UDC 621.3.019.3
P.D. CESPEDES GARCIA

N-VERSION PROGRAMMING AS AN OPPORTUNITY TO EXCLUDE ERRORS
IN SOFTWARE

“Institute of Mathematical Machines and Systems National Academy of Sciences of Ukraine, Kyiv, Ukraine

Anomauia. Oonum i3 Memooié nid8UIEeHHs PIBHS 2APAHMO30AMHOCHI KOMI TOMEPHUX CUCTIEeM € MemOo0
bacamosepcitinozo npoepamysants. L{a konyenyis 6yna 3anpononosana Jlimineom Yenom i Anveipoacom
Asgidicenicom y 8uensaodi 0CHOBHOI cinomesu npo me, Wo «He3ANEHCHI 3YCUNLIL NPU Po3pPoOYI NPOSPAMHOZO
3a0e3neyeHHs 3HAYHO 3MEHUAMb IMOGIPHICMb I0eHMUYHUX 30018, WO SUHUKAIOMb) 080X abo binvuue sep-
cisix npoepamuy. Memorw b6azamosepciiino2o npoepamyanHs € nioguwerHs Hadilinocmi pobomu npozpa-
MHO20 3a6e3neyeHHs 3a pAXYHOK J0Kani3ayii noMuiok npoexmyeanus. Egexmuenicms 6azamosepcitinoi
cucmemu 3anexCUms 6i0 PISHOMAHIMHOCMI 8apiayill HA emanax YmeopeHHs 2pyn GUKOHABYIB, GUKOPUC-
MAKHA PI3HUX ANeOpUmMis, 3acobie npoekmyegants ma eunpooysansv. bacamogepcitine npocpamme 3abe3-
NeyeHHs BUSHAUAEMbCS, SIK He3ANIeHCHO po3pobieHi 080 abo Oinbule (PYHKYIOHATLHO eKeiealenmHi npo-
epamu, Hanucawi 3 00Hici nowamkogoi cneyughixayii. Pisui eepcii npoepam maoms yce HeobXiOHe O ix
00HOUACHO20 BUKOHAHHSA T NPU YbOMY 83AEMOIIOMb 0OHA 3 OOHOI HA eMmanax NOPIGHAHHS Pe3yTbmamis.
Hocniosxcenns npunyckaioms, wo He3a1eHCHA po3poOKa NpoepamHo2o 3abesnedents i noddivuie 8nposa-
02iCeHHsL Memodie OUBEPCHOCMI Npueedyms 00 CIMEBOPEHHS 8epCill, AKI MICMAMb CYMMEBO PI3HI NOMUIKU,
Wo He npusoodsimv 00 8iOMO8 HA emanax NopieHsaHHsa. Taxum YuHOM, AKWO Oilbicmb 8epciti gudacmy
00HAKOBI 3HAYEHHS, Yell 3a2albHUll pe3yrbmam, iMogipro, 6yode ipuum. Takoc crid 36epuymu ysaey Ha
NPOEeKmy8aHHsa 6a2amoepciliHoi cucmemu K cucmemu 3 0eKiIbKOMA 8UOAMU BePCIIHOI HAOTUUKOBOCH
Ha 6cix emanax ii ocummegozo yuxay. Lle 0ozeorums ousepcugixysamu cucmemy He milbKu HA emani
Po3pobKu, ane il Ha nonepeoHix emanax npoexmysanns cucmemu. Hezeaocarouu na me, wo Oyau npose-
OeHi 00CNi0NHCeH A, AKI CTNABAMb Ni0 CYMHI8 AKMYANIbHICIb 6A2amo8epCiiHo20 NPOeKmy8amHs, pad 00c-
JEOHUYBKUX 2pyn NIOMEepOUnU 3HAYHO 8UWY KOPEKMHICIMb 00YUCTeHb, AKUX 30amHi docaemu bazamogep-
CIUHI cucmemu)y NOPIGHAHHI 31 36UYAUHUMU CUCTNEMAMU.

