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Abstract. We review recent results on global attractors of U(1)-invariant dispersive Hamil-
tonian systems. We study several models based on the Klein–Gordon equation and sketch
the proof that in these models, under certain generic assumptions, the weak global attractor
is represented by the set of all solitary waves. In general, the attractors may also contain
multifrequency solitary waves; we give examples of systems which contain such solutions.
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1 Introduction

The long time asymptotics for nonlinear wave equations have been the subject of intensive
research, starting with the pioneering papers by Segal [44, 45], Strauss [53], and Morawetz and
Strauss [39], where the nonlinear scattering and local attraction to zero were considered. Global
attraction (for large initial data) to zero may not hold if there are quasistationary solitary wave
solutions of the form

ψ(x, t) = φ(x)e−iωt, with ω ∈ R, lim
|x|→∞

φ(x) = 0. (1.1)

We will call such solutions solitary waves. Other appropriate names are nonlinear eigenfunctions
and quantum stationary states (the solution (1.1) is not exactly stationary, but certain observable
quantities, such as the charge and current densities, are time-independent indeed).

Existence of such solitary waves was addressed by Strauss in [54], and then the orbital stability
of solitary waves has been studied in [21, 47, 48, 49]. The asymptotic stability of solitary waves
has been studied by Soffer and Weinstein [50, 51], Buslaev and Perelman [7, 8], and then by
others.

The existing results suggest that the set of orbitally stable solitary waves typically forms
a local attractor, that is to say, attracts any finite energy solutions that were initially close to it.
Moreover, a natural hypothesis is that the set for all solitary waves forms a global attractor of
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all finite energy solutions. We address this question in the present paper, reviewing the results
on the global attraction in several models based on the Klein–Gordon equation, and describing
the developed techniques.

We briefly discuss the long-time solitary wave asymptotics for U(1)-invariant Hamiltonian
systems in Section 2. The definitions and results on global attraction to solitary waves from the
recent papers [35, 36, 37] are presented in Section 3. We also give there a very brief sketch of the
proof. In Section 4, we give a description of all the steps (omitting excessive technical points)
of the argument for the simplest model: Klein–Gordon equation interacting with a nonlinear
oscillator. The key parts of the proof are presented in full detail. The examples of (untypical)
multifrequency solitary waves are given in Section 5.

2 History of solitary asymptotics
for U(1)-invariant Hamiltonian systems

2.1 Quantum theory

Bohr’s stationary orbits as solitary waves

Let us focus on the behavior of the electron in the Hydrogen atom. According to Bohr’s postu-
lates [4], an unperturbed electron runs forever along certain stationary orbit, which we denote |E〉
and call quantum stationary state. Once in such a state, the electron has a fixed value of ener-
gy E, not losing the energy via emitting radiation. The electron can jump from one quantum
stationary state to another,

|E−〉 7−→ |E+〉, (2.1)

emitting or absorbing a quantum of light with the energy equal to the difference of the ener-
gies E+ and E−. The old quantum theory was based on the quantization condition∮

p · dq = 2π~n, n ∈ N. (2.2)

This condition leads to the values

En = − me4

2~2n2
, n ∈ N,

for the energy levels in Hydrogen, in a good agreement with the experiment. Apparently, the
condition (2.2) did not explain the perpetual circular motion of the electron. According to
the classical Electrodynamics, such a motion would be accompanied by the loss of energy via
radiation.

In terms of the wavelength λ = 2π~
|p| of de Broglie’s phase waves [6], the condition (2.2) states

that the length of the classical orbit of the electron is the integer multiple of λ. Following de
Broglie’s ideas, Schrödinger identified Bohr’s stationary orbits, or quantum stationary states |E〉,
with the wave functions that have the form

ψ(x, t) = φω(x)e−iωt, ω = E/~,

where ~ is Planck’s constant. Physically, the charge and current densities

ρ(x, t) = eψ̄ψ, j(x, t) =
e
2i

(ψ̄ · ∇ψ −∇ψ̄ · ψ),

with e < 0 being the charge of the electron, which correspond to the (quasi)stationary states of
the form ψ(x, t) = φω(x)e−iωt do not depend on time, and therefore the generated electromag-
netic field is also stationary and does not carry the energy away from the system, allowing the
electron cloud to flow forever around the nucleus.
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Bohr’s transitions as global attraction to solitary waves

Bohr’s second postulate states that the electrons can jump from one quantum stationary state
(Bohr’s stationary orbit) to another. This postulate suggests the dynamical interpretation of
Bohr’s transitions as long-time attraction

Ψ(t) −→ |E±〉, t→ ±∞ (2.3)

for any trajectory Ψ(t) of the corresponding dynamical system, where the limiting states |E±〉
generally depend on the trajectory. Then the quantum stationary states S0 should be viewed as
the points of the global attractor A .

The attraction (2.3) takes the form of the long-time asymptotics

ψ(x, t) ∼ φω±(x)e−iω±t, t→ ±∞, (2.4)

that hold for each finite energy solution. However, because of the superposition principle, the
asymptotics of type (2.4) are generally impossible for the linear autonomous equation, be it the
Schrödinger equation

i~∂tψ = − ~2

2m
∆ψ − e2

|x|
ψ,

or relativistic Schrödinger or Dirac equation in the Coulomb field. An adequate description
of this process requires to consider the equation for the electron wave function (Schrödinger
or Dirac equation) coupled to the Maxwell system which governs the time evolution of the
four-potential A(x, t) = (ϕ(x, t),A(x, t)):

(i~∂t − eϕ)2ψ =
(
c
~
i
∇− eA

)2

ψ +m2c4ψ,

�ϕ = 4πe(ψ̄ψ − δ(x)), �A = 4πe
ψ̄ · ∇ψ −∇ψ̄ · ψ

2i
.

Consideration of such a system seems inevitable, because, again by Bohr’s postulates, the tran-
sitions (2.1) are followed by electromagnetic radiation responsible for the atomic spectra. More-
over, the Lamb shift (the energy of 2S1/2 state being slightly higher than the energy of 2P1/2

state) can not be explained in terms of the linear Dirac equation in the external Coulomb field.
Its theoretical explanation within the Quantum Electrodynamics takes into account the higher
order interactions of the electron wave function with the electromagnetic field, referred to as
the vacuum polarization and the electron self-energy correction.

The coupled Maxwell–Schrödinger system was initially introduced in [43]. It is a U(1)-
invariant nonlinear Hamiltonian system. Its global well-posedness was considered in [22]. One
might expect the following generalization of asymptotics (2.4) for solutions to the coupled
Maxwell–Schrödinger (or Maxwell–Dirac) equations:

(ψ(x, t), A(x, t)) ∼
(
φω±(x)e−iω±t, Aω±(x)

)
, t→ ±∞. (2.5)

The asymptotics (2.5) would mean that the set of all solitary waves{ (
φωe

−iωt, Aω
)

: ω ∈ R
}

forms a global attractor for the coupled system. The asymptotics of this form are not available
yet in the context of coupled systems. Let us mention that the existence of the solitary waves
for the coupled Maxwell–Dirac equations was established in [16].
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2.2 Solitary waves as global attractors for dispersive systems

Convergence to a global attractor is well known for dissipative systems, like Navier–Stokes equa-
tions (see [1, 23, 56]). For such systems, the global attractor is formed by the static stationary
states, and the corresponding asymptotics (2.4) only hold for t→ +∞.

