = —-:(f;-z) =z for j <1 and
z(fj1) = 2(fp) = 0 for j > 1. Since x; corresponds to the vertex a; of I', we have
by (5) that this function is a non-zero weight function, which contradicts Lemma 13,
Hence case 2 is impossible. This finishes the proof of Proposition 2.
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