Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 13 (2012). Number 1. pp. 18 – [25](#page--1-0) c Journal "Algebra and Discrete Mathematics"

On S-quasinormally embedded subgroups of finite groups

Kh. A. Al-Sharo, Olga Shemetkova and Xiaolan Yi¹

Communicated by V. V. Kirichenko

ABSTRACT. Let G be a finite group. A subgroup A is called: 1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let B_{seG} be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G . A subgroup B is called SE supplemented in G if there exists a subgroup T such that $G = BT$ and $B \cap T \leq B_{\text{seG}}$. The main result of the paper is the following.

Theorem. Let H be a normal subgroup in G , and p a prime divisor of |H| such that $(p-1, |H|) = 1$. Let P be a Sylow p-subgroup in H . Assume that all maximal subgroups in P are SE -supplemented in G. Then H is p-nilpotent and all its G-chief p-factors are cyclic.

1. Introduction

Algebra a[n](#page--1-2)d Discrete M[a](#page--1-3)thematics (RFSFARCH ARECTs Volume 13 (2012), Number 1, pp. 18 – 25 (c) Journal "Algebra and Discrete Mathematics"

(c) Journal "Algebra and Discrete Mathematics" (C) C) finite groups (C) (C) \mathbf{F} All groups considered in this paper will be finite. A subgroup A of a group G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G . This concept was introduced by Kegel in $[1]$ and has been studied in [2]–[15]. In 1998, Ballester-Bolinches and Pedraza-Aguilera [3] introduced the following definition: A subgroup B of a group G is said to be S-quasinormally embedded in G if for each prime p dividing the

¹Research of the third author (corresponding author) was supported by NNSF of China (grant no. 11101369).

²⁰¹⁰ Mathematics Subject Classification: 20D10, 20D20, 20D25.

Key words and phrases: Finite group, p-nilpotent, S-quasinormal subgroup.

order of B, a Sylow p-subgroup of B is also a Sylow p-subgroup of some S-quasinormal subgroup of G. In 2007, Al-Sharo and Shemetkova proved the following.

ofB, a Sylow p-subgroup of B is also a Sylow p-subgroup of some
is
incremal and
group of G. In 2007, Al-Sharo and Shemetkova proved
illuming.
The discrete discrete Mathematical Algebra Discrete Math. Let B be a normal su Theorem 1. *Let* H *be a normal subgroup of a group* G*, and let* p *be the smallest prime dividing* |H|*. Let* P *be a Sylow* p*-subgroup of* H*. Assume that every maximal subgroup of* P *is* S*-quasinormally embedded in* G*. Then* H *is* p*-nilpotent and its non-Frattini* G*-chief* p*-factors are cyclic* (see [10, Theorem 1.2])*.*

In 2007, Skiba introduced [\[11\]](#page--1-5) the concept of S-core as follows.

Definition 1. Let B be a subgroup of a group G. Let B_{sG} be the subgroup generated by all the subgroups of B which are S -quasinormal in G . The subgroup B_{sG} is called the S-core of H in G.

A subgroup B of G is called S -supplemented in G if there exists a subgroup T such that $G = BT$ and $B \cap T \leq B_{sG}$.

By using the concept of S-supplemented subgroup, Skiba proved the following important result.

Theorem 2. *Let* E *be a normal subgroup of a group* G*. Suppose that for every non-cyclic Sylow subgroup* P *of* E*, all maximal subgroups of* P *are* S*-supplemented in* G*. Then each* G*-chief factor of* E *is cyclic* (see [\[13,](#page--1-6) Theorem A])*.*

Recently, based on the concept of S-quasinormally embedded subgroup, Skiba introduced [\[14\]](#page--1-7) the following.

Definition 2. Let B be a subgroup of a group G. Let B_{seG} be the subgroup generated by all the subgroups of B which are S -quasinormally embedded in G. The subgroup B_{seG} is called the SE-core of B in G.

