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Abstract. We introduce an index indicating the occurrence of chiral fermions at the inter-
section of branes in matrix models. This allows to discuss the stability of chiral fermions
under perturbations of the branes.
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1 Introduction

The IKKT or IIB model [8] admits solutions which can be interpreted as branes embedded in
a flat target space, cf. [11, 12] for recent reviews. Of particular interest is the case of intersecting
branes, as these can give rise to chiral fermions living on the intersection [6], thus having the po-
tential of yielding a physically viable model. The aim of this note is to show that the occurrence
of chiral fermions can be rephrased as the non-vanishing of a certain index, which counts the
number of zero modes of the Dirac operator, weighted with their chirality. Moreover, conditions
ensuring the stability of the index under perturbations are given. This is also demonstrated in
a concrete example.

Let us explain the relation of the index we propose with different indices discussed in the
context of emergent geometries in matrix models. In [2], two-dimensional compact branes em-
bedded in R3 are studied. In our language, the intersection of such branes with a point y ∈ R3

is considered, and the index counts the difference of the number of positive and negative modes
of the corresponding Dirac operator. The set of y’s where the index changes is then interpreted
as the locus of the brane. Crucial differences to our setting are the odd dimension of the tar-
get space (so that there is no chirality operator and eigenvalues of the Dirac operator are not
symmetric around 0), and the restriction to finite matrices.

Another index for noncommutative branes was considered in [1]. The difference to our
definition is the usage of another Dirac operator, the so-called Ginsparg–Wilson Dirac operator,
which does not coincide with the Dirac operator appearing in the IKKT action.

The article is structured as follows: In the next section, we recall aspects of the matrix model
framework and its effective (brane) geometry. We introduce the notion of intersecting branes,
and introduce the index indicating the occurrence of chiral fermions. In Section 3, we present
conditions guaranteeing the stability of the index under deformations, and discuss a concrete
example. We conclude with a brief summary and an outlook.

2 Matrix models, intersecting branes, and chiral fermions

We briefly collect the essential ingredients of the matrix model framework and its effective
geometry, referring to the recent review [12] for more details. The starting point is the maximally
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supersymmetric IKKT or IIB model [8], whose action is given by

S = Tr
([
XA, XB

][
XC , XD

]
ηACηBD + 2Ψ̄DΨ

)
.

Here the XA are Hermitian matrices, i.e., operators acting on a separable Hilbert space H. The
indices run from 0 to 9, and will be raised or lowered with the invariant tensor ηAB of SO(9, 1).
Furthermore, Ψ is a matrix-valued Majorana Weyl spinor of SO(9, 1), and D is the Dirac ope-
rator, defined by

(DΨ)a = ΓA
a
b

[
XA,Ψb

]
,

where ΓA are the 10-dimensional γ matrices.
Even though this will not be used explicitly, the picture to have in mind is that the ma-

trix configurations XA describe embedded noncommutative branes. By this one means that
the XA can be interpreted as quantized embedding functions [12] of a 2n-dimensional submani-
fold M2n ↪→ R10. More precisely, there should be some quantization map Q : C(M2n)→ L(H)
which maps classical functions on M2n to a noncommutative (matrix) algebra, such that com-
mutators can be interpreted as quantized Poisson brackets. The XA are then the image of
classical embedding functions xA under this map. For more details, we refer to [12].

If the matrices XA are of block-diagonal form

XA =

(
XA
L 0

0 XA
R

)
,

we speak of two intersecting branes. If we analogously split the fermions as

Ψ =

(
ΨLL ΨLR

ΨRL ΨRR

)
,

then the Dirac operator acts on the off-diagonal components as

DLRΨLR = ΓA
(
XA
LΨLR −ΨLRX

A
R

)
.

We will consider the case when, in the semiclassical picture, the two branes ML/R are of the
form

ML/R =Md ×M′L/R, (1)

where d is even andMd is embedded in the subspace of R10 generated by eµ, 0 ≤ µ ≤ d− 1 and
M′L/R are embedded in the directions spanned by ei, d ≤ i ≤ 9. Furthermore, the symplectic

form on ML/R is required to respect the split (1), i.e., it should vanish for one vector in TMd

and one in TM′L/R. In formal terms, this means that

HL/R = H(d)
L/R ⊗H

(10−d)
L/R , Xµ

L/R = Y µ
L/R ⊗ 1, Xi

L/R = 1⊗ Y i
L/R. (2)