We would like to know whether dispersive Hamiltonian systems could, in the same spirit,
possess finite dimensional global attractors, and whether such attractors are formed by the
solitary waves. Although there is no dissipation per se, we expect that the attraction is caused
by certain friction mechanism via the dispersion (local energy decay). Because of the difficulties
posed by the system of interacting Maxwell and Dirac (or Schrödinger) fields (and, in particular,
absence of the a priori estimates for such systems), we will work with simpler models that share
certain key properties of the coupled Maxwell–Dirac or Maxwell–Schrödinger systems. Let us
try to single out these key features:

(i) The system is U(1)-invariant.
This invariance leads to the existence of solitary wave solutions φω(x)e−iωt.

(ii) The linear part of the system has a dispersive character.
This property provides certain dissipative features in a Hamiltonian system, due to local
energy decay via the dispersion mechanism.

(iii) The system is nonlinear.
The nonlinearity is needed for the convergence to a single state of the form φω(x)e−iωt.
Bohr type transitions to pure eigenstates of the energy operator are impossible in a linear
system because of the superposition principle.

We suggest that these are the very features are responsible for the global attraction, such as (2.4),
(2.5), to “quantum stationary states”.

Remark 1. The global attraction (2.4), (2.5) for U(1)-invariant equations suggests the corre-
sponding extension to general G-invariant equations (G being the Lie group):

ψ(x, t) ∼ ψ±(x, t) = eΩ±tφ±(x), t→ ±∞, (2.6)

where Ω± belong to the corresponding Lie algebra and eΩ±t are the one-parameter subgroups.
Respectively, the global attractor would consist of the solitary waves (2.6). On a seemingly
related note, let us mention that according to Gell-Mann–Ne’eman theory [18] there is a cor-
respondence between the Lie algebras and the classification of the elementary particles which
are the “quantum stationary states”. The correspondence has been confirmed experimentally
by the discovery of the omega-minus Hyperon.

Besides Maxwell–Dirac system, naturally, there are various nonlinear systems under consid-
eration in the Quantum Physics. One of the simpler nonlinear models is the nonlinear Klein–
Gordon equation which takes its origin from the articles by Schiff [41, 42], in his research
on the classical nonlinear meson theory of nuclear forces. The mathematical analysis of this
equation is started by Jörgens [26] and Segal [44], who studied its global well-posedness in the
energy space. Since then, this equation (alongside with the nonlinear Schrödinger equation) has
been the main playground for developing tools to handle more general nonlinear Hamiltonian
systems. The nonlinear Klein–Gordon equation is a natural candidate for exhibiting solitary
asymptotics (2.4).

Now let us describe the existing results on attractors in the context of dispersive Hamiltonian
systems.
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Local and global attraction to zero

The asymptotics of type (2.4) were discovered first with ψ± = 0 in the scattering theory. Namely,
Segal, Morawetz, and Strauss studied the (nonlinear) scattering for solutions of nonlinear Klein–
Gordon equation in R3 [39, 46, 53]. We may interpret these results as local (referring to small
initial data) attraction to zero:

ψ(x, t) ∼ ψ± = 0, t→ ±∞. (2.7)

The asymptotics (2.7) hold on an arbitrary compact set and represent the well-known local
energy decay. These results were further extended in [19, 20, 25, 27]. Apparently, there could be
no global attraction to zero (global referring to arbitrary initial data) if there are solitary wave
solutions φω(x)e−iωt.

Solitary waves

The existence of solitary wave solutions of the form

ψω(x, t) = φω(x)e−iωt, ω ∈ R, φω ∈ H1(Rn),

with H1(Rn) being the Sobolev space, to the nonlinear Klein–Gordon equation (and nonlinear
Schrödinger equation) in Rn, in a rather generic situation, was established in [54] (a more general
result was obtained in [2, 3]). Typically, such solutions exist for ω from an interval or a collection
of intervals of the real line. We denote the set of all solitary waves by S0.

Due to the U(1)-invariance of the equations, the factor-space S0/U(1) in a generic situation
is isomorphic to a finite union of intervals. Let us mention that there are numerous results on
the existence of solitary wave solutions to nonlinear Hamiltonian systems with U(1) symmetry.
See e.g. [5, 10, 17].

While all localized stationary solutions to the nonlinear wave equations in spatial dimensions
n ≥ 3 turn out to be unstable (the result known as “Derrick’s theorem” [15]), quasistationary
solitary waves can be orbitally stable. Stability of solitary waves takes its origin from [58] and
has been extensively studied by Strauss and his school in [21, 47, 48, 49].

Local attraction to solitary waves

First results on the asymptotics of type (2.4) with ω± 6= 0 were obtained for nonlinear U(1)-
invariant Schrödinger equations in the context of asymptotic stability. This establishes asymp-
totics of type (2.4) but only for solutions close to the solitary waves, proving the existence of
a local attractor. This was first done by Soffer and Weinstein and by Buslaev and Perelman
in [7, 8, 50, 51], and then developed in [9, 12, 13, 14, 40, 52] and other papers.

Global attraction to solitary waves

The global attraction of type (2.4) with ψ± 6= 0 and ω± = 0 was established in certain models
in [28, 29, 30, 31, 32, 33] for a number of nonlinear wave problems. There the attractor is the
set of all static stationary states. Let us mention that this set could be infinite and contain
continuous components.

In [34] and [35], the attraction to the set of solitary waves (see Fig. 1) is proved for the
Klein–Gordon field coupled to a nonlinear oscillator. In [36], this result has been generalized
for the Klein–Gordon field coupled to several oscillators. The paper [37] gives the extension to
the higher-dimensional setting for a model with the nonlinear self-interaction of the mean field
type. We are going to describe these results in this survey.
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Figure 1. For t→ ±∞, a finite energy solution Ψ(t) approaches the global attractor A which coincides
with the set of all solitary waves S0.

We are aware of but one recent advance [55] in the field of nontrivial (nonzero) global attrac-
tors for Hamiltonian PDEs. In that paper, the global attraction for the nonlinear Schrödinger
equation in dimensions n ≥ 5 was considered. The dispersive (outgoing) wave was explicitly
specified using the rapid decay of local energy in higher dimensions. The global attractor was
proved to be compact, but it was neither identified with the set of solitary waves nor was proved
to be finite-dimensional [55, Remark 1.18].

