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The resonant cyclotron wave-particle interactions in the cylindrical current-carrying plasma and axisymmetric
toroidal plasma models for large aspect ratio tokamaks with circular, elliptic and D-shaped cross-sections of the
magnetic surfaces have been analyzed. The corresponding conditions are derived by solving the linearized Vlasov
equations for perturbed distribution functions of plasma particles, accounting for the geometry of a confinement
magnetic field in the zero-order over magnetization parameters. It is shown that the Doppler shift at the cyclotron
resonance conditions in the current-carrying plasmas is entirely different from ones in uniform magnetic field.
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INTRODUCTION
Effective schemes of plasma heating in tokamaks can
be realized by collisionless wave dissipation in the
range of ion-cyclotron and/or electron-cyclotron
frequencies (fundamental cyclotron resonance: ¢ =1 for
ions - ICR, ¢=-1 for electrons - ECR) and their
harmonics (|¢/[=2). As is well known [1], the

electromagnetic waves are always absorbed in the
equilibrium plasma models, e.g. with the maxwellian
distribution of charged particles. However, the presence
of non-equilibrium energetic particles can lead to wave
instabilities observed as ion-cyclotron and electron-
cyclotron emissions under the ICR and ECR plasma
heating.

To estimate the wave damping/growth rates in any
plasma model we should know the conditions of the
resonant  wave-particle interactions there. The
corresponding conditions can be derived automatically
by solving the linearized Vlasov equation for perturbed
distribution functions of plasma particles, accounting
for the geometry of a confinement magnetic field Ho.

In this paper we discuss the cyclotron wave-particle
interactions in the cylindrical current-carrying plasma
(i.e. with a helical magnetic field) and in the two-
dimensional (2D) axisymmetric toroidal plasma models
for tokamaks with circular, elliptic and D-shaped
magnetic surfaces. The Vlasov equations are resolved in
the zero-order over the magnetization parameters, using
an approach developed in Refs. [2-6]. It is shown that
the Doppler shifts at the cyclotron resonance conditions
in the current-carrying plasmas are entirely different
from ones for plasmas in uniform magnetic field [1]:
kv, =w—(Q,, where (=+1+2, ... is the cyclotron

harmonic number; Q, =q,H,/M_c is the Larmor
frequency of ions (a=i, ©; >0) and electrons
(a=e, Q,<0);cisthe speed of light, k, =kh=k, is
the parallel wave-number relative to confinement
magnetic field H, =Hgse,, h=H,/H,.

1. CYLINDRICAL PLASMA MODEL

The simplest 1D model of tokamaks is a magnetized
current-carrying plasma cylinder with identical ends in
the helical magnetic field, where the longitudinal ohmic
current generates the poloidal magnetic field

a!

H,, = Hy,e, in addition to longitudinal H,, =Hge, .
In this case the length of plasma cylinder is equal to
27R,, where Ro is the major tokamak radius. As a
result, the field H, =H,, +H,, becomes helical with

substantial rotational transformation, allowing to take
into account the so-called shear effects and the radial
profiles of ohmic current by the radial dependence of
plasma safety factor q(r)=rHo/RoHoe.

To develop the kinetic theory for cyclotron waves in
such plasma model one should resolve the Vlasov
equation for perturbed distribution functions f_(t,r,v)
by the Fourier-decomposition over the polar angle o in
velocity space:

f (trv)= Z fof(r,ul‘,ul)exp(—ia)t+im9+ikzz—i€a),
7

where we have used the usual standard notation for the
radial coordinate r numbering the magnetic surfaces,
6 is the poloidal angle. In velocity space we use the
polar coordinates (v,,o) instead of the normal and

binormal components (v,,v, ) by the transformation:
v, =Vn=v,c0sc, v,=Vb=v;sinc, v =vh.
The linearized Vlasov equation for cyclotron
harmonics f, in the zero-order over the magnetization
parameters can be reduced to algebraic equations

i(an —o+ky, +€Kv”)f; =Q,, 1)
where k= kh:m—he-i-kzhz ~M+hg ,
r R0
rdg) 1 r .
=|2-——|=——, —~=~Ry, if Ho<<Hop, (2
" ( 2 dr]ROq h, od 00 <<Ho, (2)

m and n are the poloidal and toroidal wave-numbers,
k, =n/R,. The expressions of Q. depend substantially

on the number of cyclotron harmonic ¢ and on the
steady-state (unperturbed) distribution function of
plasma particles F.. For example, if F. is maxwellian:

/ F _
Q. =de%Te (£ 4irE), (=1, (3)
a“Ta
_ a exp _U||2+UJZ~ _ 2Ta
(i) L) Am,
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E» and E; are the normal and binormal components of
the perturbed electric field relative to H,. However,
independently on the right-hand side of the Vlasov
equation (and F. functions) the wave-particle
resonance conditions in the current-carrying plasmas are
defined by denominator of f_ and can be rewritten as
(k” +€K)U” =w-0Q,, (=0+1+2+ ... (4)

If ¢=0 we receive the well known Cherenkov
resonance conditions: @ =k, where x-corrections are
absent. If ¢#0 we have the cyclotron resonance
conditions on the fundamental (first, ¢ =11 ) harmonic
of cyclotron frequency and their high harmonics if
|€|22. As one can see the cyclotron resonance
conditions in the current-carrying plasma are different
from ones in uniform magnetic field by the /x -terms,
accounting for the rotation of helical magnetic field
lines H,=H,, +H,, on the considered (by r)
magnetic surface. These /x -terms are very important to
study the wave dissipation/excitation at the so-called
rational magnetic surfaces, where k; changes sign.

Of course, it is necessary to distinguish the
resonances on the positive and negative cyclotron /-
harmonics. If ¢=1,2,3, ... we have the ICR conditions
@— 1€, = (k;+{x)y, under the normal Doppler effect
for resonant ions (a=i) with the parallel velocities
smaller than the wave phase velocity, y, < /K. In this
case the resonant ions can effectively interact with the
left-hand polarized waves, where rotation of the
transverse electric field component (E, +i/E,)
coincides with the Larmor ion gyration. The ECR
conditions (for />0), w+/]|Q, |=(K +/(x)y, are
realized under the abnormal Doppler effect for resonant
electrons (a=e) with the parallel velocities larger than
the wave phase velocity, v, >aw/k,. In this case,
electrons cannot effectively interact with the left-hand
polarized wave since their concentration is small and
gyration is opposite to rotation of (E, +i/E,).

If ¢=-1-2,-3, ... we have the ECR conditions
—|tQ,| = (k, ~|¢|<)v, under the normal Doppler
effect for electrons with y <alk. In this case the

resonant electrons can effectively interact with the right-
hand polarized waves, where the rotation of transverse

electric field component (E, —i[¢|E,) coincides with the
electron gyration. In contrary, the ICR conditions (for
0<0), o+ =K —||x)y, are realized under the
abnormal Doppler effect for resonant ions with
y, > ol k;. In this case, ions cannot effectively interact
with the right-hand polarized wave since their gyration
is opposite to rotation of (E, —i|(|E,) .

The terms proportional to dg/dr in xcorrections for
cyclotron resonance conditions allow us to study the
influence of ohmic current density profiles on the wave-

particle interactions in the current-carrying plasmas:
a) if ohmic current is uniform: dq/dr=0;
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b) if ohmic current decreases to plasma edge: dg/dr > 0;
c) if ohmic current increases to plasma edge: dg/dr < 0.

It should be noted, that the signs of dg/dr are
opposite in the ICR and ECR conditions under the
normal Doppler effects for ions and electrons,
increasing the Doppler shift for ions and decreasing it
for electrons.