Here µ labels the indices 0 ≤ µ ≤ d− 1, whereas i labels d ≤ i ≤ 9. Furthermore,

H(d)
L ' H

(d)
R ' H

(d) (3)

and, under this isomorphism, Xµ
L = Xµ

R. This encodes the requirement that the two branes

share a common d-dimensional brane. Using the identification of H(d)
L and H(d)

R , we may write
the Dirac operator as

DLRΨLR = D
(d)
LRΨLR +D

(10−d)
LR ΨLR = Γµ[Xµ,ΨLR] + Γi

(
Xi
LΨLR −ΨLRX

i
R

)
.
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We also split the chirality operator (note the different signs in χ(d) and χ(10−d) stemming from
the signature (−,+, . . . ,+) of η),

χ = χ(d)χ(10−d), χ(d) = i−d/2+1Γ0 · · ·Γd−1, χ(10−d) = i−(10−d)/2Γd · · ·Γ9,

and remark that it fulfills[
χ(d), χ(10−d)

]
= 0,

(
χ(d)

)2
= 1,

(
χ(10−d)

)2
= 1,

and {
χ(d), D

(d)
LR

}
= 0,

{
χ(10−d), D

(10−d)
LR

}
= 0,[

χ(d), D
(10−d)
LR

]
= 0,

[
χ(10−d), D

(d)
LR

]
= 0.

We also note that the Γ matrices may be represented as

Γµ = γµ ⊗ 125−d/2 , Γi = γd+1 ⊗ δi, (4)

where the γµ form the d-dimensional Lorentzian Clifford algebra, γd+1 is the corresponding
chirality operator, and the δi form the (10− d)-dimensional Euclidean Clifford algebra.

Given that the XL/R are represented on Hilbert spaces HL/R, the off-diagonal fermions are

elements of HLR = B(HR,HL) ⊗ C25 . Due to the split (2), a general ansatz for solutions of
DLRΨLR = 0 is1

ΨLR = Ψ
(d)
LR ⊗Ψ

(10−d)
LR , Ψ

(d)
LR ∈ H

(d)
LR, Ψ

(10−d)
LR ∈ H(10−d)

LR ,

where we defined

H(d)
LR = B

(
H(d)

)
⊗ C2d/2 , H(10−d)

LR = B
(
H(10−d)
R ,H(10−d)

L

)
⊗ C25−d/2

.

Here we used (3) and the same factorization of the spinorial representation space as in (4). Using

the operator norm, H(10−d)
LR can be given the structure of a Banach space. Due to (4), have

D
(10−d)
LR = γd+1 ⊗∆

(10−d)
LR , χ(10−d) = 1(d/2)2 ⊗ θ(10−d),

where ∆
(10−d)
LR and θ(10−d) are anticommuting operators on H(10−d)

LR . In particular, non-zero

eigenvalues of ∆
(10−d)
LR come in pairs ±m, which are interchanged by θ(10−d), and whose eigen-

vectors v±m may be combined to eigenvectors v±m of θ(10−d) of opposite chirality. It is then clear

that given an eigenvector Ψ
(10−d)
LR of ∆

(10−d)
LR with eigenvalue m, the Dirac equation for Ψ

(d)
LR

becomes, cf. (2),

Γµ
[
Yµ,Ψ

(d)
LR

]
+mγd+1Ψ

(d)
LR = 0,

which does not admit chiral solutions unless m = 0. Furthermore, given a zero mode Ψ
(10−d)
LR , the

chirality of Ψ
(10−d)
LR w.r.t. θ(10−d) determines χ(d)Ψ

(d)
LR, i.e., the d-dimensional chirality of Ψ

(d)
LR,

by the total chirality constraint χΨLR = ΨLR. Hence, a d-dimensional chiral fermion requires

a zero eigenvector of ∆
(10−d)
LR with no corresponding eigenvector of opposite chirality2. Note that

if we have a chiral fermion in the LR sector, then the Majorana condition ensures that the RL
sector contains the conjugate fermion with opposite chirality.

1Note that the condition (2) is crucial here. In [10], the same ansatz for ΨLR is used, but (2) is not fulfilled.
Hence, in that work, the ansatz is not general enough to find all solutions of the Dirac equation.

