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This work is dedicated to simultaneous measurements of plasma potential oscillations at GAM frequencies in
different locations on the T-10 tokamak and studying their correlation properties. Recent experiments with Heavy
lon Beam Probing and Langmuir probes have shown high coherency between signals of two diagnostics (up to 0.8)
despite a large distance between the observation points: half of torus in toroidal and about 7 in poloidal direction, up
to 12 cm in radial direction. The phase shift between potentials measured with two diagnostics has been obtained in
two plasma scenarios. It was found the most likely that potential oscillations at the GAM frequency propagate

outward, but influence of 2n phase shift cannot be excluded.

PACS: 52.55.Fa, 52.35.Fp, 52.70.-m

INTRODUCTION

In the recent years there has been significant interest
to Geodesic Acoustic Modes (GAMSs). GAMs, being the
high-frequency counterpart of zonal flows, can be
generated by turbulence and regulate the turbulence in
return. It has been shown theoretically that GAMSs
manifest themselves as oscillations of plasma electric
potential with m=n=0 (and can weakly be seen on
density with m=1, n=0) [1, 2]. Present paper shows
the evidence of the long-range radial coherence for
GAM.

1. EXPERIMENTAL SETUP

GAMs have been studied with two diagnostics:
Langmuir probes (LP) [3] and Heavy lon Beam Probing
(HIBP) [4, 5], a unigque method for direct measurement
of the electric potential in the hot plasma core.
Diagnostics are separated by half of torus of the T-10
tokamak (R=15m, a=03m, B<25T). The top
view of T-10 tokamak is shown at Fig. 1. GAMs have
been studied in two plasma scenarios, presented in
Figs. 2 and 3, scenario 1 with B=2.42T, I, =220 kA
and scenario 2 (B=2.2T, various currents Iy =230,
260, 280 kA).
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Fig. 1. The top view of the T-10 tokamak

2. EXPERIMENTAL RESULTS

It was found that coherency between signals of two

diagnostics is up to 0.8. The value of coherency
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decreases with increasing in radial distance between
HIBP sample volume and probes position at both
scenarios. The phase shift between electric potential
oscillation measured by HIBP and Langmuir probes has
also been measured. Spectrograms of potential
oscillations measured by HIBP, Langmuir probe,
coherence between oscillations of potential and phase
shift between them are shown in Fig. 4 and 5 for two
shots from different scenarios. We assume that phase
shift in toroidal and poloidal directions is equal to zero
because m=n=0 for GAM. So we can relate it to
radial propagation of GAM. Radial distribution of
coherency and phase shift for scenario 1 are shown at
Fig. 6 (considered part of HIBP radial scan marked as
horizontal bar). If we assume that GAM is a propagating
wave we should expect phase shift @ = @(Aruispip) is

monotonous function of the distance between
observation points.
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Fig. 2. Time evolution of plasma parameters in

scenario 1
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Fig. 3. Time evolution of plasma parameters
in scenario 2
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This is true for ® from scenario 1. So, under this
assumtion we can calculate its phase velocity by using
Vv =\ = 2nArv/@, where A — wavelength; v — GAM
frequency; Ar — radial distance between two observation
points; ® — measured phase shift. Potential oscillations
at the GAM frequencies propagate outward at scenario 1
(negative @ in case “inner point is a first argument”),
the magnitudes of phase velocity are also shown at
Fig. 6 (they change from ~ 2 km/s (Ar~2cm) to ~
8.5 km/s (Ar = 12 cm)).
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Fig. 4. Spectrograms for scenario 1 (shot #71003)
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Fig. 5. Spectrograms for scenario 2 (shot #72816)
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Fig. 6. Radial distributions of maximum values of
coherence (averaged) and phase shifts @ for scenario 1

The phase analysis for scenario 2 appears to be more
sophisticated. The histograms of phase shifts for two
typical shots are shown at Fig. 7. Note, that maximums
of distribution are near +m. These data should be
analyzed in the link with the data from other shots.
Radial distribution of coherency and phase shift
(marked as black dots) for scenario 2 are shown at
Fig. 8. Note, that for scenario 2 experimental
O(Aruispip) are not monotonous. Furthermore, some of
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them have positive values, others have negative values.
So, one should take into account an ambiguity of the ®
determination with +k-27, where k is an integer number.
One may add an additional phase shift k-2x for various
k and obtain shifted data (marked as red and blue dots at
Fig. 8 for k=+1). The most likely monotonous functions
® = O(4r) highlighted by ellipse at Fig. 8, has k=+1,
but other cases cannot be excluded.
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Fig. 7. Examples of histograms of phase shifts with
peaks near £ (shots from scenario 2)
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Fig. 8. Radial distributions of maximum values of
coherence (averaged) and phase shifts @ shifted by k-2x
for scenario 2