Knrouoei cnosa: capanmosoamuicms, N-gepciiine npoepamysanns, 6a2amogepciiini cucmemu, Ha0auuKo-
8icmb, OuepCcHicmb, 8i0MOBOCMILIKA cCUCHeMA, PO3POOKA NPOSPAMHO20 3A0e3NeYeHHS.

Annomauus. OOnum u3z mMemooo8 NosvluleHUsl YPOBHI 2apaAHMOCNOCOOHOCHIU KOMILIOMEPHBIX CUCHEM
ABIAEMC MEMOO MHO208EPCUOHHO20 NPOSPAMMUPOBAHUs. Dma KoHyenyus Ovlia npednodcena Jlumuneom
Yernom u Anveupoacom AsudiceHucom 6 8ude OCHOBHOU SUNOme3bl 0 MOM, YMO «He3asUcUMble YCUIUSL NpU
paspabomke nPoOcPAMMHO20 0becnedeHUss 3HAYUMETbHO YMEHbUWAMm 8epPOSMHOCb UOEHMUYHBIX cOO0es,
BOZHUKAIOWUX 6 08YX UNU DOjlee 8epcusix npocpammbly. Lleavlo MHO206EPCUOHHO20 NPOSPAMMUPOBAHUSL
AGTILEMCST NOBGBLUUEHUE HAOEHCHOCTIU PAOOMbL NPOSPAMMHO20 0DeCneveHUs 3a CHem JOKATU3AYUY OumuboK
npoexmuposanusi. IPHekmusHOCmb MHO208EPCUOHHOU CUCTHEMbL 3AGUCUM O PA3HOOOpa3us apuayull
Ha dmanax oopazo8anus epynn UCHOIHUMeNell, UCNOIb308AHUST PAZHBIX ACOPUMMOS, CPeOCmE NPOeKmu-
poseanus u ucnvimanuil. MHo208epCUOHHOE NPOSPAMMHOE OOecneueHue onpeoesiencst KaKk He3a8UCUMO
paspabomannvie 0se wiu Oonee PYHKYUOHATLHO IKGUBAIEHMHbLE NPOSPAMMbI, HANUCAHHBIE U3 OOHOU UC-
Xo0Hou cneyugurxayuu. Pasnvie sepcuu npoecpamm umerom 6cé Heobxooumoe 05 Ux 00HOBPEMEHHO20 Gbl-
NOJHEHUsL U NPU IMOM 83AUMOOEUCMBYIOmM Opye ¢ OPY20M HA IMANAX CpasHenus pe3yiomamos. Hccnedo-
BAHUSL NPEONONA2AIOM, YMO He3ABUCUMASL PA3PADOMKA NPOSPAMMHO20 obecneyeHus u dalbHelulee GHeo-
penue Memooo8 OUBEPCHOCHU NPUBEOYI K CO30AHUI0 8ePCUll, KOMOPble CO0ePAHCaAm CYUWeCmMBEeHHO PA3Hble
OWUOKY, He NPUBOOSAUUE K OMKA3AM Ha smanax cpasHenus. Takum obpaszom, eciu 601bUWUHCINEO ePCUll
6610a0y 0OUHAKOBbIE 3HAUEHUS, IMOM 00Wull pe3yIbmam, eeposimuo, 6yoem eepHuim. Takoce credyem
obpamums GHUMAHUE HA NPOEKMUPOBAHUE MHO20BEPCUOHHOU CUCTEMbl KAK CUCIEMbl ¢ HEeCKOTbKUMU
BUOAMU 8ePCUOHHOL U3OLIMOUHOCMU HA 8CeX €€ IMANAX HCUSHEHHO20 YUKIA. Mo HO360AUm Ousepcugdu-
YUposamuv CucmemMy He MOAbKO HA dmane papabomku, HO U HA NPed8apumenbHblX IManax npoeKmupo-
sanus cucmemvl. Hecmompst na mo, umo 6vinu npogedenvl UCCie008anus, Cmassiuue no0 COMHeHUe aK-
MYanrbHOCb MHO208EPCUOHHO20 NPOEKMUPOBAHUSL, PO UCCTIe008AMENbCKUX 2Py HOOMEEPOUY ZHAYU-

© Cespedes Garcia P.D., 2019 203
ISSN 1028-9763. Marematuusi Mamiau i cuctemu, 2019, Ne 1

menvHo Oonee BbICOKYIO KOPpPEKMHOCHb Gbl‘luCJleHUZZ, Komopbulx CcnocobHvl docmuyb MHO206€EPCUOHHbLIE
cucmemsl 6 CpaA6HEHUU C 0ObIYHBIMU CUCTEMAMU.