2Otherwise, their combination will in general acquire a mass through quantum corrections.
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By our assumptions, ∆
(10−d)
LR is a Dirac operator on the intersection of branes with Riemannian

signature, so we may expect it to have discrete spectrum (in Section 3.1, this is shown to be the
case in a concrete example). The above discussion then motivates the following definition of an

index for the Dirac operator ∆
(10−d)
LR :

Ξ
(
∆

(10−d)
LR

)
= TrH(10−d)

LR

(
PΓ

((
∆

(10−d)
LR

)2)
θ(10−d)

)
.

Here Γ is some closed curve that encircles the origin and does not intersect an eigenvalue of(
∆

(10−d)
LR

)2
, and PΓ

((
∆

(10−d)
LR

)2)
is the orthogonal projector on the eigenspaces whose eigenvalues

are encircled by Γ. As discussed above, nonzero eigenvalues of
(
∆

(10−d)
LR

)2
occur in pairs of

opposite chirality, so the definition is independent of the choice of Γ. The index counts the
number of 0 eigenmodes, weighted with their chirality. This index can also be written in the
form

Ξ
(
∆

(10−d)
LR

)
= TrH(10−d)

LR

(
e−t
(

∆
(10−d)
LR

)2
θ(10−d)

)
for generic t > 0, which is analogous to the usual definition of the index on compact Riemannian
spaces, cf. [4, Theorem 3.50].

The motivation for introducing an index to describe chirality is that it takes discrete values,
so by continuity, one would expect it to be constant under deformations of the branes. In the
next section, we will discuss criteria which indeed ensure this.

3 Deformation stability of chiral modes

Let us begin by recalling a notion from perturbation theory. Let A be a closed, in general
unbounded operator on a Banach space. Then B is A-bounded, if D(A) ⊂ D(B), and there are
positive constants a, b such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖

holds for all x ∈ D(A). A straightforward consequence of [9, Theorem IV.3.18] is now the
following:

Proposition 1. Let A have discrete spectrum. Given a closed curve Γ in C that encircles
a finite part of the spectrum, we define the projector PΓ(A) on the corresponding eigenspaces.
Given an A-bounded operator B, the map λ 7→ PΓ(A+λB) is norm-continuous in a small enough
neighborhood of 0.

Now fix some Xi
L/R. By the above proposition and the fact that Ξ takes discrete values, one

easily obtains precise conditions that ensure the invariance of the index under perturbations of
the Xi

L/R:

Proposition 2. Let X̃i
L/R ∈ L

(
H(10−d)
L/R

)
be self-adjoint and ∆̃

(10−d)
LR the corresponding Dirac

operator. Assume that
(
∆̃

(10−d)
LR

)2
and

{
∆̃

(10−d)
LR ,∆

(10−d)
LR

}
are

(
∆

(10−d)
LR

)2
bounded. Then there

is a neighborhood U of 0 such that

Ξ
(
∆

(10−d)
LR + λ∆̃

(10−d)
LR

)
= Ξ

(
∆

(10−d)
LR

)
for all λ ∈ U .

Remark 1. If H(10−d)
L/R are finite-dimensional, then H(10−d)

LR has finite even dimension. It is then
no longer necessary to restrict the trace to a finite number of eigenvalues, so one can dispose of
the projector in the definition of Ξ. It follows that for finite-dimensional representation spaces
(corresponding to compact branes), the chirality index always vanishes.
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3.1 An example

Up to now, the discussion was generic, in particular independent of the commutation relations
of the Xi. Let us now consider the concrete example of intersecting Moyal planes (recall that
a Moyal plane is defined by canonical commutation relations [Xi, Xj ] = iΘij , with Θ a real
antisymmetric matrix). Take d = 6, and let Xi

L/R span two 2-dimensional orthogonal Moyal
planes, i.e.,

X6
L = x, X7

L = px, X8
L = 0, X9

L = 0,

X6
R = 0, X7

R = 0, X8
R = y, X9

R = py,

where (x, px) and (y, py) are the canonical position and momentum operators on H(10−d)
L/R =

L2(R). As shown in [6] (and also below), the index of this configuration is 1. It is easy to see
that (

∆
(10−d)
LR

)2
= x2 + y2 + p2

x + p2
y + 2Σ67 + 2Σ89, (5)

where

Σij = i
4 [Γi,Γj ].

This operator acts on H(10−d)
LR ' L2(R2)⊗ C4, where we use that

B
(
L2(R), L2(R)

)
' L2

(
R2
)
.