3. DISCUSSION

One should consider an ambiguity of the ©
determination with +k-2x for scenario 1 also. The cases
k=+1, 2 are shown at Fig. 9. The raw data (k=0) marked
by black dots remain the most likely case.
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Fig. 9. Radial distributions of phase shifts
shifted by k-2 for scenario 1

Finally, the direction of the plasma potential
propagation in scenario 2 is still an open question. It
could be an inward propagation, and a possible reason
can be the difference in wall condition or ne evolution.
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KOPPEJISILIUHA DJEKTPUYECKOI'O NOTEHIUAJIA HA YACTOTE 'AM MEXKIY NIEPU®EPUEN
U TOPSIYEM 30HOM IIJIA3ZMBI HA TOKAMAKE T-10

B.H. 3enun, M.A. /Ipadunckuii, J1.I'. Enuceee, C.A. I pawun, @.0. Xabanos, H. K. Xapues, JI. H. Kpynuux,
A.B. Menvnukos

Pabora mocpsiieHa 0JHOBPEMEHHOMY HWCCIICIOBAaHHUIO KOJICOAHWH MOTEHIMaa IUIa3Mbl Ha dactoTax [AM B
pa3MYIHBIX 00NacTAX TokaMaka T-10 M W3ydeHHWIO MX KOPPEJSIHMOHHBIX CBOWCTB. HemaBHHE SKCHEPUMEHTHI C
WCIIONIE30BAaHUEM 30HIMPOBAHUS IUIa3MBl MYYKOM TSDKENBIX HOHOB W JICHTMIOPOBCKHX 30HIIOB IOKA3BIBAIOT
BBICOKHI ypOBEHB KOT€PCHTHOCTH MEXKIY CHUTHAIaMU IBYX TUArHOCTHK (BIUIOTH 10 0.8), HECMOTps Ha OoibIIOe
paccTosiHHE MEXIy oOJacTIMU HaONIONCHHA. IOJIOBHHA TOpa B TOPOHIAIGHOM HANPAaBICHHH W OKOJIO T B
MOJIOUAATBHOM, 10 12 ¢cM — B pamuaibsHOM. Da30BbIi CABUT MEKIY KOJICOAHUSIME MMOTCHIMAIA, U3MEPCHHBINA TBYMS
JIMaTHOCTHKAMHU, ObLT MOTYYEH B IBYX TUIa3MEHHBIX pexumax. Hanbomee BeposTHO, 4TO KoJIeOaHUs TOTEHIHANIA Ha
yactorax ['AM pacrnpocTpaHsSIOTCS HAPYKY, XOTS IPH TOM HEJTb3sl HCKIII0YATh BIMSHUE “TIepecKoka” (as3bl Ha 2.

KOPEJALIT EJTEKTPUYHOT O MIOTEHIIAJIY HA YACTOTI T'AM MIK TEPUDEPIEIO
ITAPSYOI0 30HOIO IIJIABMH HA TOKAMAII T-10

B.M. 3enin, M.O. /Ipabincoxun, JL.I. €nicees, C.A. I'pawin, @.0. Xabanos, M.K. Xapues, JI.I. Kpynnix,
0.B. Menvnukos

Pobora npucBsiueHa 0THOYACHOMY JOCII/DKEHHIO KOJIMBaHb MOTEHLIay Iuia3Mu Ha dactotax I'AM y pi3HHX
obnactsx Tokamaka T-10 Ta BUBUeHHS IX KopersuiiiHuX BracTuBocTel. HeqaBHI eKcriepiMeHTH 3 BUKOPHCTaHHAM
30H[yBaHHS IUIa3MH MTYYKOM BaXKKHX 10HIB 1 JIGHTMIOPIBCbKUX 30HJIB MOKa3yIOTh BUCOKHI PiBeHb KOI'€PEHTHOCTI
MiX CHTHaJaMH IBOX AiarHOCTHK (1o 0.8), He MUBIAYKCH HA BEJIHMKY BiICTaHb MK OOJACTSIMH CIIOCTEPEIKCHHS '
MOJIOBHHA TOpa y TOPOIAAIbHOMY HANpsIMKY 1 OJIM3bKO Ty MOJOinabHOMY, 10 12 cM — y paaiansHoMy. Da3oBwuii
3CYB MIX KOJIMBaHHSIMH NOTEHIIally, SIKMH BUMIPIOETHCS IBOMa JIIarHOCTUKaMHM, OyB OTpUMaHUM Y ABOX IJIA3MOBHX
pexxumax. HaiiGinpin WMOBIpHO, 1110 KOJMBaHHs NOTEHIialny Ha yactotaXx ['AM MmoumMproroThCsl HAa30BHI, X04a NpU
[[OMY HE MOYKHA BUKJIFOUATH BIUIUB "MIEpecKoKy" (a3u Ha 27.
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