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Abstract. In this paper, multi-component generalizations to the Camassa–Holm equation,
the modified Camassa–Holm equation with cubic nonlinearity are introduced. Geomet-
ric formulations to the dual version of the Schrödinger equation, the complex Camassa–
Holm equation and the multi-component modified Camassa–Holm equation are provided.
It is shown that these equations arise from non-streching invariant curve flows respectively
in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-
dimensional sphere Sn(1). Integrability to these systems is also studied.
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1 Introduction

Integrable systems solved by the inverse scattering method usually arise from shallow water
wave, physics, optical communication and applied sciences etc. Integrable systems have many
interesting properties, such as Lax-pair, infinite number of conservation laws and Lie–Bäcklund
symmetries, multi-solitons, Bäcklund transformations and bi-Hamiltonian structure etc. [1, 44],
which are helpful to explore other properties of integrable systems [1, 44,56].

It is of great interest to study geometric aspects of integrable systems. So far, very few inte-
grable systems were found to have geometric formulations. The relationship between completely
integrable systems and the finite-dimensional differential geometry of curves has been studied
extensively. It turns out that some integrable systems arise from invariant curve flows in certain
geometries [2–7, 9–15, 21, 23, 24, 26, 28–42, 45, 47–52, 55, 57, 59, 60]. The pioneering work on this
topic was done by Hasimoto [24]. He showed that the integrable nonlinear Schrödinger equation
(NLS)

iφt + φss + |φ|2φ = 0

is equivalent to the system for the curvature κ and τ of curves γ in R3

κt = −2τκs − κτs, τt =
κsss
κ
− κsκss

κ2
− 2ττs + κκs (1)
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via the so-called Hasimoto transformation φ = κ exp(i
∫ s
τ(t, z)dz). Indeed, the system (1) is

equivalent to the vortex filament equation

γt = γs × γss = κb, (2)

where b is the binormal vector of γ. Maŕı Beffa, Sanders and Wang [39, 51] noticed that
Hasimoto transformation is a gauge transformation relating the Frenet frame {t,n,b} to the
parallel frame {t1,n1,b1}. It is also a Poisson map which takes Hamiltonian structure of the
NLS equation to that of the vertex filament flow [29]. The Hasimoto transformation has been
generalized in [51] to the Riemannian manifold with constant curvature, which is used to obtain
the corresponding integrable equations associated with the invariant non-stretching curve flows.
The parallel frames and other kinds of frames are also used to derive bi-Hamiltonian operators
and associated hierarchies of multi-component soliton equations from non-stretching curve flows
on Lie group manifolds [3,4,31,39]. The KdV equation, the modified KdV equation, the Sawada–
Kotera equation and the Kaup–Kuperschmidt equation were shown to arise from the invariant
curve flows respectively in centro-equiaffine geometry [7,9,48], Euclidean geometry [21], special
affine geometry [11,35] and projective geometries [11,30,41].

The integrable systems with non-smooth solitary waves have drawn much attention in the
last two decades because of their remarkable properties. The celebrated Camassa–Holm (CH)
equation

mt + umx + 2uxm+ aux = 0, m = u− uxx, (3)

was proposed as a model for the unidirectional propagation of the shallow water waves over
a flat bottom, with u(x, t) representing the water’s free surface in non-dimensional variables [8].
It was also found using the method of recursion operators by Fokas and Fuchssteiner [19] as
a bi-Hamiltonian equation with an infinite number of conserved functionals. Geometrically,
the Camassa–Holm equation arises from a non-stretching invariant planar curve flow in the
centro-equiaffine geometry [9], and the periodic CH equation (3) describes geodesic flows on
diff(S1 × R) with respect to right-invariant Sobolev H1 metric for a = 0 [13, 14, 28] and Bott–
Virasoro algebra for a 6= 0 [40]. A dual version of the Ito system is the two-component Camassa–
Holm equation [46], the periodic two-component CH equation also describe geodesic flows on
an extended Bott–Virasoro algebra [22].

It is remarked that all nonlinear terms in the CH equation are quadratic. In contrast to
the integrable modified KdV equation with a cubic nonlinearity, it is of great interest to find
integrable CH-type equations with cubic or higher-order nonlinearity and non-smooth solitary
waves. To the best of our knowledge, two scalar integrable CH-type equations with cubic
nonlinearity have been discovered. The first equation is [18,46,49]

mt +
1

2

((
u2 + δu2x

)
m
)
x

= 0, m = u+ δuxx, (4)

where δ = ±1, and the second one is the so-called Novikov equation [25,43]

mt + 3uuxm+ u2mx = 0, m = u− uxx,

which are completely integrable, and admit peaked solitons. Recently, systems of CH-type
equations with cubic nonlinearity were also obained [20,55].

The CH equation can also be derived by the tri-Hamiltonian duality approach basing on
bi-Hamiltonian structure of the KdV equation. Other examples of dual integrable systems
obtained using the method of tri-Hamiltonian duality can be found in [18, 46]. Nonlinear dual
integrable systems, such as the CH equation and the modified CH equations, are endowed with
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nonlinear dispersion, which in most cases, enables these systems to support non-smooth soliton-
like structures. It was remarked in [23] that the modified CH equation (4) can be regarded
as a Euclidean-invariant version of the CH equation (3), just as the modified KdV equation is
a Euclidean-invariant counterpart to the KdV equation from the viewpoint of curve flows in
Klein geometries [9, 10,21,48].