As the first four terms on the r.h.s. of (5) form a positive definite quadratic form, it follows
from the above proposition that the index is invariant under perturbations Xi

L/R → Xi
L/R +

λX̃i
L/R for small enough λ, if the X̃i

L/R are bounded or linear (corresponding to intersections

at angles3) in the Xi
L/R (or a sum of such contributions). In order to see this explicitly, let us

consider the case where the X̃i are linear in the Xi. As an example, consider

X6 = x+ cy, X7 = px, X8 = y, X9 = py.

For the square of the Dirac operator, one obtains(
∆

(10−d)
LR

)2
= x2 +

(
1 + c2

)
y2 − 2cxy + p2

x + p2
y︸ ︷︷ ︸

∆1

+ 2Σ67 − 2Σ89 + 2cΣ69︸ ︷︷ ︸
∆2

.

Here ∆1 acts on L2(R2), while ∆2 acts on the spinorial representation space C4. To have a zero

eigenvector of
(
∆

(10−d)
LR

)2
requires a pair of eigenvectors of ∆1 and ∆2 which add up to zero.

Let us compute the lowest eigenvalue of ∆1. We use the ansatz

Ψ = e−
1
2

(Ax2+By2+2Cxy).

The eigenvalue equation ∆1Ψ = ηΨ then leads to

−A2 − C2 + 1 = 0,

−C2 −B2 + 1 + c2 = 0,

−AC −BC − c = 0,

3For intersections at angles in the context of string compactifications, cf. [3, 5, 7].
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the eigenvalue being given by η = A+B. It is straightforward to find the eigenvalue η =
√

4 + c2.
For the eigenvalues of the spinorial part ∆2, one finds

η = ±c, η = ±
√

4 + c2.

Hence, there is exactly one way to cancel the eigenvector of ∆1, i.e., there is one eigenvector

of
(
∆

(10−d)
LR

)2
with eigenvalue 0 (the higher eigenvalues of ∆1 can obviously not lead to further

zero eigenvalues). One can also explicitly check that it has positive chirality. Analogously, one
can treat the d = 4 dimensional intersection of a 6- and an 8-dimensional brane, and similar
configurations [6].

An example of intersecting branes with a vanishing index is provided by a degenerate inter-
section of two quantum planes, such as

X6 = x+ y, X7 = px, X8 = 0, X9 = py.

In this case the part of
(
∆

(10−d)
LR

)2
that is quadratic in the coordinates of the quantum plane is

given by

(x− y)2 + p2
x + p2

y,

which is not a positive definite quadratic form. In particular, the condition of being
(
∆

(10−d)
LR

)2
bounded is not fulfilled for rotations of this plane. One easily checks that the index for this
configuration vanishes. This underlines the necessity of spanning the full R(10−d) in order to get
chiral fermions, as already pointed out in [6].

4 Summary and outlook

We presented a definition of an index describing the occurrence of chiral fermions on intersecting
branes in matrix models and discussed the stability of this index under perturbations. In particu-
lar, this implies the existence of chiral fermions for branes intersecting at angles. The drawback
of our approach is that it requires strong restrictions on the embedding, in particular (2). It is
for example not applicable for situations in which (in the semiclassical picture) the brane Md

is not flat. One possibility to treat this case could be to work in the semiclassical limit, or to
use a modified chirality operator, like4

χ = εA1...A2nC1...C10−2nεB1...B2nC1...C10−2nX
B1 · · ·XB2nΓA1 · · ·ΓA2n

for a 2n-dimensional brane. We plan to come back to this issue in future work.
As noted in Remark 1, the index always vanishes for intersections of compact fuzzy spaces

Ki ⊂ R(10−d). This raises an apparent paradox, since the results on chiral fermions on intersec-
tions should apply at least approximately for each intersection. What happens is that pairs of
“almost-localized” fermionic near-zero modes arise on the intersections Ki ∩ Kj , such that for
each “effectively” chiral fermion localized on some intersection, there is another fermion with
opposite chirality at some other intersection5. This means that if, e.g., the chiral fermions of
the standard model arise from some intersections such as in [6], there are additional sectors with
fermions of opposite chirality localized at different intersections. The approximate localization
on different intersections suggests that these unwanted sectors could be effectively hidden or
removed in some way. A natural strategy to achieve this is to give up the product ansatz (2),
as proposed in [10], and as realized, e.g., by solutions with split noncommutativity [13]. These
are interesting directions for further research.

4This particular operator has the disadvantage that it does in general not anticommute with the Dirac operator,
but it may be useful nevertheless.

5This is verified in numerical simulations.
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