Knroueswie cnosa: eapanmocnoco6nocmb, N—@epcuozmoe npozpammuposarnue, MHO206EPCUOHHbLE CUCme-
Mbl, M36blm01lHOCmb, dueepcnocmb, 0m1<a30ycm0ﬁltu6aﬂ cucmema, pa3pa60ml<a npocpammHozco obecne-
UEeHUA.

Abstract. One of the methods for increasing computer system dependability level is the N-version pro-
gramming method. Liming Chen and Algirdas Avizienis proposed this concept with the main hypothesis
that «independent efforts in software development will significantly reduce the likelihood of identical fail-
ures that occurs in two or more versions of the programy. The main goal of N-version programming is to
increase the reliability of the software by bounding design errors. The effectiveness of a multiversion sys-
tem depends on the variety of variations at the executive teams formation stage, different algorithms im-
plementation, design and testing tools. Multiversion software is defined as independently developed two or
more functionally equivalent programs written from the same specification source. Different program ver-
sions have everything they need for simultaneous execution, and at the same time, they interact with each
other at the results comparison stages. Researches suggest that independent software development and
further implementation of diversity methods will lead to the creation of versions that contain significantly
different errors and they will not lead to failures at the comparison stages. Thus, if most versions produce
the same values, this overall result is likely will be correct. Moreover, a multiversion system design must
be considered, as a system with several types of versioned redundancy at all stages of its life cycle. This
will allow diversifying the system not only at the development stage, but at the preliminary stages of sys-
tem design as well. Despite the conducted studies that discredited the relevance of multiversion design, a
number of research groups have confirmed the significantly higher calculations accuracy, which multiver-
sion systems are capable to achieve, in comparison with conventional systems.

Keywords: dependability, N-version programming, multiversion systems, redundancy, diversity, fault-
tolerant system, software development.

1. Introduction

Complex systems with its constant software failures causes lots of trouble, any failure in security
systems can lead to unpleasant consequences, which is why modern systems are subject of high
reliability requirements. The most common source of computer system failures are software de-
fects. They had been formed during the development phase, no one detected them during testing
and verification, and finally they appeared while operating a set of an input data or due to the
physical or informational environment features [1]. The testing stage cannot always eliminate
every software error, more accurate testing of a critical application system is expensive. This
forces to search for more affordable methods to improve the quality of a complex system [2].

2. The emergence of N-version programming approach

Duplication technique (hardware redundancy) is often used in critical systems, this approach pro-
tects against hardware accidental failures. In addition to redundancy, there is a multiversion (N-
version) programming (NVP) technique, it is based on the idea of using redundancy in software.
Multiversion programming partially transfers hardware duplication approach to software devel-
opment. The idea is to execute simultaneously several independently developed but functionally
equivalent software versions by different development teams. A kind of software redundancy that
increases the system chances to provide correct results by compensating each other’s errors.
Thus, the risk of simultaneous and single-type failures in a multiversion system decreases with an
increase in the number of implemented versions. This N-version method provides the necessary
level of critical systems safety and reliability when designing a multiversion system, this diversity
can be implemented in the following stages [3]:

1. Training, experience, and location of developers.

2. Algorithms and data structures.

204 ISSN 1028-9763. Marematnuni MamuHu i cuctemu, 2019, Ne 1

3. Programming languages.

4. Software development methods.

5. Development tools and environments.

6. Testing tools and methods.

The research on N-version efficiency received much efforts, Liming Chen and Algirdas
Avizienis introduced the concept itself in 1977 with the main hypothesis that independent soft-
ware development efforts would significantly reduce the chances of identical failures using two
or more program versions. At the early stages, attention was focused mainly on modeling a sys-
tem that implements the principle of the N-version programming approach. There were discus-
sions about simultaneous failures possibilities in different versions, later this topic was researched
in pair with N-version programming software failures. For example in [2], we see that constraints
of the software reliability stemmed from multiversion method problems. The authors also paid
attention to the pricing issue and to the multiversion system optimal structure as well.