3 Assumptions and results

In [35, 36, 37] we introduce the models which possess the key properties we mentioned above:
U(1)-invariance, dispersive character, and the nonlinearity. The models allow to prove the global
attraction to solitary waves and to develop certain techniques which we hope will allow us to
approach more general systems.

Model 1: Klein–Gordon field with a nonlinear oscillator

We consider the Cauchy problem for the Klein–Gordon equation with the nonlinearity concen-
trated at the origin:

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R,
ψ|t=0 = ψ0(x), ψ̇|t=0 = π0(x). (3.1)

Above, m > 0 and F is a function describing an oscillator at the point x = 0. The dots stand
for the derivatives in t, and the primes for the derivatives in x. All derivatives and the equation
are understood in the sense of distributions. We assume that equation (3.1) is U(1)-invariant;
that is,

F (eiθψ) = eiθF (ψ), θ ∈ R, ψ ∈ C. (3.2)

If we identify a complex number ψ = u + iv ∈ C with the two-dimensional vector (u, v) ∈ R2,
then, physically, equation (3.1) describes small crosswise oscillations of the infinite string in
three-dimensional space (x, u, v) stretched along the x-axis. The string is subject to the action
of an “elastic force” −m2ψ(x, t) and coupled to a nonlinear oscillator of force F (ψ) attached at
the point x = 0. We assume that the oscillator force F admits a real-valued potential,

F (ψ) = −∇ψU(ψ), ψ ∈ C, U ∈ C2(C),

where the gradient is taken with respect to Reψ and Imψ.

Remark 2. Viewing the model as an infinite string in R3, the assumption (3.2) means that the
potential U(ψ) is rotation-invariant with respect to the x-axis.
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The codes for the numerical simulation of a finite portion of a string coupled to an oscillator,
with transparent boundary conditions (∂tψ = ±∂xψ), are available in [11].

Model 2: Klein–Gordon field with several nonlinear oscillators

More generally, we consider the Cauchy problem for the Klein–Gordon equation with the non-
linearity concentrated at the points X1 < X2 < · · · < XN :

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) +
N∑
J=1

δ(x−XJ)FJ(ψ(XJ , t)), x ∈ R,

ψ|t=0 = ψ0(x), ψ̇|t=0 = π0(x). (3.3)

Model 3: Klein–Gordon field with the mean field interaction

We also consider the Klein–Gordon equation with the mean field interaction:

ψ̈(x, t) = ∆ψ(x, t)−m2ψ(x, t) + ρ(x)F (〈ρ, ψ(·, t)〉), x ∈ Rn, n ≥ 1,

ψ|t=0 = ψ0(x), ψ̇|t=0 = π0(x). (3.4)

Above, ρ is a smooth real-valued coupling function from the Schwartz class: ρ ∈ S (Rn), ρ 6≡ 0,
and

〈ρ, ψ(·, t)〉 =
∫

Rn

ρ(x)ψ(x, t) dx.

Hamiltonian structure

Equations (3.3), (3.4) formally can be written as a Hamiltonian system,

Ψ̇(t) = J DH(Ψ), J =
[

0 1
−1 0

]
, (3.5)

where Ψ = (ψ, π) and DH is the Fréchet derivative of the Hamilton functionals

Hosc(ψ, π) =
1
2

∫
R

(
|π|2 + |ψ′|2 +m2|ψ|2

)
dx+

∑
J

UJ(ψ(XJ)),

Hm.f.(ψ, π) =
1
2

∫
Rn

(
|π|2 + |∇ψ|2 +m2|ψ|2

)
dx+ U(〈ρ, ψ〉).

Since (3.3) and (3.4) are U(1)-invariant, the Nöther theorem formally implies that the value of
the charge functional

Q(ψ, π) =
i

2

∫ (
ψπ − πψ

)
dx

is conserved for solutions Ψ(t) = (ψ(t), π(t)) to (3.5).
Let us introduce the phase space E of finite energy states for equations (3.3), (3.4). Denote

by ‖ · ‖L2 the norm in the complex Hilbert space L2(Rn) and by ‖ · ‖L2
R

the norm in L2(BnR),
where BnR is a ball of radius R > 0. Denote by ‖ · ‖Hs

R
the norm in the Sobolev space Hs(BnR)

(which is the dual to the Sobolev space H−s
0 (BnR) of functions supported in the ball of radius R).



8 A.I. Komech and A.A. Komech

Definition 1 (The phase space).

(i) E = H1(Rn)⊕ L2(Rn), n ≥ 1, is the Hilbert space of the states (ψ, π), with the norm

‖(ψ, π)‖2
E := ‖π‖2

L2 + ‖∇ψ‖2
L2 +m2‖ψ‖2

L2 .

(ii) For ε ≥ 0, E −ε = H1−ε(Rn)⊕H−ε(Rn) is the space with the norm

‖(ψ, π)‖E−ε = ‖(1−∆)−ε/2(ψ, π)‖E .

(iii) Define the seminorms

‖(ψ, π)‖2
E−ε,R := ‖π‖2

H−ε
R

+ ‖∇ψ‖2
H−ε

R
+m2‖ψ‖2

H−ε
R
, R > 0.

E −ε
F is the space with the norm

‖(ψ, π)‖E−ε
F

=
∞∑
R=1

2−R‖(ψ, π)‖E−ε,R. (3.6)

Equations (3.3), (3.4) are formally Hamiltonian systems with the Hamilton functionals Hosc

and Hm.f., respectively, and with the phase space E from Definition 1 (for equation (3.3), the
dimension is n = 1). Both Hosc (or Hm.f.) and Q are continuous functionals on E .

Global well-posedness

Theorem 1 (Global well-posedness). Assume that the nonlinearity in (3.3) is given by
FJ(z) = −∇UJ(z) with inf

z∈C
UJ(z) > −∞, 1 ≤ J ≤ N (or F (z) = −∇U(z) with inf

z∈C
U(z) > −∞

in (3.4), respectively). Then:

(i) For every (ψ0, π0) ∈ E the Cauchy problem (3.3) ( (3.4), respectively) has a unique global
solution ψ(t) such that (ψ, ψ̇) ∈ C(R,E ).

(ii) The map W (t) : (ψ0, π0) 7→ (ψ(t), ψ̇(t)) is continuous in E for each t ∈ R.

(iii) The energy and charge are conserved: H(ψ(t), ψ̇(t)) = const, Q(ψ(t), ψ̇(t)) = const, t ∈ R.

(iv) The following a priori bound holds:

‖(ψ(t), ψ̇(t))‖E ≤ C(ψ0, π0), t ∈ R. (3.7)

(v) For any ε ∈ [0, 1],

(ψ, ψ̇) ∈ C(ε)(R,E −ε),

where C(ε) denotes the space of Hölder-continuous functions.

The proof is contained in [35, 36], and [37].



Global Attraction to Solitary Waves 9

Solitary waves

Definition 2 (Solitary waves).