2. AXISYMMETRIC D-SHAPED TOKAMAK

To describe an axisymmetric D-shaped tokamak we use
the quasi-toroidal coordinates (r,8,¢) connected with the
cylindrical ones (p,¢,z) as [6]

ar® ., b .
p=R0+rcosﬁ—?sm 0, ¢=¢, z:—grsme,

where Ry is the radius of the magnetic axis; a and b are,
respectively, the minor and major semiaxes of the cross-
section of the external magnetic surface. In this model,
all magnetic surfaces have the same elongation equal to
b/a; their triangularity is small d/a<<1. The cylindrical
components of an equilibrium magnetic field Ho are

Ho, =—H &sin0(1+ 2d—20059j,
P a
R bR
Ho¢=H¢0701 HOZ=—H90570C039. ®)

Here Hgp and He are, respectively, the toroidal and
poloidal magnetic field maximums at a given (by r)
magnetic surface. Thus,

Ho(r,0) =[Ho| = {H o + Hg 9(r.6),

J1+1c0s2 6 +vcosdsin? @

r,0) = 6
9(r.9) 1+ £cosf —desin’ 0 ©)
where
r dr 2
EZR—, 5=¥, ﬂ,:h;(?—]}, V=4&'1,92,
0

H
hy=t® =% ()
,/H{wﬁLHgO ,IH¢O+H90
In tokamaks, in contrast to a cylindrical current-

carrying plasma, the particle velocities v, and v, are

not constant. To reduce the number of derivatives in the
Vlasov equation we use the standard method of
switching to new variables associated with conservation
integrals of energy and magnetic moment, introducing
the variables v and y instead of v and v, as

2
L] 1
=— . 8
1)”2 +Ui g(r,0) ®

In this case the linearized Vlasov equation for the
perturbed distribution functions of ions and electrons,

+1 40
f tr,v)=X> f/5(r,0,0, u)exp(-iat +ing —ilc),
s /0

can be reduced to the first order differential equations
with respect to the poloidal angle 8. For example [6],
first harmonics (¢ = +1) of f*° satisfy the equation:

J 1- 19(6)

1+ Acos® @+vcosésin? 6

2 _ 2 2
v° =Y+,

X
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ingf ,°° _ J_ ©)

1+ ecosf—essin® 0
iy1- wgy(r,0)c(r,0)f,°
1+ 1c0s2 0 +vcosdsin’ 6

_Sm Fa ,Ug(r,H)E[ ,

M, o7,
where E, =E, +ilE,, h, =1, h, <<1, r/h, =Ry,

af/,s
x| —%—+
[ae

is 29 [ 100, g (@]F +
v

a

eH A, yHZ +H2
q=—12° anz#. (10)
H, M,c
Account of centrifugal forces in Eq. (9) is reduced to
3a
%(r,0) = _2b -
cos® @+ — sin” 91+ 25 coso)
a
§Egcos&
28 (12)
1+&cos@—edsin” 6
2 .
b2 cos’ @sin? O(L+ 25 cosd)
P 1 2
cos” @ +—sin” 91+ 25 cos)
a

2
PR PSP b2 sin? 6(1+ 25 cosb)|.
2a q dr a

By s==1 we distinguish the perturbed distribution
functions of particles, f*, with positive and negative

parallel velocity v, = SUA1- 1g(r,0) relative to Ho.

Describing the wave-particle interaction in tokamaks
with one minimum of Ho, i.e. when £>4, we should [5,
6] separate all particles on two groups of untrapped (u)
and trapped (t) particles by the inequalities for zand 9

O<wu<pu, -n<0<x - untrapped particles,
H,Susy —6,<60<6, - trapped particles,
analyzing the condition v («,6) =0. Here
A A
,uuzl—g—E, yt=1+8—5, (12)

and the angels +6, are the stop points of the trapped
particles on the considered magnetic surface:
p-l+es  (u-1+ &0)?

e—uvl?2 . U145 2
e—uvl?2

6, = tarccos

u-1+¢ed

&0 — A_mv 1-
#2 e—uvl2 (13)

2

X

(e~

To find the perturbed dlstrlbution functions of

untrapped f and trapped f,; particles we should

resolve Eq. (9) using the corresponding boundary

conditions: the periodicity of f * on @, and continuity

of fgff at the stop points J_rﬁt; introducing the new
time-like variable instead of poloidal angle 6 as
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(14)

() = j\/1+/Icos n+vcosnysin? nd
1-p-g(r,m)

In this case, the transit-time of u-particles and the
bounce-period of t-particles are proportional to
T, =2z(7) and T, =4z(6,) , respectively.