The research has led to significant breakthroughs in the field of N-version programming,
A. Avizienis, P. Popov, L. Strigini have made a significant contribution to the NVP methodolo-
gies development, they describe processes and tools for multiversion software implementation,
testing, practical use and maintenance. These and other studies were focused on diversity and re-
ducing the odds of simultaneous and similar failures, which led to meaningful results in develop-
ing multiversion applications. Further, developments in the modeling field and quantified influ-
ence of diversity on the reliability of multiversion systems were carried out [3].

John Knight and Nancy Leveson demonstrated [4] that independent version development
is not enough for the system to become completely crash independent. Their research was im-
portant for the NVP, since they encouraged researchers to study the question of how to effective-
ly implement diversity and quantify its effect more carefully. Many researchers, who were in-
volved or interested in N-version programming, misunderstood their criticism and perceived it as
a definitive statement against the NVP, even though it was not true. D. Knight and N. Leveson
warned that independence of failures, though mathematically convenient in theoretical work,
could not be assumed in reality. However, according to A. Avizienis, independent failure is mere-
ly an ideological objective, and is not a basis for, or even an assumption of N-version program-
ming [3].

In [5], there is a suggestion to divide redundancy into external and internal at the early
multiversion system designing stages, and to carry out the project formation, respectively, in two
stages: theoretical design and a software development. Thorough discussion about taxonomy and
versioned redundancy classification is occurred in [1], diversity principles and their terminologi-
cal aspects are clarified, and different types of versioned redundancy being analyzed, taking into
account the capabilities of modern computer technologies and experience in developing multiver-
sion systems. Also worth mentioning the performer’s personal characteristics diversity, different
developers even if they work separately, often make the same mistakes. The most likely reason is
a random personal characteristics coincidence between the participants in a multiversion project
where the same techniques and tools for development are used (e.g. similarities in implementa-
tions of the most common techniques in solving various tasks during the learning process) [6].

3. The concept of N-version programming

Traditional software has only one version. Input data always being processed in the same way,
any failures lead to an error in the calculations results. To avoid this problem, when writing and
testing code, software developers have to eliminate as many errors as possible. Since, it is almost
impossible to eliminate all errors during a complex system development, the concept of a fault-
tolerant software was introduced in pair with redundancy. With its introduction, users assumed a
significant reliability level increase along with the software systems performance boost. N-
version programming is one of the most common methods for developing fault-tolerant applica-

ISSN 1028-9763. MaremaruuHi Mamiiau i cuctemu, 2019, Ne 1 205

tion systems. It is defined as an independently developed set of N > 2 structurally different, but
functionally equivalent programs (versions) that corresponds to the same initial specification.
Each software version process source data separately and simultaneously, the voting/matching
mechanism is an inter-stage point for output data from each version to interact with each other.
This mechanism will not allow any failure to affect the entire system result.

When we talk about «independently developed programsy, it means that there are N-
number of developers groups who do not interact with each other, they use different development
tools, programming languages and algorithms for the task implementation. A visual representa-
tion of multiversion software is shown in Fig. 1.

N-Versions Computing phases

Comparison | —
algorithm]

Comparison | (—
algorithm

Comparison OUTPUT
algorithm :

Figure 1 — An example of a N-version programming system

The main goal of the technical, or the so-called initial specification, is to establish the
functional requirements completely, while leaving the widest possible choice of implementations
for designers and developers. It also specifies special functions that are necessary for each ver-
sion execution in accordance with the fault-tolerance requirements. The initial specification
should define [7]:

1. Functions that must be implemented by multiversion software.

2. Data formats for special mechanisms: comparison vectors, comparison status indicators
and synchronization mechanisms.

3. Cross-check points for comparison vector generation.

4. Comparison algorithm.

5. Response to the possible outcomes.

At various system operation stages, these special mechanisms allow to control the entire
system using N-version execution environment (NVX) that acts as an additional software and/or
hardware [8]. With comparison algorithm implementation, it is necessary to establish explicitly
the acceptable range of numerical results. «Comparison algorithmy expression is used as a gen-
eral term to the comparison principle. Specifically, «matching» algorithm refers to systems with
two implemented versions, while «voting» algorithm refers to systems with more than two ver-
sions.