The aim of this paper is to provide geometric formulations to multi-component integrable
systems admitting non-smooth solitons. We shall show that several multi-component integrable
systems with non-smooth solitons, such as a dual version of the Schrödinger equation [17, 46],
the complex CH equation and multi-component modified CH equations arise from the invariant
curve flows respectively in three-dimensional Euclidean geometry, Möbius sphere and the n-
dimensional unit sphere Sn(1). To obtain integrable systems relating to these geometric flows,
we shall use the scale limit technique. The outline of this paper is as follows. In Section 2,
a non-stretching invariant binormal curve flow in R3 is introduced and studied. Making use of
the system for curvature and torsion corresponding to this flow, we obtain a novel integrable
Schrödinger equation by a scale limit approach, which is completely integrable system and can be
obtained by the so-called tri-Hamiltonian duality approach [18,46]. In Section 3, we give a brief
discussion on Möbius 2-sphere PO(3, 1)/H and the n-dimensional sphere SO(n+ 1)/SO(n), the
Cartan structure equations for curves in both geometries are reviewed, which will be used in
subsequent sections to study curve flows in both geometries. In Section 4, we consider the
non-stretching curve flows in Möbius 2-sphere. It is shown that the complex Camassa–Holm
equation and complex Hunter–Saxton equation describe the non-stretching curve flows in Möbius
2-sphere. The bi-Hamiltonian structure for the complex Camassa–Holm equation is obtained. In
Section 5, we study non-stretching curve flows in the n-dimensional sphere Sn(1). Interestingly,
we find that a multi-component modified CH equation (a multi-component generalization of
the modified Camassa–Holm equation) is equivalent to a non-stretching curve flow in Sn(1).
Integrability of the system is identified. Finally, Section 6 contains concluding remarks on this
work.

2 An integrable nonlinear Schrödinger equation

We consider the flows of space curves in R3, given by

γt = Un + V b +W t, (5)

where t, n and b denote the tangent, normal and binormal vectors of the curves, respectively.
The velocities U , V and W depend on the curvature and torsion as well as their derivatives with
respect to arc-length parameter s. The arc-length parameter s is defined implicitly by ds = hdp,
h = |γ′(p)|, where p is a free parameter and is independent of time. We denote by κ and τ the
curvature and torsion of the curves, respectively. Governed by the flow (5), time evolutions of
those geometric invariants are given by [24,42]

ṫ =

(
∂U

∂s
− τV + κW

)
n +

(
∂V

∂s
+ τU

)
b,

ṅ = −
(
∂U

∂s
− τV + κW

)
t +

[
1

κ

∂

∂s

(
∂V

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τV + κW

)]
b,

ḃ = −
(
∂V

∂s
+ τU

)
t−

[
1

κ

∂

∂s

(
∂V

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τV + κW

)]
n,

ḣ = 2h

(
∂W

∂s
− κU

)
(6)
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and

∂τ

∂t
=

∂

∂s

[
1

κ

∂

∂s

(
∂V

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τV

)
+ τ

∫ s

κUds′
]

+ κτU + κ
∂V

∂s
,

∂κ

∂t
=
∂2U

∂s2
+
(
κ2 − τ2

)
U +

∂κ

∂s

∫ s

κUds′ − 2τ
∂V

∂s
− ∂τ

∂s
V. (7)

Assuming that the flow is intrinsic, namely the arc-length does not depend on time, it implies
from (6) that

Ws = κU. (8)

In terms of (7), one finds that the complex function

φ = κη, η = exp

[
i

∫ s

τ(s′, t)ds′
]

satisfies the equation [24,42]

φt =

(
∂2

∂s2
+ |φ|2 + iφ

∫ s

ds′τ φ̄+
∂φ

∂s

∫ s

ds′φ̄

)
(Uη)

+

(
i
∂2

∂s2
+ i|φ|2 + φ

∫ s

ds′τ φ̄− iφ
∫ s

ds′
∂φ̄

∂s′

)
(V η), (9)

where φ̄ denotes the complex conjugate of φ.

Let U = 0, V = κ, where κ is a real function, then (8) implies that W = C1, where C1 is
a constant. Setting C1 = 0, we derive from (9) the celebrated Schrödinger equation

iφt + φss +
1

2
|φ|2φ = 0. (10)

Let U = −κs, V = −κτ , then W = −1
2κ

2 + C2, where C2 is a constant. Letting C2 = 0, we
find that φ satisfies the mKdV system

φt + φsss +
3

2
|φ|2φs = 0.

In the following, we shall consider the case U = W = 0. Denote θ(s, t) =
∫ s
τ(s′, t)ds′,

g = V η. It follows from (9) that φ satisfies the equation

iφt + gss + |φ|2g − φ
∫ s

g(cos θ − i sin θ)ks′ds
′ = 0. (11)

Set ũ = κ cos θ, ṽ = κ sin θ, g = g1 + ig2, then the equation (11) is separated to two equations

ũt = −g2,ss − ṽ∂−1s [κ(g1 cos θ + g2 sin θ)s],

ṽt = g1,ss + ũ∂−1s [κ(g1 cos θ + g2 sin θ)s].