(i) The solitary waves of equation (3.3) are solutions of the form

ψ(x, t) = φω(x)e−iωt, where ω ∈ R, φω ∈ H1(Rn). (3.8)

(ii) The set of all solitary waves is S0 =
{
φω: ω ∈ R, φω ∈ H1(Rn)

}
.

(iii) The solitary manifold is the set S =
{
(φω,−iωφω): ω ∈ R, φω ∈ H1(Rn)

}
⊂ E .

Remark 3.

(i) The U(1) invariance of (3.3) and (3.4) implies that the sets S0, S are invariant under
multiplication by eiθ, θ ∈ R.

(ii) Let us note that for any ω ∈ R there is a zero solitary wave with φω(x) ≡ 0 since FJ(0) = 0.

The following proposition provides a concise description of all solitary wave solutions to (3.1).

Proposition 1. There are no nonzero solitary waves for |ω| ≥ m.
For a particular ω ∈ (−m,m), there is a nonzero solitary wave solution to (3.1) if and only

if there exists C ∈ C\{0} so that

2κ(ω) = F (C)/C. (3.9)

The solitary wave solution is given by

φω(x) = Ce−κ(ω)|x|, κ(ω) =
√
m2 − ω2. (3.10)

Remark 4. There could be more than one value C > 0 satisfying (3.9).

Remark 5. By (3.10), ω = ±m can not correspond to a nonzero solitary wave.

Proof. When we substitute the ansatz φωe−iωt into (3.1), we get the following relation:

−ω2φω(x) = φ′′ω(x)−m2φω(x) + δ(x)F (φω(x)), x ∈ R. (3.11)

The phase factor e−iωt has been canceled out. Equation (3.11) implies that away from the origin
we have

φ′′ω(x) = (m2 − ω2)φω(x), x 6= 0,

hence φω(x) = C±e
−κ±|x| for ±x > 0, where κ± satisfy κ2

± = m2 − ω2. Since φω(x) ∈ H1, it is
imperative that κ± > 0; we conclude that |ω| < m and that κ± =

√
m2 − ω2 > 0. Moreover,

since the function φω(x) is continuous, C− = C+ = C 6= 0 (since we are looking for nonzero
solitary waves). We see that

φω(x) = Ce−κ|x|, C 6= 0, κ ≡
√
m2 − ω2 > 0. (3.12)

Equation (3.11) implies the following jump condition at x = 0:

0 = φ′ω(0+)− φ′ω(0−) + F (φω(0)),

which is satisfied due to (3.9) and (3.12). �
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Global attraction to solitary waves

We will combine the results for the Klein–Gordon equation with one and several oscillators ((3.1)
and (3.3)).

Theorem 2 (Global attraction for (3.3), Klein–Gordon equation with N oscillators).
Assume that all the oscillators are strictly nonlinear: for all 1 ≤ J ≤ N ,

FJ(ψ) = −∇UJ(ψ), (3.13)

where UJ(ψ) =
pJ∑
l=0

uJ,l|ψ|2l, uJ,l ∈ R, uJ,pJ
> 0, and pJ ≥ 2.

Further, if N ≥ 2, assume that the intervals [XJ , XJ+1], 1 ≤ J ≤ N − 1, are small enough so
that

min
1≤J≤N−1

(
π2

|XJ+1 −XJ |2
+m2

)1/2

> m max
1≤J≤N

min

(
J∏
l=1

(2pl − 1),
N∏
l=J

(2pl − 1)

)
, (3.14)

where pJ are exponentials from (3.13). Then for any (ψ0, π0) ∈ E the solution ψ(t) to the
Cauchy problem (3.3) converges to S:

lim
t→±∞

dist EF
((ψ(t), ψ̇(t)),S) = 0. (3.15)

Theorem 3 (Global attraction for (3.4), Klein–Gordon equation with mean field
interaction). Assume that the nonlinearity F (z) is strictly nonlinear:

F (z) = −∇U(z), where U(z) =
p∑
l=0

ul|z|2l, ul ∈ R, up > 0, and p ≥ 2.

Further, assume that the set

Zρ = {ω ∈ R\[−m,m]: ρ̂(ξ) = 0 for all ξ ∈ Rn such that m2 + ξ2 = ω2}

is finite and that

σ(ω) :=
1

(2π)n

∫
Rn

|ρ̂(ξ)|2

ξ2 +m2 − ω2
dnξ

does not vanish at the points ω ∈ Zρ. Then for any (ψ0, π0) ∈ E the solution ψ(t) ∈ C(R,E ) to
the Cauchy problem (3.4) converges to S in the space E −ε

F , for any ε > 0:

lim
t→±∞

dist E−ε
F

(Ψ(t),S) = 0. (3.16)

Above, dist E−ε
F

(Ψ,S) := inf
Φ∈S

‖Ψ− Φ‖E−ε
F

, with ‖ · ‖E−ε
F

is defined in (3.6).

Theorem 2 is proved in [36]; Theorem 3 is proved in [37]. We present the sketch of the proof
of Theorem 2 for one oscillator in Section 4.

Let us mention several important points.

(i) In the linear case, the global attractor contains the linear span of points of the solitary
manifold, 〈S〉. In [35], we prove that for the model of one linear oscillator attached to the
Klein–Gordon field the global attractor indeed coincides with 〈S〉.
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(ii) The condition (3.14) allows to avoid “trapped modes”, which could also be characterized
as multifrequency solitary waves. In Proposition 8 below, we give an example of such
solutions in the situation when the condition (3.14) is violated.

Similarly, the condition of Theorem 3 that σ(ω) does not vanish for ω ∈ Zρ allows to avoid
multifrequency solitary waves.

(iii) We prove the attraction of any finite energy solution to the solitary manifold S:

(ψ(t), ψ̇(t)) −→ S, t→ ±∞, (3.17)

where the convergence holds in local seminorms. In this sense, S is a weak (convergence
is local in space) global (convergence holds for arbitrary initial data) attractor.

(iv) S can be at most a weak attractor because we need to keep forgetting about the outgoing
dispersive waves, so that the dispersion plays the role of friction. A strong attractor would
have to consist of the direct sum of S and the space of outgoing waves.

(v) We interpret the local energy decay caused by dispersion as a certain friction effect in
order to clarify the cause of the convergence to the attractor in a Hamiltonian model.
This “friction” does not contradict the time reversibility: if the system develops backwards
in time, one observes the same local energy decay which leads to the convergence to the
attractor as t→ −∞.

(vi) Although we proved the attraction (3.17) to S, we have not proved the attraction to
a particular solitary wave, falling short of proving (2.4). Hypothetically, if S/U(1) contains
continuous components, a solution can be drifting along S, keeping asymptotically close to
it, but never approaching a particular solitary wave. This could be viewed as the adiabatic
modulation of solitary wave parameters. Apparently, if S/U(1) is discrete, a solution
converges to a particular solitary wave.