A subgroup B of G is called SE -supplemented in G if there exists a subgroup T such that $G = BT$ and $B \cap T \leq B_{seg}$.

In the present paper, by using the concept of SE -supplemented subgroup, we will prove the following improvement of Theorem 1.

Theorem 3. *Let* H *be a normal subgroup in* G*, and* p *a prime divisor of* $|H|$ *such that* $(p-1, |H|) = 1$ *. Let* P *be a Sylow p-subgroup in* H. Assume *that all maximal subgroups in* P *are* SE*-supplemented in* G*. Then* H *is* p*-nilpotent and all its* G*-chief* p*-factors are cyclic.*

Corollary 1. *Let* H *be a normal subgroup in* G*, and* p *a prime divisor of* $|H|$ *such that* $(p-1, |H|) = 1$ *. Let* P *be a Sylow p-subgroup in* H. Assume *that all maximal subgroups in* P *are* S*-supplemented in* G*. Then* H *is* p*-nilpotent and all its* G*-chief* p*-factors are cyclic.*

Theorem 2 can be easily deduced from Corollary 1 though we should notice that Theorem 2 is used in the proof of Theorem 3. The next corollary is a strengthened version of Theorem 1.

Corollary 2. *Let* H *be a normal subgroup in* G*, and* p *a prime divisor of* $|H|$ *such that* $(p-1, |H|) = 1$ *. Let* P *be a Sylow p-subgroup in* H. *Assume that all maximal subgroups in* P *are* S*-quasinormally embedded in* G*. Then* H *is* p*-nilpotent and all its* G*-chief* p*-factors are cyclic.*

2. Preliminaries

Corollary 1. Let II be a normal subgroup is G, and y a prime divisor of $|H|$ such that $|g - 1, |H|) = 1$. Let P be a Sylve p-subgroup in H₂ Assume that all mathemation and principal in the C. Then H is p-indipetent and a We use standard notations (see [16]). A subgroup T is called a supplement to a subgroup B in a group G if $G = BT$. We denote by H_G the core of H in G, the largest normal subgroup of G contained in H . A group (a subgroup) S is called a Schmidt group (a Schmidt subgroup) if every proper subgroup of S is nilpotent. We denote by $\pi(G)$ the set of all prime divisors of $|G|$. A group G is called p-supersoluble if every chief p -factor of G is cyclic.

Lemma 1. Let G be a group and $H \leq K \leq G$.

(1) If H *is* S*-quasinormal in* G*, then* H *is* S*-quasinormal in* K*.*

 (2) If $H \triangleleft G$, then K/H is S-quasinormal in G/H if and only if K *is* S*-quasinormal in* G*.*

(3) If H *is* S*-quasinormal in* G*, then* H *is subnormal in* G*.*

 (4) If A and B are S-quasinormal in G, then $A \cap B$ and $\langle A, B \rangle$ are S*-quasinormal in* G (see [1])*.*

Lemma 2. *Let* A, B *be some subgroups in* G*.*

(1) If A is S-quasinormal in G, then $A \cap B$ is S-quasinormal in B.

(2) If If A is S-quasinormal in G, then A/A_G is nilpotent (see [\[2\]](#page--1-2)).

Lemma 3. *Suppose that a subgroup* U *is* S*-quasinormally embedded in a group* G. Let $H \leq G$, and K be a normal subgroup of G. Then:

(a) If $U \leq H$, then U is S-quasinormally embedded in H.

(b) UK *is* S*-quasinormally embedded in* G*, and* UK/K *is* S *-quasinormally embedded in* G/K (see [\[3\]](#page--1-9))*.*

Lemma 4. *Let* H *be an* SE*-supplemented subgroup of* G*, and* N *a normal subgroup in* G*.*

(1) If $H \leq K \leq G$, then H is SE-supplemented in K. *(2)* If $N \leq H$, then H/N is SE -supplemented in G/N . *(3)* If $(|N|, |H|) = 1$, then HN/N is SE -supplemented in G/N (see

[\[14,](#page--1-7) Lemma 2.8])*.*

The following result is well known.