Furthermore, letting ũ = u + vs, ṽ = v − us, and choosing the binormal velocity V to be
V = ∂−1s [

(
u2 + v2

)
s
/κ], we find that u and v satisfy the system

(u+ vs)t = −g2,ss − (v − us)
(
u2 + v2

)
,

(v − us)t = g1,ss +
(
u2 + v2

)
(u+ vs) (12)
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with

g1 =
(u+ vs)

(
u2 + v2

)
s

(u+ vs)2 + (v − us)2
, g2 =

(v − us)
(
u2 + v2

)
s

(u+ vs)2 + (v − us)2
.

Applying the scaling transformations

s 7−→ s, t 7−→ ε2t, u 7−→ ε−1u, v 7−→ ε−1v

to system (12) produces

(u+ vs)t = −ε2g2,ss − (v − us)
(
u2 + v2

)
,

(v − us)t = ε2g1,ss +
(
u2 + v2

)
(u+ vs). (13)

Expanding u and v in powers of the small parameter ε

u(t, s) = u0(t, s) + εu1(t, s) + ε2u2(t, s) + · · · ,
v(t, s) = v0(t, s) + εv1(t, s) + ε2v2(t, s) + · · · ,

and plugging them into system (13), we find that the leading order terms u0(t, s) and v0(t, s)
satisfy the system

(u0 + v0,s)t +
(
u20 + v20

)
(v0 − u0,s) = 0,

(v0 − u0,s)t −
(
u20 + v20

)
(u0 + v0,s) = 0. (14)

Again we use the notation φ(t, s) = u0(t, s) + iv0(t, s), then it is inferred from (14) that φ(t, s)
satisfies the equation

i(φt − iφts) + |φ|2(φ− iφs) = 0, (15)

which is a dual version of the Schrödinger equation (10), and can be obtained by the approach of
tri-Hamiltonian duality [18,46]. Equation (15) is formally completely integrable since it admits
bi-Hamiltonian structure [46]

ρt = E1
δH2

δρ
= E2

δH1

δρ
,

where ρ = φ− iφs, E1 and E2 defined by

E1 = ∂s + i and E2(F ) = ρ∂−1s (ρ̄F − ρF̄ )

are compatible Hamiltonian operators, while

H1 =

∫
R

(
|φ|2 − iφ̄φs

)
ds =

∫
R
ρφ̄ds, H2 =

1

2

∫
R
|φ|2

(
|φ|2 − iφ̄φs

)
ds.

are the corresponding Hamiltonian functionals.

3 Möbius sphere PO(3, 1)/H and unit sphere SO(n + 1)/SO(n)

In this section, we give a brief account of Möbius 2-sphere PO(3, 1)/H and unit sphere Sn(1) =
SO(n+ 1)/SO(n). Please refer to the book [53] for the details of the two geometries.
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3.1 Möbius 2-sphere

Let (u0, u1, u2, u3) ∈ R4, we define the inner product on R4 by

〈x, y〉 = xTΛ3,1y,

where x, y ∈ R4, and the matrix Λ3,1 is

Λ3,1 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 .

A vector field x ∈ R4 is said to be light-like, if it satisfies 〈x, x〉 = 0. All the light-like vector
fields form a set L, which is called optical cone, defined by the equation

2x0x3 − x21 − x22 = 0.

Clearly it is homogeneous, namely for any λ ∈ R, if x ∈ L, then λx ∈ L. The projectivisation
of L is said to be Möbius 2-sphere, which is isomorphic to S2. Recall that

O(3, 1) =
{
g ∈ GL(4,R) : gTΛ3,1g = Λ3,1

}
,

and the Möbius group is defined to be PO(3, 1) = O(3, 1)/±I. We denote

H = {h ∈ PO(3, 1) : h[e3] = [e3]}

=


a−1 0 0

v A 0
b ηT a

 ∈ O(3, 1); A ∈ O(2), a ∈ R+, v ∈ R2

 ,

where [e3] denotes the equivalent class of e3 in P (R4), [e3] = (0, 0, 0, ∗). A straightforward
computation gives

η = aAT v, b =
a

2
vT v =

a

2
‖v‖2.

It is easy to verify that the group PO(3, 1) acts on the Möbius sphere transitively (the group
action is the usual conformal transformation).

Definition 1. The Klein pair (PO(3, 1), H) is called the Möbius 2-sphere.

For any g ∈ PO(3, 1), there exists a unique decomposition around the identity of the group

g = g1g0g−1 =

 1 0 0
v I2 0

1
2‖v‖

2 vT 1

a−1 0 0
0 A 0
0 0 a

1 uT 1
2‖u‖

2

0 I2 u
0 0 1

 ,

where a ∈ R+, A ∈ O(2), u, v ∈ R2, h = g1g0 ∈ H, u in g−1 part represent a local coordinate of
the point in PO(3, 1)/H. For the corresponding Lie algebra g, there exists also a decomposition

o(3, 1) = g = g1 ⊕ g0 ⊕ g−1,

where0 0 0
p 0 0
0 pT 0

 ∈ g1,

−ε 0 0
0 S 0
0 0 ε

 ∈ g0,

0 qT 0
0 0 q
0 0 0

 ∈ g−1,

p, q ∈ R2, ε ∈ R, S ∈ O(2). The Lie algebra of the isotropy group H is h = g1 ⊕ g0 while
g/h = g−1 is identified to the tangent space of the conformal sphere PO(3, 1)/H.
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3.2 n-dimensional sphere Sn(1) = SO(n + 1)/SO(n)