(vii) The requirement that the nonlinearity is polynomial allows us to apply the Titchmarsh
convolution theorem. This step is vital in our approach. We do not know whether the
polynomiality requirement could be dropped.

(viii) For the real initial data, we obtain a real-valued solution ψ(t). Therefore, the conver-
gence (3.15), (3.16) of Ψ(t) = (ψ(t), ψ̇(t)) to the set of pairs (φω,−iωφω) with ω ∈ R\{0}
implies that ψ(t) locally converges to zero.

Sketch of the proof

First, we introduce a concept of the omega-limit trajectory β(x, t) which plays a crucial role in
the proof.

Definition 3 (Omega-limit trajectory). The function β(x, t) is an omega-limit trajectory if
there is a global solution ψ ∈ C(R,E ) and a sequence of times {sj : j ∈ N} with lim

j→∞
sj = ∞ so

that

ψ(x, t+ sj) → β(x, t),

where the convergence is in Cb([−T, T ]× BnR) for any T > 0 and R > 0.

We are going to prove that all omega-limit trajectories are solitary waves: β(x, t)=φω(x)e−iωt.
It suffices to prove that the time spectrum of any omega-limit trajectory β consists of at most
one frequency.

To complete this program, we study the time spectrum of solutions, that is, their complex
Fourier–Laplace transform in time. First, we prove that the spectral density of a solution is
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absolutely continuous for |ω| > m hence the corresponding component of the solution disperses
completely. It follows that the time-spectrum of omega-limit trajectory β is contained in a finite
interval [−m,m].

Second, we notice that β also satisfies the original nonlinear equation. Since the spectral
support of β is compact and the nonlinearity is polynomial, we may apply the Titchmarsh con-
volution theorem. This theorem allows to conclude that the spectral support of the nonlinearity
would be strictly larger than the spectral support of the linear terms in the equation (which
would be a contradiction!) except in the case when the spectrum of the omega-limit trajectory
consists of a single frequency ω+ ∈ [−m,m].

Since any omega-limit trajectory is a solitary wave, the attraction (3.17) follows.

Open problems

(i) As we mentioned, we prove the attraction to S, as stated in (3.17), but have not proved the
attraction to a particular solitary wave like (2.4). It would be interesting to find solutions
with multiple omega-limit points, that is, the situation when the frequency parameter ω
keeps changing adiabatically.

(ii) Our argument does not apply to the Schrödinger equation. The important feature of the
Klein–Gordon equation is that the continuous spectrum corresponds to |ω| ≥ m, hence the
spectral density of the solution is absolutely continuous for |ω| ≥ m, while the spectrum
of the omega-limit trajectory is within the compact set [−m,m]. This is not so for the
Schrödinger equation: since the continuous spectrum corresponds to ω ≥ 0, the resulting
restriction on the spectrum of the omega-limit trajectory is ω ≤ 0. As a result, we do
not know whether the spectrum is compact; the Titchmarsh convolution theorem does not
apply, and the proof breaks down. It would be extremely interesting to investigate whether
the convergence to solitary waves is no longer true, or instead certain modification of the
Titchmarsh theorem allows to reduce the spectrum to a point.

(iii) Similarly, the Titchmarsh theorem does not apply when the nonlinearity is not polynomial,
and it would be interesting to investigate what could happen in such a case.

4 Proof of attraction to solitary waves
for the Klein–Gordon field with one nonlinear oscillator

We will sketch the proof of Theorem 2 for the system (3.1) which describes one nonlinear
oscillator located at the origin.

Proposition 2 (Compactness. Existence of omega-limit trajectories).

(i) For any sequence sj → +∞ there exists a subsequence sj′ → +∞ such that

ψ(x, sj′ + t) → β(x, t), x ∈ R, t ∈ R, (4.1)

for some β ∈ C(R×R), where the convergence is in Cb([−T, T ]× [−R,R]), for any T > 0
and R > 0.

(ii)

sup
t∈R

‖β(·, t)‖H1 <∞. (4.2)

Proof. By Theorem 1 (v), for any ε ∈ [0, 1],

ψ ∈ C(ε)(R,H1−ε(R)).
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Taking ε = 1/4, we see that ψ ∈ C(α)(R × R), for any α < 1/4. Now the first statement of
the proposition follows by the Ascoli–Arzelà theorem. The bound (4.2) follows from (4.1), the
bound (3.7), and the Fatou lemma. �

We call omega-limit trajectory any function β(x, t) that can appear as a limit in (4.1) (cf.
Definition 3). We are going to prove that every omega-limit trajectory β belongs to the set of
solitary waves; that is,

β(x, t) = φω+(x)e−iω+t for some ω+ ∈ [−m,m]. (4.3)

Remark 6. The fact that any omega-limit trajectory turns out to be a solitary wave implies
the following statement:

if there is a sequence tj →∞ so that (ψ(tj), ψ̇(tj))
EF−→ Φ ∈ H1 × L2, then Φ ∈ S. (4.4)

In turn, (4.4) implies the convergence to the attractor in the metric (3.6) of E −ε
F for ε > 0:

(ψ(t), ψ̇(t))
E−ε

F−→ S, ε > 0, t→ ±∞.

This is weaker than the convergence to the attractor in the topology of EF stated in Theorem 2.
For the proof of the convergence to the attractor in the topology of EF , see [35].

Let us split the solution ψ(x, t) into two components, ψ(x, t) = χ(x, t) + ϕ(x, t), which are
defined for all t ∈ R as solutions to the following Cauchy problems:

χ̈(x, t) = χ′′(x, t)−m2χ(x, t), (χ, χ̇)|t=0 = (ψ0(x), π0(x)),

ϕ̈(x, t) = ϕ′′(x, t)−m2ϕ(x, t) + δ(x)f(t), (ϕ, ϕ̇)|t=0 = (0, 0), (4.5)

where (ψ0(x), π0(x)) is the initial data from (3.1), and

f(t) := F (ψ(0, t)), t ∈ R. (4.6)

Lemma 1 (Local energy decay of the dispersive component). There is the following
decay for χ:

lim
t→∞

‖(χ(·, t), χ̇(·, t))‖E ,R = 0, ∀R > 0.

For the proof, see [35, Lemma 3.1]. Lemma 1 means that the dispersive component χ does
not give any contribution to the omega-limit trajectories (see Definition 3).

Figure 2. Domain D and the values of k(ω ± i0), ω ∈ R.