Lemma 5. Let p be a prime divisor of G such that $(p-1, |G|)$

(1) If $M \leq G$ and $|G : M| = p$, then M is normal in G.

(2) If a Sylow p*-subgroup of* G *is cyclic, then* G *is* p*-nilpotent.*

(3) If G *is* p*-supersoluble, then* G *is* p*-nilpotent.*

Lemma 6. *If a p-subgroup H is* S-quasinormal in *G*, then $H \leq O_p(G)$ *and* $O^p(G) \leq N_G(H)$ (see [\[15\]](#page--1-3)).

Lemma 7. *If* G *is a Schmidt group, then:*

(1) G is a p-closed $\{p, q\}$ -group for some primes p, q;

(2) if P *is a Sylow* p*-subgroup of* G*, then* P/Φ(P) *is a chief factor of* G and $|P/\Phi(P)| = p^n \equiv 1 \pmod{q}$ where *n* is the order of *p* modulo q (see [\[17,](#page--1-10) Theorem 26.1]) and [16, Theorem VII.6.18]*).*

Lemma 8. Let $R \trianglelefteq G$. Assume that $R/O_{p'}(G)$ is not contained in the *hypercentre of* G/O^p ′(G)*. Then* G *has a* p*-closed Schmidt subgroup* S *such that a Sylow p-subgroup* $S_p \neq 1$ *of* S *is contained in* R (see [\[18,](#page--1-11) Lemma 3]).

Lemma 9. Let p be a prime divisor of G such that $(p-1, |G|) = 1$. Let G_p *be a Sylow p-subgroup of* $G, K \leq G, P = G_p \cap K$ *. If* G/K *is a p-group and every maximal subgroup of* G^p *either contains* P *or has a* p*-nilpotent supplement in* G*, then* K *is* p*-nilpotent.*

ma 4. Let II be an SE-sagnlemented subgroup of G, and N a normal
vary in C.
If $H \times K \leq G$, then H is SE-supplemented in G, W
 $\int f \, H \leq K \leq G$, then H/N is SE-supplemented in G/N.
 $\int f \, |f(N, H) = 1$, then H/N is SE-sup *Proof.* Assume that K is not p-nilpotent. Then by [\[20,](#page--1-12) Theorem IV.4.7] we have $P \nleq \Phi(G_p)$. Let M_1 be a maximal subgroup in G_p not containing P. It follows that there exists a p-nilpotent subgroup T_1 such that $G = M_1T_1$. Clearly, $G_p = M_1(G_p \cap T_1)$, and we can assume that $T_1 = N_G(H_1)$ where H_1 is a Hall p'-subgroup of K. We see that by [\[19\]](#page--1-13) every two Hall p'subgroup of K are conjugate in K (by assumption, either $p = 2$ or $|G|$ is odd). By Frattini argument, $G = KT_1 = PT_1$, hence $G_p = P(G_p \cap T_1)$ and $G_p \cap T_1 \nleq P$. Let M_2 be a maximal subgroup in G_p containing $G_p \cap T_1$. Then $G = M_2T_2$ where T_2 is the normalizer in G of some Hall

p'-subgroup H_2 of K. Since $H_1^x = H_2$, $T_1^x = T_2$ for some $x \in G$, it follows that $G = M_2 T_2 = M_2 T_1^x = M_1 T_1 = M_2 T_1$. Therefore

$$
G_p = M_1(G_p \cap T_1) = M_2(G_p \cap T_1) = M_2,
$$

a contradiction.

3. Proof of Theorem 3

Suppose that the theorem is not true and choose a counterexample (G, H) for which $|G| + |H|$ is minimal. We will prove several propositions and will get a contradiction. It follows from Lemma 5 that P is non-cyclic.