The n-dimensional unit-sphere is also a homogeneous space M = G/H = SO(n + 1)/SO(n).
The corresponding Lie algebra has the following Cartan–Killing decomposition

so(n+ 1) = h⊕m = so(n)⊕ Rn,

with (
0 −pT
p 0

)
∈ m,

(
0 0
0 Θ

)
∈ h,

where p ∈ Rn, Θ ∈ so(n), and the decomposition satisfies

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h,

where m is identified to the tangent space TxM ∼= Rn of M = SO(n+1)/SO(n). The flat Cartan
connection of principle SO(n) bundle SO(n + 1) → Sn is given by the Maurer–Cartan form of
Lie group SO(n+ 1). The Cartan structure equation reads as

Ω = dω +
1

2
[ω, ω] = 0,

where so(n+ 1)-valued one-form ω is decomposed to

ω = ωH + θ, ωH ∈ Λ1(P, h), θ ∈ Λ1(P, g/h),

where g/h-valued θ represents a linear coframe, h-valued ωH represents a linear connection on Sn.
The corresponding Cartan structure equation is separated to

J ≡ dθ +
1

2
[ωH , θ] +

1

2
[θ, ωH ] = 0

and

R ≡ dωH +
1

2
[ωH , ωH ] = −1

2
[θ, θ],

where J and R are called torsion and curvature forms, respectively.

4 Curve flows in PO(3, 1)/H and the complex CH equation

For the Möbius geometry PO(3, 1)/H, its Cartan connection takes values on g = o(3, 1), with
the form

ω =

−ε ξT 0
η Θ ξ
0 ηT ε

 ,

and the Cartan structure equation reads as

Ω = dω +
1

2
[ω, ω] = 0.

Let’s consider the invariant curve flows for curves γ(x, t) = (u1(x, t), u2(x, t)) on the conformal
sphere M2 = PO(3, 1)/H, where x denotes the parameter of the curves, t is the time variable,
u1 and u2 denote the local coordinates on M2. Let γt = γ∗

∂
∂t

be the evolutionary vector field of
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the curves, γx = γ∗
∂
∂x

denotes the tangent vector of the curves. Assuming that the curve flow
is intrinsic, namely the parameter x for the curve does not depend on time t, we have

[γx, γt] = 0.

It was shown in [16, 36] that there exists a conformally equivariant moving frame (the Frenet
frame) ρ = ρ(x, t) ∈ PO(3, 1) along the curve γ(x, t) ⊂M2. Let Dx and Dt denote respectively
the vector field d

dx and d
dt along the curves ρ in PO(3, 1), then the Frenet formulae for the

conformally parametric curves is

ρx = ρω̂(Dx),

with

ω̂(Dx) =


0 1 0 0
k1 0 0 1
k2 0 0 0
0 k1 k2 0

 , (16)

where k1 and k2 are the conformally differential invariants for the curve γ(x, t). The time
evolution for the frame ρ(x, t) can be written as

ρt = ρω̂(Dt),

where

ω̂(Dt) =


−ε h1 h2 0
f1 0 −α h1
f2 α 0 h2
0 f1 f2 ε

 , (17)

and ε, α, fi, hi (i = 1, 2) are some conformal differential invariants related to k1 and k2, to be
determined. By the Cartan structure equation, one gets

Ω(Dx, Dt) =
d

dt
ω̂(Dx)− d

dx
ω̂(Dt)− [ω̂(Dx), ω̂(Dt)] = 0. (18)

Plugging (16) and (17) into (18) results in the following equations

ε = −h1,x, α = h2,x, (19)

f1 = εx + k1h1 + k2h2, (20)

f2 = αx + k2h1 − k1h2, (21)

k1,t = f1,x − k1ε+ αk2, (22)

k2,t = f2,x − εk2 − αk1, (23)

where (19) is the torsion part (i.e.,the g−1 part) of the Cartan structure equation (18), which
can be written as(

ε
α

)
=

(
−∂x
∂x

)(
h1
h2

)
≡ J1

(
h1
h2

)
.

Inserting (19) into (20) and (21) gives

f1 = −h1,xx + k1h1 + k2h2, f2 = h2,xx + k2h1 − k1h2. (24)
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Substituting (19) and (24) into (22) and (23), we obtain the evolution equations for the curva-
tures k1 and k2 [32, 36]

k1,t = −h1,xxx + 2k1h1,x + k1,xh1 + 2k2h2,x + k2,xh2,

k2,t = h2,xxx − 2k1h2,x − k1,xh2 + 2k2h1,x + k2,xh1,

which is equivalent to(
k1
k2

)
t

=

(
−∂3 + k1∂ + ∂k1 k2∂ + ∂k2

k2∂ + ∂k2 ∂3 − k1∂ − ∂k1

)(
h1
h2

)
≡ J2

(
h1
h2

)
. (25)

The following cases are considered.
Case 1. Setting k1 = 1/2 + m ≡ 1/2 + u − uxx, k2 = n ≡ v − vxx, h1 = 1 − u and h2 = v

in (25), we obtain the new two-component CH equation

mt + 2uxm+ umx − 2vxn− vnx = 0,

nt + 2uxn+ unx + 2vxm+ vmx = 0. (26)