Some NVX implementations are developed in such way, that they make the final decision,
taking into account each individual result of each N-version. Decision-making algorithms imple-
mentation can vary from simple, where the most common results considered as valid, to algo-
rithms that are more complex. Among other duties, the NV X must: provide the necessary inter-
version communication; manage synchronization control; perform error-masking for each stage at
the inter-stage comparison points to ensure version functioning; execute error-correction func-
tions and, in general, manage system efficiency [3].

206 ISSN 1028-9763. Marematnuni MamuHu i cuctemu, 2019, Ne 1

4. Versioned redundancy types classification

Form of redundancy in a multiversion project determines the system development direction. Op-
tions for engineering implementation are called external multiversion. Internal multiversion is
responsible for technical and software solutions.

Formation of a multiversion project with an external multiversion diversity starts from
consideration of all factors that would be taken into the project account. Next, based on the initial
specification, a hierarchy is formed from a set of variants, which are preliminarily divided into
categories. From a variety of options consider reasonable combinations, and at the final stage,
generate system versions. At the initial planning stage, project managers make decisions about:
hardware diversity options, operating system, software, recommended programming languages,
specifications, development tools, and testing options. After forming the general development
concept, the project developers establish functional specifications. They start to develop architec-
ture, data structures, algorithms, afterwards they write code and test it. Also, they are engaged in
providing quality control, designing supporting documentation, and ultimately, they maintain
software support [9].

Details about delivering redundancy to a multiversion system at all its life cycle stages
considered in [1]. It is proposed that system level consists of six types of versioned redundancy
(VR):

1. Various teams of performers achieve Subjective VR. The work [6], on the diversity of a
programmers personal characteristics, considers the reasons why the development of a project by
several groups is the basis for a successful results in terms of personality differences.

2. VR of design is based on applying various concepts of technologies and architectures in
the development of hardware and software and the system as a whole.

3. VR of software suggests applying different software versions. Their diversity caused by
various types of VR's implementation, it applies to the software development stages: algorithms
and logic implementation, software architecture, programming languages, operating systems and
databases.

4. Functional VR is achieved by implementing different functionality to achieve an identi-
cal result.

5. Signal VR is provided by using various data sources that determines the system func-
tioning algorithm.

6. VR of equipment is achieved with the help of various components, printed circuit
boards, computer bus organization, and different equipment manufacturers.

Implementation of multiversion system at the program stage is achieved based on diversi-
ty of life cycle models levels. It offers a choice between a model with the minimum required and
maximum set of processes to ensure quality. By choosing the programming languages, develop-
ment tools and the developers themselves, you can achieve a diversity of resources and tools.
Project solutions diversity is achieved by taking into account the possible choices of architecture
and platforms, records, formats and ways of representing data [1].

Options for classifying multiversioning at a conceptual level are considered in accordance
with approaches to system design and calculation systems that are used for representing and pro-
cessing information in multiversion system channels [1].

5. Conclusion

Multiversion system development combines the principles of redundancy with the condition of
identical functionality. The main goal of this approach is to increase the system dependability
level. Performer groups diversity at all project life cycle stages implements a multiversioning
principle, starting with the requirements development and finishing with commissioning. With
the same specification, independent development teams create several project implementations

ISSN 1028-9763. MaremaruuHi Mamiiau i cuctemu, 2019, Ne 1 207

using different hardware, methods, tools, programming languages, etc. To achieve correct output
results in the multiversion system, there is either comparison or voting algorithm at the final cal-
culation stage, systems with inter-stage testing and error masking are also possible.