Let k(ω) be the analytic function with the domain D := C\((−∞,−m]∪ [m,+∞)) such that

k(ω) =
√
ω2 −m2, Im k(ω) > 0, ω ∈ D. (4.7)
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See Fig. 2. Let us also denote the limit of k(ω) for ω + i0, ω ∈ R, by

k+(ω) := k(ω + i0), ω ∈ R. (4.8)

The function ϕ(x, t) = ψ(x, t)− χ(x, t) satisfies the following Cauchy problem:

ϕ̈(x, t) = ϕ′′(x, t)−m2ϕ(x, t) + δ(x)f(t), (ϕ, ϕ̇)|t=0 = (0, 0),

with f(t) defined in (4.6). Note that ψ(0, ·) ∈ Cb(R) by the Sobolev embedding, since (ψ, ψ̇) ∈
Cb(R,E ) by Theorem 1 (iv). Hence, f(t) ∈ Cb(R). On the other hand, since χ(x, t) is a finite
energy solution to the free Klein–Gordon equation, (χ, χ̇) ∈ Cb(R,E ). It follows that ϕ = ψ−χ
is also of finite energy norm:

(ϕ, ϕ̇) ∈ Cb(R,E ). (4.9)

We denote

ϕ+(x, t) := θ(t)ϕ(x, t), f+(t) := θ(t)f(t) = θ(t)(ψ(0, t)).

The function ϕ+(x, t) satisfies the equation

ϕ̈+(x, t) = ∂2
xϕ+(x, t)−m2ϕ+(x, t) + δ(x)f+(t), (ϕ+, ϕ̇+)|t=0 = (0, 0), t ∈ R. (4.10)

We set Ft→ω[g(t)](ω) =
∫

R
eiωtg(t) dt for a function g(t) from the Schwartz space S (R). The

Fourier transform

ϕ̂+(x, ω) = Ft→ω[ϕ+(x, t)] =
∫ ∞

0
eiωtϕ(x, t) dt, (x, ω) ∈ R2,

is a continuous function of x ∈ R with values in tempered distributions of ω ∈ R, which satisfies
the following equation (cf. (4.10)):

−ω2ϕ̂+(x, ω) = ∂2
xϕ̂+(x, ω)−m2ϕ̂+(x, ω) + δ(x)f̂+(ω), (x, ω) ∈ R2.

Proposition 3 (Spectral representation). There is the following relation:

ϕ̂+(x, ω) = ϕ̂+(0, ω)eik+(ω)|x|, x ∈ R. (4.11)

Proof. Let us analyze the complex Fourier transform of ϕ+(x, t):

ϕ̃+(x, ω) = Ft→ω[ϕ+(x, t)] =
∫ ∞

0
eiωtϕ(x, t) dt, x ∈ R, ω ∈ C+,

where C+ := {z ∈ C : Im z > 0}. Due to (4.9), ϕ̃+(·, ω) are H1-valued analytic functions of
ω ∈ C+. Equation (4.10) implies that ϕ̃+ satisfies

−ω2ϕ̃+(x, ω) = ∂2
xϕ̃+(x, ω)−m2ϕ̃+(x, ω) + δ(x)f̃+(ω), ω ∈ C+.

The fundamental solutions G±(x, ω) =
e±ik(ω)|x|

±2ik(ω)
satisfy

G′′
±(x, ω) + (ω2 −m2)G±(x, ω) = δ(x), ω ∈ C+.

Note that for each ω ∈ C+ the function G+(·, ω) is in H1(R) by definition (4.7), while G−(·, ω)
is not. The solution ϕ̃+(x, ω) can be written as a linear combination of these fundamental
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solutions. We use the standard “limiting absorption principle” for the selection of the appropriate
fundamental solution: Since ϕ̃+(·, ω) ∈ H1(R) for ω ∈ C+, so is G+(·, ω), while G−(·, ω) is not,
we have:

ϕ̃+(x, ω) = −f̃+(ω)G+(x, ω) = −f̃+(ω)
eik(ω)|x|

2ik(ω)
, ω ∈ C+. (4.12)

The relation (4.12) yields

ϕ̃+(x, ω) = −f̃+(ω)
eik(ω)|x|

2ik(ω)
= eik(ω)|x|ϕ̃+(0, ω), x ∈ R, ω ∈ C+. (4.13)

Now we extend the relation (4.13) to ω ∈ R. Since ϕ ∈ Cb(R,H1(R)) by (4.9), we have

θ(t)ϕ(x, t) = lim
ε→0+

θ(t)ϕ(x, t)e−εt, (4.14)

where the convergence holds in the space of H1-valued tempered distributions, S ′(R,H1(R)).
The Fourier transform ϕ̂+(x, ω) := Ft→ω[ϕ+(x, t)] = Ft→ω[θ(t)ϕ(x, t)] is defined as a tempered
H1-valued distribution of ω ∈ R. As follows from (4.14) and the continuity of the Fourier
transform Ft→ω in S ′(R), ϕ̂+(x, ω) is the boundary value of the analytic function ϕ̃+(x, ω), in
the following sense:

ϕ̂+(x, ω) = lim
ε→0+

ϕ̃+(x, ω + iε) = lim
ε→0+

Ft→ω[θ(t)ϕ(x, t)e−εt], ω ∈ R. (4.15)

Again, the convergence is in the space S ′(R,H1(R)).
We use (4.15) to take the limit Imω → 0+ in the expression (4.13) for ϕ̃+(x, ω), and keep

in mind that ϕ̃+(x, ω) is a quasimeasure (see Remark 7) for each x ∈ R, while the exponential
factor in (4.13) is a multiplicator in the space of quasimeasures. The formula (4.11) follows. �

Remark 7. A tempered distribution µ(ω) ∈ S ′(R) is called a quasimeasure if µ̌(t)=F−1
ω→t[µ(ω)]

∈ Cb(R). For more details on quasimeasures and multiplicators in the space of quasimeasures,
see [35, Appendix B].

Proposition 4 (Absolute continuity of the spectrum). The distribution ϕ̂+(0, ω) is abso-
lutely continuous for |ω| > m, and moreover∫

R\[−m,m]
|ϕ̂+(0, ω)|2k+(ω)

ω
dω <∞, (4.16)

where k+(ω)/ω > 0 for ω ∈ R\[−m,m] (see (4.8) and Fig. 2).

Proof. We use the Paley–Wiener arguments. Namely, the Parseval identity and (4.9) imply
that ∫

R

‖ϕ̃+(·, ω + iε)‖2
L2 dω = 2π

∞∫
0

e−2εt‖ϕ+(·, t)‖2
L2 dt ≤

C

ε
, ε > 0. (4.17)

On the other hand, we can calculate the term in the left-hand side of (4.17) exactly. According
to (4.13),

ϕ̃+(x, ω + iε) = ϕ̃+(0, ω + iε)eik(ω+iε)|x|,

hence (4.17) results in

ε

∫
R
|ϕ̃+(0, ω + iε)|2‖eik(ω+iε)|x|‖2

L2 dω ≤ C, ε > 0. (4.18)
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Here is a crucial observation about the norm of eik(ω+iε)|x|.

Lemma 2.