The above system admits the following Lax-pair

φx = Uφ, φt = V φ, (27)

with

U =


0 1

2 + λm λn 0
1 0 0 1

2 + λm
0 0 0 λn
0 1 0 0

 and V =


−ux f1 f2 0

λ−1 − u 0 vx f1
v −vx 0 f2
0 λ−1 − u v ux

 ,

where f1 = 1
2(λ−1 + u) + λ(vn− um), f2 = 1

2v − λ(un+ vm).
Case 2. Setting k1 = m = −uxx, k2 = n = −vxx, h1 = 1 − u, h2 = v, we arrive at the

complex Hunter–Saxton equation

mt + 2uxm+ umx − 2vxn− vnx = 0,

nt + 2uxn+ unx + 2vxm+ vmx = 0,

which admits the Lax-pair (27) with

U =


0 −λuxx −λvxx 0
1 0 0 −λuxx
0 0 0 −λvxx
0 1 0 0


and

V =


−ux λ(vn− um) −λ(un+ vm) 0

λ−1 − u 0 vx λ(vn− um)
v −vx 0 −λ(un+ vm)
0 λ−1 − u v ux

 .

Case 3. In (25), letting h1 and h2 satisfy

k1 =
1

2

h21 − h22(
h21 + h22

)2 , k2 = − h1h2(
h21 + h22

)2 ,
we get the two-component Harry–Dym equation

h1,t =
(
h31 − 3h1h

2
2

)
h1,xxx +

(
h32 − 3h21h2

)
h2,xxx,

h2,t =
(
h32 − 3h21h2

)
h1,xxx −

(
h31 − 3h1h

2
2

)
h2,xxx.
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Remark 1. Maŕı Beffa [32,36] showed that the complex KdV equation arises from the invariant
curve motion in Möbius 2-sphere. Indeed, taking h1 = −k1, h2 = −k2 in (25) yields the complex
KdV equation

k1,t = k1,xxx − 3k1k1,x + 3k2k2,x, k2,t = k2,xxx − 3k1k2,x − 3k2k1,x.

Its Hamiltonian structure J2, see (25), was originally derived in [32]. One can see that the bi-
Hamiltonian structure J1 and J2 of the complex KdV equation comes from the Cartan structure
equation for the conformal invariant curve flow. According to the decomposition of the Lie
algebra

g = g1 ⊕ g0 ⊕ g−1,

the Cartan curvature form Ω is decomposed to Ω = Ω1 +Ω0 +Ω−1, where J1 comes from torsion
part of the structure equation, i.e., the Ω−1 part, and J2 arises from the Ω1 part. In the sequel,
we will show that the complex CH equation admits a bi-Hamiltonian structure Ĵ1 and Ĵ2. It
turns out that the complex CH equation is a dual version of the complex KdV equation (in the
sense of [46]).

It is well-known that the CH equation is a bi-Hamiltonian system [8]

mt = J δH1

δm
= D δH2

δm
,

where J = −(m∂ + ∂m) and D = −(∂ − ∂3) are Hamiltonian operators, H1 = −1
2

∫
umdx and

H2 = −1
2

∫
u
(
u2+u2x

)
dx are the corresponding Hamiltonian functionals. As for the CH equation,

the complex CH equation can be obtained by the approach of tri-Hamiltonian duality [46].
Indeed, we have the following result.

Theorem 1. The complex CH equation (26) is a bi-Hamiltonian system, which can be written
as

(
m
n

)
t

= Ĵ1


δĤ2

δm
δĤ2

δn

 = Ĵ2


δĤ1

δm
δĤ1

δn


with

Ĵ1 =

(
∂3 − ∂ 0

0 ∂ − ∂3
)
, Ĵ2 =

(
m∂ + ∂m n∂ + ∂n
n∂ + ∂n −m∂ − ∂m

)
and

Ĥ1 =
1

2

∫
(vn− um)dx, Ĥ2 =

1

2

∫ [
u
(
u2 + u2x

)
− u
(
3v2 + v2x

)
− 2vuxvx

]
dx.

Proof. Clearly, Ĵ1 and Ĵ2 are skew symmetric. To prove they are Hamiltonian operators, it
suffices to prove that the Poisson bracket defined by Ĵ2 satisfies the Jacobi identity.

The bi-vector associated with Ĵ2 is defined by [44]

ΘĴ2 =
1

2

∫
R

(ϑ ∧ Ĵ2ϑ)dx =

∫
R

(mθ ∧ θx + nθ ∧ ζx + nζ ∧ θx −mζ ∧ ζx) ,

where ϑ = (θ, ζ), θ and ζ denote the basic unit vectors corresponding to m and n, respectively,
the notation ∧ denotes the usual inner product between ϑ and Ĵ2ϑ. It suffices to show that the
Schouten bracket vanishes, namely [Ĵ2, Ĵ2] = 0. In terms of

pr vĴ2ϑ(m) = 2mθx +mxθ + 2nζx + nxζ, pr vĴ2ϑ(n) = 2nθx + nxθ − 2mζx −mxζ,
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a direct computation shows

[Ĵ1, Ĵ2] = pr vĴ2v(ΘĴ2)

=

∫
(2nζx ∧ θ ∧ θx + nxζ ∧ θ ∧ θx + 2nθx ∧ θ ∧ ζx −mxζ ∧ θ ∧ ζx

+ nxθ ∧ ζ ∧ θx − 2mζx ∧ ζ ∧ θx − 2mθx ∧ ζ ∧ ζx −mxθ ∧ ζ ∧ θx)dx = 0,

where the skew-symmetric property for the wedge product is used.
Next, we prove that the Hamiltonian operators Ĵ1 and Ĵ2 are compatible, i.e.