There are disputes between NVP method researchers regarding the errors independence
when developing different versions for the system. It is assumed that independence in the system
development will lead to statistically independent errors, the experiment [4] suggests opposite.
The multiversion system weak point is the comparison algorithm, system calculations accuracy
and output data fidelity depends on the algorithm that is used in the N-version execution envi-
ronment. It could be either «voting» or «matching» algorithm, depending on quantity of imple-
mented versions in the system, it determines which of the results among each version is correct.
The results of several independent versions are more likely to provide «reliable» data than the
results of a single version, but there are some debates whether the effect of the multiversion
method implementation is worth the time, efforts and costs [3].

The positive effect from designing multiversion software can be achieved when compar-
ing output data using voting algorithm, therefore the number of versions should be at least 3, keep
in mind that it will also significantly increase development costs. It’s noted that when the devel-
opment of complex multiversion software is completed, it has to be upgraded, since it is morally
and technologically obsolete. Multiversion software is efficient in long-lived especially critical
systems — astronautics, armament, etc., where software has been tested and developed for years
and, subsequently «lashed» into the ROM.

REFERENCES

1. Cuopa A.A., Cxiisip B.B., Xapuenko B.C. (N,M)-BepCHOHHBIE CHCTEMbI: TAKCOHOMUS, MOJCITH W TEXHO-
norun. Bicnuxk Xapxiecvkoeo HayionmanvHo2o yHieepcumemy. Mamemamuune moodenosanus. Ingop-
Mayitni mexunonozii. Aemomamuszosani cucmemu ynpaeninus. 2008. Ne 833, C. 231-246.

2. Min X., Chengjie X., Szu-Hui Ng. A study of N-version programming and its impact on software avail-
ability. International Journal of Systems Science. 2014. Vol 45, N 10. P. 2145-2157.

3. Liburd D.S. An N-version Electronic Voting System. Massachusetts Institute of Technology. Dept. of
Electrical Engineering and Computer Science. 2004. P. 15-31.

4. Knight J.C., Leveson N.G. An experimental evaluation of the assumption of independence in multiver-
sion programming. IEEE Transactions on Software Engineering. 1986. Vol. 12, N 1. P. 96-109.

5. Hyxwuit B.U., Hlocrak A.B., Qyxwuit .B. Onenka nokasaresnsi BEpCHOHHON M30BITOYHOCTH MPH MPOEK-
TUPOBAHUU TPOrpaMMHOro oOecniedeHusi. Paodioenexmponni i xomn’tomepni cucmemu. 2009. Ne 6.
C. 159-165.

6. Bapnamosa H.B., Muinienko B.O. Pa3HooOpa3ue TUYHOCTHBIX XapaKTEPUCTHK IPOTPAaMMHCTOB KaK OC-
HOBa YCIEUIHOCTH TNPOrPaMMHOW IUBEPCHOCTH. BicHux XapKiecbkozo HAYiOHAnbHO20 YHIigepcumemy
imeni B.H. Kapaszina. Mamemamuune mooeniosanus. Inghopmayitini mexuonoeii. Aemomamuzosani cu-
cmemu ynpaesninms. 2016. Ne 30. C. 27-35.

7. Chen L., Avizienis A.A. N-Version Programming: A Fault-Tolerance Approach to Reliability of Soft-
ware Operation. Fault-Tolerant Computing. Highlights from Twenty-Five Years. 1995. P. 113-119.

8. Avizienis A.A. The Methodology of N-version Programming / ed. M. Lyu. Software Fault Tolerance:
John Wiley & Sons, 1995. P. 35.

9. Ayxwuit B.M., Qyxuii U.B., locrak A.B. PazpaboTka MHOrOBEpCHOHHOM HEpapXUH PEeLIeHUH PH MPo-
eKTUPOBAaHUHU TPOTPaMMHOTO obecriedenus. Padioerexmponni i xomn tomepni cucmemu. 2007. Ne 8.
C. 173-176.

Cmamms naoditiwna 0o pedaxyii 12.02.2019

208 ISSN 1028-9763. Marematnuni MamuHu i cuctemu, 2019, Ne 1