(i) For ω ∈ R\(−m,m),

lim
ε→0+

ε‖eik(ω+iε)|x|‖2
L2 =

k+(ω)
ω

. (4.19)

(ii) For any δ > 0 there exists εδ > 0 such that for |ω| > m+ δ and ε ∈ (0, εδ),

ε‖eik(ω+iε)|x|‖2
L2 ≥

k+(ω)
2ω

. (4.20)

Remark 8. The asymptotic behavior of the L2-norm of eik(ω+iε) stated in the lemma is easy to
understand: for ω ∈ R\[−m,m], this norm is finite for ε > 0 due to the small positive imaginary
part of k(ω + iε), but it becomes unboundedly large when ε → 0+. Let us also mention that
the integral (4.19) is easy to evaluate in the momentum space.

Substituting (4.20) into (4.18), we get:∫
|ω|≥m+δ

|ϕ̃+(0, ω + iε)|2k+(ω)
ω

dω ≤ 2C, 0 < ε < εδ, (4.21)

with the same C as in (4.18). We conclude that for each δ > 0 the set of functions

gδ,ε(ω) = ϕ̃+(0, ω + iε)
∣∣∣∣k+(ω)

ω

∣∣∣∣1/2 , ε ∈ (0, εδ),

defined for ω ∈ Ωδ, is bounded in the Hilbert space L2(R\[−m− δ,m+ δ]), and, by the Banach
Theorem, is weakly compact. The convergence of the distributions (4.15) implies the following
weak convergence in the Hilbert space L2(R\[−m− δ,m+ δ]):

gδ,ε ⇁ gδ, ε→ 0+,

where the limit function gδ(ω) coincides with the distribution ϕ̂+(0, ω)
∣∣∣k+(ω)

ω

∣∣∣1/2 restricted onto
R\[−m− δ,m+ δ]. It remains to note that, by (4.21), the norms of all functions gδ, δ > 0, are
bounded in L2(R\[−m− δ,m+ δ]) by a constant independent on δ, hence (4.16) follows. �

By Lemma 1, the dispersive component χ(·, t) converges to zero in EF as t → ∞. On the
other hand, by (4.1), ψ(x, t + sj′) converges to β(x, t) as j′ → ∞, uniformly on every compact
set of the plane R2. Hence, ϕ(x, t+ sj′) = ψ(x, t+ sj′)− χ(x, t+ sj′) also converges to β(x, t),
uniformly in every compact set of the plane R2:

ϕ(x, sj′ + t) → β(x, t), x ∈ R, t ∈ R. (4.22)

Therefore, taking the limit in equation (4.5), we conclude that the omega-limit trajectory β(x, t)
also satisfies the same equation:

β̈(x, t) = β′′(x, t)−m2β(x, t) + δ(x)F (β), x ∈ R, t ∈ R.

Taking the Fourier transform of β in time, we see by (4.1) that β̂(x, ω) is a continuous function
of x ∈ R, with values in tempered distributions of ω ∈ R, and that it satisfies the corresponding
stationary equation

−ω2β̂(x, ω) = β̂′′(x, ω)−m2β̂(x, ω) + δ(x)ĝ(ω), (x, ω) ∈ R2, (4.23)
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valid in the sense of tempered distributions of (x, ω) ∈ R2, where ĝ(ω) are the Fourier transforms
of the function

g(t) := F (β(0, t)).

For brevity, we denote

β(t) := β(0, t).

Lemma 3 (Boundedness of spectrum).

supp β̂ ⊂ [−m,m].

Proof. By (4.22), we have

ϕ+(x, sj′ + t) → β(x, t), x ∈ R, t ∈ R, (4.24)

with the same convergence as in (4.1) and (4.22). We have:

ϕ+(x, sj + t) =
1
2π

∫
R
e−iωte−iωsj ϕ̂+(x, ω) dω, x ∈ R, t ∈ R,

where the integral is understood as the pairing of a smooth function (oscillating exponent) with
a compactly supported distribution. Hence, (4.24) implies that

e−iωsj′ ϕ̂+(x, ω) → β̂(x, ω), x ∈ R, sj′ →∞, (4.25)

in the sense of quasimeasures (the convergence in the space of quasimeasures is equivalent to
the Ascoli–Arzelà type convergence of corresponding Fourier transforms; see [35, Appendix B]).
Since ϕ̂+(0, ω) is locally L2 for |ω| > m by Proposition 4, the convergence (4.25) at x = 0 shows
that β̂(ω) := β̂(0, ω) vanishes for |ω| > m. This proves the lemma. �

We denote

κ(ω) := −ik+(ω), ω ∈ R, (4.26)

where k+(ω) was introduced in (4.8). We then have Reκ(ω) ≥ 0, and also

κ(ω) =
√
ω2 −m2 > 0 for −m < ω < m,

in accordance with (3.10).

Proposition 5 (Spectral representation for β). The distribution β̂(x, ω) admits the follo-
wing representation:

β̂(x, ω) = β̂(ω)e−κ(ω)|x|, x ∈ R.

Proof. This follows by taking the limit in the first line of (4.11), since supp β̂ ⊂ [−m,m] by
Lemma 3, while k(ω) = iκ(ω) for −m ≤ ω ≤ m (cf. (4.26)). �

Proposition 6 (Reduction to point spectrum). Either supp β̂ = {ω+} for some ω+ ∈
[−m,m] or β̂ = 0.
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Proof. By Lemma 3, we know that supp β̂ ⊂ [−m,m]. According to equation (4.23), the
function β̂ satisfies the following jump condition at the point x = 0:

β̂′(0+, ω)− β̂′(0−, ω) = ĝ(ω), ω ∈ R.

Since supp β̂′(0±, ·) ⊂ supp β̂ by Proposition 5, it follows that

supp ĝ(·) ⊂ supp β̂. (4.27)

On the other hand, by (3.13), the Fourier transform ĝ(ω) of g(t) := F (β(0, t)) is given by

ĝ = −
p∑

n=1

2nun (β̂ ∗ β̂) ∗ · · · ∗ (β̂ ∗ β̂)︸ ︷︷ ︸
n−1

∗β̂. (4.28)

Now we will use the Titchmarsh convolution theorem [57] (see also [38, p. 119] and [24,
Theorem 4.3.3]) which could be stated as follows:

For any compactly supported distributions u and v, sup supp(u ∗ v) = sup suppu+ sup supp v.

Applying the Titchmarsh convolution theorem to the convolutions in (4.28), we obtain the
following equality:

sup supp ĝ ≥ sup supp β̂ + (p− 1)(sup supp β̂− inf supp β̂), (4.29)

where we used the relation sup supp β̂ = − inf supp β̂. We wrote “≥” because of possible cancel-
lations in the summation in the right-hand side of (4.28). Note that the Titchmarsh theorem is
applicable to (4.28) since supp β̂ is compact by Lemma 3.

Comparing (4.27) with (4.29), we conclude that

(p− 1)(sup supp β̂− inf supp β̂) = 0.