[Ĵ1, Ĵ2] + [Ĵ2, Ĵ1] = pr vĴ1ϑ(ΘĴ2) + pr vĴ2ϑ(ΘĴ1) = 0.

Note that

pr vĴ2ϑ(ΘĴ1) = 0, pr vĴ1ϑ(m) = θxxx − θx, pr vĴ1ϑ(n) = ζx − ζxxx.

Through integration by parts, we get[
Ĵ1, Ĵ2

]
+
[
Ĵ2, Ĵ1

]
= pr vĴ1ϑ

(
ΘĴ2

)
+ pr vĴ2ϑ

(
ΘĴ1

)
=

∫
(θxxx ∧ θ ∧ θx − ζxxx ∧ θ ∧ ζx + ζx ∧ ζ ∧ θx − ζxxx ∧ ζ ∧ θx

− θxxx ∧ ζ ∧ ζx + θx ∧ ζ ∧ ζx)dx

=

∫
(−ζxxx ∧ θ ∧ ζx − ζxxx ∧ ζ ∧ θx − θxxx ∧ ζ ∧ ζx)dx

=

∫
(−ζxxx ∧ θ ∧ ζx − ζxxx ∧ ζ ∧ θx − θx ∧ ζx ∧ ζxx − θx ∧ ζ ∧ ζxxx)dx

=

∫
(−ζxxx ∧ θ ∧ ζx − θx ∧ ζx ∧ ζxx)dx = 0.

Thus Ĵ1 and Ĵ2 are a Hamiltonian-pair. Let’s write the complex CH equation (26) as follows

(
m
n

)
t

= Ĵ2


δĤ1

δm
δĤ1

δn

 .

It is easy to get

δĤ1

δm
= −u, δĤ1

δn
= v.

Thus

δĤ1

δu
= −m, δĤ1

δv
= n.

Hence we deduce that

Ĥ1 =
1

2

∫
(vn− um)dx.

To compute Ĥ2, we write (26) as

mt = −∂
(

3

2
u2 − 1

2
u2x − uuxx −

3

2
v2 +

1

2
v2x + vvxx

)
,

nt = ∂ (uvxx + vuxx + uxvx − 3uv) .



12 C.Z. Qu, J.F. Song and R.X. Yao

Since Ĥ2 satisfies

mt = −∂
(
1− ∂2

)δĤ2

δm
= −∂ δĤ2

δu
, nt = ∂

(
1− ∂2

)δĤ2

δn
= ∂

δĤ2

δv
.

It follows that

δĤ2

δu
=

3

2
u2 − 1

2
u2x − uuxx −

3

2
v2 +

1

2
v2x + vvxx,

δĤ2

δv
= uvxx + vuxx + uxvx − 3uv.

Note that

3

2
u2 − 1

2
u2x − uuxx =

δ

δu

1

2

∫ (
u3 + uu2x

)
dx,

δ

δu

∫
uv2dx = v2,

δ

δv

∫
uv2dx = 2uv,

δ

δu

∫ (
−1

2
uv2x − uxvvx

)
dx =

1

2
v2x + vvxx.

Hence we arrive at

Ĥ2 =
1

2

∫ (
u3 + uu2x − 3uv2 − uv2x − 2uxvvx

)
dx. �

5 Curve flows on Sn(1) and multi-component
modified CH equations

Assume that γ(x, t) is a curve flow on unit sphere Sn(1) = SO(n + 1)/SO(n), which satisfies
‖γ‖ = 1, where x is the invariant arc-length parameter, t is the time. The natural frame of
the curve γ ∈ Sn(1) is {e1 = γx, e2, . . . , en}. Let ρ = (e0 = γ, e1, . . . , en) ∈ SO(n + 1) be the
lift from Sn(1) to bundle space SO(n+ 1), and Dx and Dt denote respectively the tangent and
evolutionary vector field. It follows that

ρx = ρω̂(Dx), (28)

where ω̂ is the Cartan connection

ω̂(Dx) =

0 −1 ~0T

1 0 −~kT
~0 ~k O

 , O ∈ so(n− 1),

(the natural frame formulae (28) for curves on the sphere comes out from the Frenet formulae [15]
through the Hasimoto transformation). Here ~k = (k1, k2, . . . , kn−1) is the natural curvature
vector of γ.

Assume that the curve flow is governed by

γt = fe1 + h1e2 + h2e3 + · · ·+ hn−1en,

where the tangent velocity f and normal velocities hi (i = 1, 2, . . . , n− 1) depend on the curva-
tures and their derivatives with respect to arc-length x.
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The induced time evolution for the frame is

ρt = ρω̂(Dt),

with

ω̂(Dt) =

0 −f −~hT

f 0 −~ξT
~h ~ξ Θ

 , Θ ∈ so(n− 1),

where ~h, ~ξ ∈ Rn−1, ~ξ is a unknown vector, which will be determined later by the structure
equations.