 (1) $O_{p'}(H) = 1.$

Assume that $O_{p'}(H) \neq 1$. Applying Lemma 4 we see that the theorem is true for $(G/O_{p'}(H), H/O_{p'}(H))$, and then it is true for (G, H) , a contradiction.

 (2) $H = G$.

Assume that $H \neq G$. By Lemma 4 the theorem is true for the pair (H, H) . Hence H is p-nilpotent. It follows by (1) that H is a p-group. By Theorem 2 every G-chief factor of H is cyclic, a contradiction.

From (1) and (2) we get the following.

(3) $O_{p'}(G) = 1.$

(4) $|P| > p^2$.

 $p^t\text{-subgraph}~H_2$ of $K.$ Since $H_1^x = H_2, T_1^x = T_2$ for some $x \in G$, it follows that $G = M_2T_2 = M_2T_1^x = M_1T_1 = M_2T_1$. Therefore $G_p = M_1(G_p \cap T_1) = M_2(G_p \cap T_1) = M_2,$ a contradiction.
 $\begin{minipage}[t]{.5cm} \textbf{3. Proof of Theorem 3}\\ \textbf{5. Proof of The$ Assume that $|P| = p^2$. Applying Lemma 5 and Lemma 8 we see that P is contained in a p-closed Schmidt subgroup S of order p^2q^b where q is a prime and $p^2 \equiv 1 \pmod{q}$. Clearly, a Sylow q-subgroup of S is maximal in S. By Lemma 4 all subgroups of order p in P are SE -supplemented in S. Applying Lemmas 1 and 3 we see that all subgroups of order p in P are S-quasinormal in S. Therefore S has a subgroup of order pq^b , a contradiction.

 (5) P is non-normal in G.

Assume that P is normal in G. Since the theorem is true for (G, P) , G is p-supersoluble and so p-nilpotent by Lemma 5, a contradiction.

The following two propositions follow from Lemma 4 and the minimality of the counterexample G.

(6) If N is minimal normal subgroup in G contained in P, then G/N is p-supersoluble.

(7) If $P \leq M \leq G$, then M is p-nilpotent.

 (8) G is *p*-soluble.

Assume that G is not p -soluble. By Lemma 6 the unit subgroup 1 is the only S-quasinormal subgroup contained in P. In particular, $P_G = 1$. Since $(p-1, |G|) = 1$, we have $p = 2$. By (7) there is a unique minimal normal subgroup K in G, and $PK = G$.

ssume that G is not *p*-soluble. By Lemma 6 the unit subgroup 1 is

hy b
-quasitormal subgroup contained in P. In particular, $P_G = 1$,
 $(p - 1, |G|) = 1$, we have $p - 2$. By (7) there is a unique minimal all subgroup Let M be a maximal subgroup in P such that $M \not\geq P \cap K$. Since M is SE-supplemented in G, there is a subgroup T such that $G = MT$ and $M \cap T \leq M_{\text{seG}}$. If $M_{\text{seG}} = 1$, we have $|T|_2 = 2$, and therefore T is 2-nilpotent. Assume that $M_{\text{seG}} \neq 1$. Then there exists a non-identity subgroup L in M such that L is S -quasinormally embedded in G . Therefore L is a Sylow p-subgroup of some S-qusinormal subgroup D. If $D_G = 1$, it follows that D is nilpotent by Lemma 2. Then by Lemma 6 we have $F(G) \neq 1$, which contradicts (3) and $P_G = 1$. Therefore $K \leq D_G \neq 1$ and $L \geq P \cap K$. So we proved that every maximal subgroup in P not containing $P \cap K$ has a 2-nilpotent supplement. By Lemma 9 we have that K is 2-nilpotent, and (8) is proved.

The final contradiction.

From $(1-8)$ it follows that G has a unique minimal normal subgroup K, and the following properties are valid: 1) K is a p-group and $K \neq P$; 2) G/K is p-nilpotent; 3) $K = C_G(K) = F(G)$.