As a result, the cyclotron harmonics of the perturbed
distribution functions of untrapped and trapped particles
can be found in the forms:

fls = z £5, explio% (0,0, 1))

£l = z ts explivo@om], (15

where pis a number of the bounce resonances. After the
bounce-averaging we have the following expressions for
the bounce-resonant harmonics (if ¢ = +£1):

f«”s _Izqau\/_F A(mS(U lu)E
TS ML T, 2 w0)

< q,0\uF, BY (v.4) _,

]

.o, = |Z . (16)
P m MORT, 215 (v, 1) &
Here
s2m | () _
zs = +nq, + (= -+ 1Q ,
a,p,u Rhou |:p qt :| aogu
7 ex |cD 0,
rms )_J‘ p[ ( U'u):ldg

J1- ,ug(r o) ’

O (0,0, 1) = ZMp+nm)§)—0n+moéwy+

u

27(0)

#1290, [5,00)-1,0]- 1.0+ 2 (@)

L S2m _

apt — p Rhot _w"'gangt:

s 4 exp[r‘{’““s(a v, ,u)J

S N o E
1° gfexpllkl”ms(e uy)]
+ —
o 1-(r,6)

Yo (0,0,1) = 2np@ —(m+nq,)8(6) +

t

rsePlg [g00)-1,0)]-1.0) . @7)
19

f 1+ Acos® 5+ vcosnsin?
lg(e)=rg(r )\/ 1 SN g,
1-1g(r.n)
x(r,;)-dn
\/1+/Icos n+vcosnsin’ny

| (9)—I

2 _ e(e+0)
:flg(ﬂ-), gt:flg(gt)l qt:q(l-‘r 2 ]’
(1+ Acos? @ +vcosfsin® 0)3/4 & mimd
E,(0) : =2 E e,

(1+ £C0s6 — &5 sin? 9)‘”2

a(6) ~ H—gsin6+%(e—5)sin(29) .
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The zeros of denominators in (16) determine us the
conditions of the cyclotron wave-particle interactions in
D-shaped tokamaks:

s2mw I () _
——|p+ng, +1 === |-w+IQ =0 (18
Rhou |: p qt T :| 2 a0 gu ( )
for the untrapped particles; and
s2mw _
—w+IQ =0 19
Rhot @ a0 gt ( )

for trapped particles. These wave-particle resonance
conditions in axisymmetric D-shaped tokamaks involve
two energetic characteristics of particles (by v and ),

the wave frequency w, the integer numbers of cyclotron
(by ¢) and bounce (by p) resonances. For the low 7, as
usual, we have the conditions of the:

- Cherenkov resonance, if ¢ =0;

-normal ICRs (e=i), if £=123,...;

- normal ECRs (a=e), if ¢ =-1,-2,-3...,
for both the untrapped and trapped particles.

Of course, analyzing the cyclotron wave-particle
interactions in toroidal geometry we should take into

account the coefficients A,7°(v,4) and B.7*(v, 1)

for untrapped and trapped particles, respectively.
CONCLUSIONS

Regarding the plasma response to perturbations in the
current-carrying plasmas the kinetic wave analysis should
take into account the so-called shear effects connected
with the fact that the equilibrium magnetic field lines
become helical and there are additional inertial
(centrifugal) forces acting on the moving charged
particles.

Specific features of the wave-particle interactions in
D-shaped tokomaks are due to that i) the resonance
conditions for untrapped and trapped particles are
different, and ii) all m-harmonics of the perturbed electric
field contribute to the perturbed distribution functions of
untrapped and trapped particles.

If triangularity is absent, i.e. if d - 0, the wave-
particle resonant conditions for untrapped and trapped
particles, Eq. (18) and Eq. (19), can be readily reduced
to the corresponding expressions for tokamaks with

elliptic magnetic surfaces. If elongation is absent (b=a),
Egs. (18), (19) have as limits the wave-particle resonance
conditions for tokamaks with circular magnetic surfaces
[2-4]. If R, — 0, the cyclotron wave-particle resonant

conditions for untrapped particles in tokamaks can be
transformed to analogous conditions, Eq. (4), in the
current-carrying plasma cylinder.