First, we assume that the flow is intrinsic, namely, the distribution {Dx, Dt} satisfies
[Dx, Dt] = 0 so that the integral submanifold is a smooth two-dimensional surface on Lie group
SO(n+ 1). Making use of the Cartan structure equation

d

dt
ω̂(Dx)− d

dx
ω̂(Dt)− [ω̂(Dx), ω̂a(Dt)] = 0,

one gets the following equations

fx = 〈~k,~h〉, (29)

~ξ = ~hx + f~k, (30)

Θx = ~k ⊗ ~ξ − ~ξ ⊗ ~k, (31)

~kt = ~ξx −Θ~k + ~h, (32)

where (29) is the arc-length preserving condition.
For convenience, the following notations are used. For any ~a,~b ∈ Rn−1, 〈~a,~b〉 denotes the

usual Euclidean inner product, i.e., 〈~a,~b〉 = ~aT~b, ~a⊗~b denotes the tensor product, namely

~a⊗~b =


a1b1 a1b2 · · · a1bn−1
a2b1 a2b2 · · · a2bn−1
· · · · · · · · · · · ·

an−1b1 an−1b2 · · · an−1bn−1

 .

Define ~a ∧~b = ~a⊗~b−~b⊗ ~a. From (29) and (30), it follows that

f = ∂−1x 〈~k,~h〉, ~ξ = ~hx + (∂−1x 〈~k,~h〉)~k. (33)

In view of (31), we have

Θ = ∂−1x (~k ∧ ~ξ). (34)

Plugging (34) and (33) into (32) leads to the equation for the curvature vector

~kt = ~hxx + 〈~k,~k〉~h+
(
∂−1x 〈~k,~h〉

)
~kx +

(
∂−1x (~kx ∧ ~h)

)
~k + ~h, (35)

where the identity for vectors

(~a ∧~b) · ~c = 〈~b,~c〉~a− 〈~a,~c〉~b

was used.
Analogous to the derivation for the CH equation [18] and the modified CH equation [46], we

restrict our attention to the following cases.
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Case 1. ~h = ~ux, ~k = m̃ = ~u+ ~uxx. In this case, the tangent velocity f is determined by

f = ∂−1x 〈~u+ ~uxx, ~ux〉 =
1

2

(
|~u|2 + |~ux|2

)
+ c0 ≡

1

2
Q̃+ c0, (36)

where c0 is an integration constant. Substituting (36) with c0 = −1 together with the expressions
for ~k and ~h into (35), and noting that(

∂−1x (~kx ∧ ~h)
)
~k =

(
∂−1x (~uxxx ∧ ~ux)

)
m̃ = (~uxx ∧ ~ux) m̃

= − (~u ∧ ~ux) m̃− (~ux ∧ m̃) m̃ = − (~u ∧ ~ux) m̃− 〈m̃, m̃〉~ux +
1

2
Q̃xm̃,

we arrive at the multi-component modified CH equation

m̃t =
1

2

(
m̃Q̃

)
x
− (~u ∧ ~ux)m̃. (37)

Thus we have established the following result.

Theorem 2. Assume that curves γ(x, t) on the sphere Sn(1) (n ≥ 1) are governed by the flow

γt =

(
1

2
Q̃− 1

)
e1 +

n−1∑
j=1

uj,xej+1, (38)

where {e1, e2, . . . , en} is the natural frame of the curve γ(x, t), (u1, u2, . . . , un−1) is defined by
the curvatures ~k = m̃ = ~u + ~uxx, Q̃ = |~u|2 + |~ux|2. Then the flow (38) is intrinsic and the
curvature vector m̃ fulf ills the equation (37).

Remark 2. In the case of n = 2, i.e., the case of S2(1), equation (37) reduces to the scaler
modified CH equation (4) with δ = −1, which is completely integrable. In the case of n = 3, let
u1 = u, u2 = v, m = u+ uxx, n = v + vxx, then system (37) reduces to

mt =
1

2

[(
u2 + v2 + u2x + v2x

)
m
]
x
− (uvx − vux)n,

nt =
1

2

[(
u2 + v2 + u2x + v2x

)
n
]
x

+ (uvx − vux)m.

In general, the multi-component system (37) can be written as

mi,t =
1

2

n−1∑
j=1

[(
u2j + u2j,x

)
mi

]
x
−

n−1∑
j=1

(uiuj,x−ujui,x)mj , 1 ≤ i ≤ n−1, mi = ui + ui,xx.

Case 2. ~h = ~ux, ~k = ~m = ~u− ~uxx. In this case, the tangent velocity f is given by

f = ∂−1x 〈~u− ~uxx, ~ux〉 =
1

2

n−1∑
i=1

(
u2i − u2i,x

)
+ c1 ≡

1

2
Q+ c1, (39)

where c1 is an integration constant. Substituting (39) with c1 = 1 into (35) and noting that(
∂−1x (~kx ∧ ~h)

)
~k = − (~u ∧ ~ux) ~m− (~ux ∧ ~m) ~m = − (~u ∧ ~ux) ~m− 〈~m, ~m〉~ux +

1

2
Qx ~m,

we obtain the multi-component modified CH equation

~mt =
1

2
(~mQ)x − (~u ∧ ~ux)~m+ 2~ux, ~m = ~u− ~uxx. (40)

Thus we have proved the following result.
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Theorem 3. Assume that curves γ(x, t) on the sphere Sn(1) (n ≥ 1) are governed by the flow

γt =

(
1

2
Q+ 1

)
e1 +

n−1∑
j=1

uj,xej+1, (41)

where {e1, e2, . . . , en} is the natural frame of the curves γ(x, t), (u1, u2, . . . , un−1) is defined by
the curvatures ~k = ~m = ~u − ~uxx, Q = |~u|2 − |~ux|2. Then the flow (41) is intrinsic and the
curvature vector ~m satisfies (40).