Let M be a maximal subgroup in P such that $M \geq K$. Since M is SE-supplemented in G, there is a subgroup T such that $G = MT$ and $M \cap T \leq M_{\text{seG}}$. If $M_{\text{seG}} = 1$, we have $|T|_p = p$, and therefore T is p-nilpotent. Assume that $M_{\text{seg}} \neq 1$. Then there exists a non-identity subgroup L in M such that L is S -quasinormally embedded in G . Therefore L is a Sylow p-subgroup of some S-qusinormal subgroup D. If $D_G \neq 1$, then $K \leq D_G$ and $K \leq L \leq M$, a contradiction. Let $D_G = 1$. Then by Lemma 2 we have that D is nilpotent, and so $L = D$ is an S-qusinormal psubgroup. By Lemma 6 we have that $O^p(G) \leq N_G(L)$. So, from $L \leq M \leq P$ and $G = PO^p(G)$ it follows that

$$
K \le \langle L^x \mid x \in G \rangle = \langle L^x \mid x \in P \rangle \le M,
$$

a contradiction. We proved that every maximal subgroup in P not containing K has a p-nilpotent supplement in G . But then by Lemma 9 we have that KQ is p-nilpotent.

The proof of Theorem 3 is completed.

References

[1] O. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205–221.

- [2] W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125–132.
- [3] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, Sufficient conditions for supersolvability of finite groups, J. Pure Appl. Algebra 127 (1998), 113–118.
- [4] M. Asaad, On maximal subgroups of finite groups, Comm. Algebra 26 (1998), 3647–3652.
- [5] M. Asaad, P. Csörgő, *Influence of minimal subgroups on the structure of finite* groups, Arch. Math. (Basel) 72 (1999), 401–404.
- [6] A. Ballester-Bolinches, X. Y. Guo, On complemented subgroups of finite groups, Arch. Math. (Basel), 72 (1999), 161–166.
- [7] Y. Li, Y. Wang, The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc. 131 (2002), 337–341.
- [8] Y. Li, Y. Wang, The influence of π -quasinormality of some subgroups of a finite group, Arch. Math. (Basel) 81 (2003), 245–252.
- [9] Y. Li, Y. Wang, $On \pi$ -quasinormally embedded subgroups of finite groups, J. Algebra 281 (2004), 109–123.
- [10] Kh. A. Al-Sharo, Olga Shemetkova, An application of the concept of a generalized central element, Algebra discrete Math. No. 4 (2007), 1–10.
- [11] A. N. Skiba, On weakly S-permutable subgroups of finite groups, J. Algebra 315 (2007), 192–209.
- [12] L. A. Shemetkov, Skiba, On the XΦ-hypercentre of finite groups, J. Algebra 322 (2009), 2106–2117.
- [13] A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory 13 (2010), 841–850.
- [14] A. N. Skiba, On the SE-core of subgroups of a finite group, Problems of Physics, Mathematics and Technics No. $4(5)$ (2010), 39–45.
- [15] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra 82 (1998), 285–293.
- [16] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992.
- [17] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978.
- |2] W. F. Dewkire, Oo awastrarraal volgtromas of firstic groups, Math. Z. 82 (1968), 125 132.

|5] Algebra
er-Bolinches, M. C. Pechnar-Aguilers, Sufficient conditions for approximate
is approximate conditions for [18] O. L. Shemetkova, On finite groups with Q-central elements of prime order, Proc. of the Institute of Mathematics, Minsk, Republic of Belarus 16, No. 1 (2008), 97–99.
	- [19] F. Gross, Conjugacy of odd Hall subgroups, Bull. London Math. Soc. 19 (1987), 311–319.
	- [20] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967.

CONTACT INFORMATION

Received by the editors: 31.01.2012 and in final form 31.01.2012.