The ¢k -corrections at ICR and ECR conditions for
plasma systems in the helical magnetic field are very
important analyzing the cyclotron wave
dissipation/excitation at the rational magnetic surfaces,
where k, ~ 0. The terms proportional to dg/dr in /x —

corrections allow us to study the influence of ohmic
current density profiles on the cyclotron wave-particle
interactions in the current-carrying plasma systems.
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YCJIOBUSA HUKJIOTPOHHBIX PE3OHAHCOB B IIJIASME C TOKOM
H.H. I'puwanos, H A. Azapenkos

[IpoaHaTU3UPOBAHBI YCIIOBHS PE30HAHCHOTO B3aWMOJICHCTBHUS 3apsHKEHHBIX YACTHI[ C BOJHAMH B IIA3MEHHOM
IJIMHAPE C TOKOM M B TOPOMIATBHBIX MOJEISIX IUIa3Mbl JUISi TOKAMAaKOB C KPYrOBBIM, sJutuntHdeckum u D-
00pa3HbIM CEYCHHSIMH MarHUTHBIX MOBepxHOCTe. COOTBETCTBYIOIIME PE30HAHCHBIC YCIOBHS MOJYYEHBI MyTEM
pellieHusl THHEapHU30BaHHBIX YpaBHEHUI BracoBa i BO3MYIIEHHBIX (YHKIHN paCHpe/ielieHus] YaCTUI] C YYETOM
FEOMETPUH YIEPKUBAIOIIEr0 MArHUTHOTO MOJISi B HYJIEBOM MPHUOIMKCHUH [0 MapamMeTpaM 3aMarHHYCHHOCTH.
Ioka3aHo, YTO JOIUIEPOBCKAsi CABMXKKA B YCJOBHUSIX IMKJIOTPOHHBIX PE30HAHCOB B TOKOMPOBOJSIICH ILIa3Me

CyHleCTBCHHO OTIINYACTCA OT AaHAJIOTUYHBIX OIICHOK B IIJIa3M€ C OHHOpO}IHBIM MArduTHBIM I10JICM.

YMOBHU HUKJIOTPOHHUX PE3OHAHCIB Y IIJIA3MI 31 CTPYMOM
M.I. I'puwmanos, M.O. A3apenxos

IIpoananizoBaHO YyMOBHM PE30HAHCHOI B3a€MOIIT 3apsHKEHNX YaCTWHOK 3 XBHJISIMH B IJIA3MOBOMY LIMUTIHAPI 3i
CTPYMOM Ta B TOPOIJAIbHUX aKCiaJbHO-CHMETPUYHUX MOJEINAX IUIA3MHU JUII TOKaMakiB 3 KPYrOBUM, ENINTHYHUM i
D-noniOHMM mepepizaMu MarHiTHHUX ITIOBEpXOHb. BinmoBifHI pe30oHaHCHI yMOBHM OTPUMAaHO IUIIXOM pO3B'SI3KY
JiHeapu30BaHUX pIBHAHb BiacoBa 1t 30ypeHux (yHKLIH pO3NOAINY IJIa3MOBHX YacCTHHOK 3 ypaxyBaHHSIM
reoMeTpii yTpuMyI040ro MarHiTHOTO MOJIS B HyJIbOBOMY HaOJIM)KEHHI 3a TapaMeTpaMu 3aMarHiueHocri. JloBeneHo,
10 JOIUICPIBCHKHUN 3CYB B YMOBaxX LMKJIOTPOHHHX PE30HAHCIB y IUIa3Mi 31 CTPYMOM iCTOTHO BiJIPi3HSETHCS BiJ
AHAJIOTIYHUX OILIHOK JIJIS IDTa3MH B OJTHOPITHOMY MAarHiTHOMY ITOJII.
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