Case 3. ~h = ~ux, ~k = ~m = −~uxx. In this case, the tangent velocity f is determined by

f = ∂−1x 〈−~uxx, ~ux〉 = −1

2
|~ux|2 + c2,

where c2 is an integration constant. It is inferred from (30) and (31) that

~ξ =

(
1

2
|~ux|2 + 1− c2

)
~uxx, Θx = 0.

Setting Θ = 0, c2 = 1 and ~v = ~ux, we arrive at the multi-component short-pulse equation

~vxt +
1

2

(
|~v|2~vx

)
x

+ ~v = 0. (42)

Hence we could prove the following result.

Theorem 4. Assume that curves γ(x, t) on the sphere Sn(1) (n ≥ 1) are governed by the flow

γt =

(
1− 1

2
|~ux|2

)
e1 +

n−1∑
j=1

uj,xej+1, (43)

where {e1, e2, . . . , en} is the natural frame of the curves γ(x, t), (u1, u2, . . . , un−1) is defined by
the curvatures ~k = ~m = −~uxx. Then the flow (43) is intrinsic and the curvature vector ~v = ~ux
satisfies (42).

The scalar equation of (42) was derived by Schäfer and Wayne [52] as a model for the
propagation of ultra-short light pulses in silica optical fibers, which is also an approximation of
nonlinear wave packets in dispersive media in the limit of few cycles on the ultra-short pulse
scale.

It is worth noting that, analogous to the system (37), there is another version of multi-
component generalization of the modified Camassa–Holm equation (4) with δ = 1

~mt =
1

2
(~mQ)x − (~u ∧ ~ux)~m, ~m = ~u− ~uxx, (44)

(where Q = |~u|2 − |~ux|2). However, in contrast to the system (37) arising from the compact
Riemannian symmetric space Sn(1) = SO(n + 1)/SO(n) with positive constant curvature, the
system (44) arises from the noncompact Riemannian symmetric space with negative constant
curvature, i.e., the hyperbolic space Hn = SO(n, 1)/SO(n). The derivation to integrable curve
flows is similar to that for the Sn(1) case. In fact, the Lie algebra structure corresponding to
the hyperbolic space Hn = SO(n, 1)/SO(n) is described by

so(n, 1) = h⊕m = so(n)⊕ Rn,
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with (
0 pT

p 0

)
∈ m,

(
0 0
0 Θ

)
∈ h

where p ∈ Rn, Θ ∈ so(n). The Cartan connection matrices ω̂(Dx) and ω̂(Dt) of the natural
frame are replaced with

ω̂(Dx) =

0 1 ~0T

1 0 −~kT
~0 ~k O

 , O ∈ so(n− 1)

and

ω̂(Dt) =

0 f ~hT

f 0 −~ξT
~h ~ξ Ψ

 , Ψ ∈ so(n− 1),

for curves on Hn = SO(n, 1)/SO(n). Similar results can be derived for the Hyperbolic space Hn.
Integrability of the equations (37) and (44) are guaranteed by the following results.

Theorem 5. The systems (44) and (37) are Lax integrable, namely they admit the following
(n+ 1)× (n+ 1) Lax-pair

φx = Uφ, φt = V φ,

where for (44),

U =

0 1 ~0T

1 0 λ~mT

~0 −λ~m 0

 , V =

 0 1
2Q+ λ−2 λ−1~uTx

1
2Q+ λ−2 0 λ−1~uT + 1

2λQ~m
T

λ−1~ux −λ−1~u− 1
2λQ~m −~u ∧ ~ux

 ,

and for (37),

U =

 0 1 ~0T

−1 0 λm̃T

~0 −λm̃ 0

 , V =

 0 1
2Q̃− λ

−2 λ−1~uTx
−1

2Q̃+ λ−2 0 −λ−1~uT + 1
2λQ̃m̃

T

−λ−1~ux λ−1~u− 1
2λQ̃m̃ −~u ∧ ~ux

 .

6 Concluding remarks

In this paper, geometrical formulations to several multi-component integrable systems are pro-
vided. These systems are regarded as multi-component generalizations of the CH equation and
the modified CH equation, which can be obtained through the tri-Hamiltonian duality approach.
We showed that an integrable generalization to the nonlinear Schrödinger equation arises from
a non-stretching invariant curve flow in the three-dimensional Euclidean geometry. The in-
tegrable complex CH equation comes from an invariant curve flow on the Möbius 2-sphere.
Furthermore, we verified that multi-component generalizations to the modified CH equation
arise naturally from the curve flows in n-dimensional sphere Sn(1) and the hyperbolic space
Hn = SO(n, 1)/SO(n).

In [27], Olver, Kamran and Tenenblat have established the theory for curves in affine sym-
plectic geometry. The curve flows in four-dimensional affine symplectic geometry were studied
in [58], and an integrable three-component equation with bi-Hamiltonian structure was obtained.
The theory for curves in the centro-equiaffine symplectic geometry was established in [54]. It
was shown that certain invariant curve flows in the centro-equiaffine symplectic geometry yield
noncommutative KdV equations [47]. It is still not clear that what are the dual version of these
integrable equations arising from curve flows in the affine and centro-equiaffine symplectic
geometries.
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[36] Maŕı Beffa G., Poisson brackets associated to the conformal geometry of curves, Trans. Amer. Math. Soc.
357 (2005), 2799–2827.
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