Since p ≥ 2 by (3.13) (which means that the oscillator at x = 0 is nonlinear), we conclude that
supp β̂ consists of at most a single point ω+ ⊂ [−m,m]. �

By Proposition 6, supp β̂ ⊂ {ω+}, with ω+ ∈ [−m,m]. Therefore,

β̂(ω) = a1δ(ω − ω+), with some a1 ∈ C. (4.30)

Note that the derivatives δ(k)(ω − ω+), k ≥ 1 do not enter the expression for β̂(ω) since β(t) =
β(0, t) is a bounded continuous function of t due to the bound (4.2). Proposition 5 and (4.30)
imply that the omega-limit trajectory β(x, t) is a solitary wave:

β(x, t) = φ(x)e−iω+t,

where φ ∈ H1(R) by (4.2). This completes the proof of (4.3).

Remark 9. ω+ = ±m could only correspond to the zero solution by Remark 5.
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5 Multifrequency solitons

5.1 Linear degeneration

Let us consider equation (3.3) with N = 2, under condition (3.14).

Proposition 7. If in (3.13) one has pJ = 1 for some J , then the conclusion of Theorem 2 may
no longer be correct.

Proof. We are going to construct the multifrequency solitary waves. Consider the equation

ψ̈ = ψ′′ −m2ψ + δ(x)F1(ψ) + δ(x− L)F2(ψ),

where

F1(ψ) = αψ + β|ψ|2ψ, F2(ψ) = γψ, α, β, γ ∈ R.

Note that the function F2 is linear, failing to satisfy (3.13) (where one now has p2 = 1). The
function

ψ(x, t) =


(A+B)eκ(ω)x sinωt, x ≤ 0,(
Ae−κ(ω)x +Beκ(ω)x

)
sinωt+ C sinh(κ(3ω)x) sin 3ωt, x ∈ [0, L],(

Ae−κ(ω) +Beκ(ω)(2L−x)) sinωt+
C

sinh(κ(3ω)L)
e−κ(3ω)(x−L) sin 3ωt, x ≥ L,

where ω ∈ (0,m/3), will be a solution if the jump conditions are satisfied at x = 0 and at x = L:

−ψ′(0+, t) + ψ′(0−, t) = αψ(0, t) + βψ3(0, t), (5.1)

−ψ′(L+, t) + ψ′(L−, t) = αψ(L, t) + βψ3(L, t). (5.2)

Using the identity

sin3 θ =
3
4

sin θ − 1
4

sin 3θ, (5.3)

we see that

α(A+B) sinωt+ β((A+B) sinωt)3

=
(
α(A+B) + β

3(A+B)3

4

)
sinωt− β

(A+B)3

4
sin 3ωt.

Collecting the terms at sinωt and at sin 3ωt, we write the condition (5.1) as the following system
of equations:

2κ(ω)A =
(
α(A+B) + β

3(A+B)3

4

)
, (5.4)

−κ(3ω)C = −β (A+B)3

4
. (5.5)

Similarly, the condition (5.2) is equivalent to the following two equations:

2Bκ(ω)eκ(ω)L = γ(Ae−κ(ω)L +Beκ(ω)L), (5.6)
κ(3ω)C

sinh(κ(3ω)L)
+ κ(3ω)C cosh(κ(3ω)L) = γC sinh(κ(3ω)L). (5.7)

Equations (5.4), (5.5), (5.6), and (5.7) could be satisfied for arbitrary L > 0. Namely, for any
ω ∈ (0,m/3), one uses (5.7) to determine γ. For any β 6= 0, there is always a solution A, and B
to the nonlinear system (5.4), (5.6). Finally, C is obtained from (5.5). �



20 A.I. Komech and A.A. Komech

5.2 Wide gaps

Let us consider equation (3.3) with N = 2. Assume that (3.13) is satisfied.

Proposition 8. If the condition (3.14) is violated, then the conclusion of Theorem 2 may no
longer be correct.

Proof. We will show that if L := X2 − X1 is sufficiently large, then one can take F1(ψ)
and F2(ψ) satisfying (3.13) such that the global attractor of the equation contains the multifre-
quency solutions which do not converge to solitary waves of the form (3.8). For our convenience,
we assume that X1 = 0, X2 = L. We consider the model (3.3) with

F1(ψ) = F2(ψ) = F (ψ), where F (ψ) = αψ + β|ψ|2ψ, α, β ∈ R.

In terms of the condition (3.13), p1 = p2 = 2. We take L to be large enough:

L >
π

23/2m
. (5.8)

Consider the function

ψ(x, t) = A
(
e−κ(ω)|x| + e−κ(ω)|x−L|) sinωt+Bχ[0,L](x) sin(k(3ω)x) sin 3ωt, A, B ∈ C.

Then ψ(x, t) solves (3.3) for x away from the points XJ . We require that

k(3ω) =
π

L
, (5.9)

so that ψ(x, t) is continuous in x ∈ R and symmetric with respect to x = L/2:

ψ(x, t) = ψ

(
L

2
− x, t

)
, x ∈ R.

We need |ω| < m to have κ(ω) > 0, and 3|ω| > m to have k(3ω) ∈ R. We take ω > 0, and thus
m < 3ω < 3m. By (5.9), this means that we need

m <

√
π2

L2
+m2 < 3m.

The second inequality is satisfied by (5.8).
Due to the symmetry of ψ(x, t) with respect to x = L/2, the jump condition both at x =

X1 = 0 and at x = X2 = L takes the following identical form:

2Aκ(ω) sinωt−Bk(3ω) sin 3ωt = F
(
A(1 + e−κ(ω)L) sinωt

)
. (5.10)

We use the following relation which follows from (5.3):

F
(
A(1 + e−κ(ω)L) sinωt

)
=
(
αA(1 + e−κ(ω)L) +

3
4
β|A|2A(1 + e−κ(ω)L)3

)
sinωt

− 1
4
β|A|2A(1 + e−κ(ω)L)3 sin 3ωt.

Collecting in (5.10) the terms at sinωt and at sin 3ωt, we obtain the following system:

2Aκ(ω) = αA(1 + e−κ(ω)L) +
3
4
β|A|2A(1 + e−κ(ω)L)3,

Bk(3ω) =
1
4
β|A|2A(1 + e−κ(ω)L)3. (5.11)
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Assuming that A 6= 0, we divide the first equation by A:

2κ(ω) = α(1 + e−κ(ω)L) +
3
4
β|A|2(1 + e−κ(ω)L)3.

The condition for the existence of a solution A 6= 0 is( 2κ(ω)
1 + e−κ(ω)L

− α
)
β > 0. (5.12)

Once we found A, the second equation in (5.11) can be used to express B in terms of A. �

Remark 10. Condition (5.12) shows that we can choose β < 0 taking large α > 0. The
corresponding potential U(ψ) = −α|ψ|2/2− β|ψ|4/4 satisfies (3.13).
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