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Motion equations of charged particle placed in crossed fields observed in the laboratory frame of reference and
in rotating one are compared. It is shown that the motion equation in fields (E, H) in a plane transverse to the mag-
netic field in a rotating frame has the same form as the motion equation in fields of another sstrength (E', H') in the
laboratory frame. The invariant of motion equation under rotation transformation is found. A problem that is more
general than the Larmor’s one is formulated and studied. There are found out the rotation frequency and the condi-
tion under which the particle motion equation in the fields (E1, Hy) in the laboratory frame coincides with the motion

equation in the fields (Ez, H>) in the rotating frame.
PACS: 02.30.Hq; 52.20.Dq

INTRODUCTION

In electrodynamics, Larmor's theorem is known, ac-
cording to which "in the non-relativistic case the behav-
ior of a system of charges all having the same e/m,

performing a finite motion in a centrally—symmetric
electric field E and in a weak uniform magnetic field

H , is equivalent to the behavior of the same system of
charges in the same electric field in a coordinate system,
rotating uniformly with angular velocity

Q=(e/2mc)H " [1, 2]. The author of the present paper

has an impression that the mathematical properties of
motion equations are studied more intensively by math-
ematicians than by physicists. In physics of non-neutral
plasmas, under the conditions of which Larmor’s theo-
rem is realized, the properties of motion equations are
studied and used even less.

In the present paper we consider the properties of the
particle motion equations in crossed fields without as-
suming that the magnetic field is necessarily weak, and
the motion is finite. We will find out whether the behav-

ior of charges that move in a uniform magnetic field H,

and in a centrally—symmetric electric field E, can be
"equivalent" in the plane transverse to the magnetic
field to the behavior of charges in some other fields
E,, H,, observed in a rotating frame. If it is "equiva-
lent", then under what condition and at what frequency
of rotation ,, does this take place? By “equivalence”
we mean the coincidence of motion equations in fields
E,, H, in the laboratory system, and in fields E,, H,
in a frame of reference rotating with frequency o, .
This problem can be considered as a generalization of
the problem solved by Larmor.

We compare the particle motion equations in the la-
boratory system and in a rotating coordinate system
(Section 2) and consider the above mentioned problem
in a centrally—symmetric and a cylindrically—symmetric
electric field (Section 3).

1. MOTION EQUATIONS IN LABORATORY
AND IN ROTATING COORDINATE SYS-
TEMS

Let us consider the motion of a particle placed in a
centrally symmetric electric field E and in a homoge-
neous magnetic field H . The origin of the coordinate
system O is compatible with the center of symmetry of
the electric field. The axis Oz is directed along the
magnetic field. In the laboratory frame, the motion
equations have the form

X—w.y=(e/m)E,,

y+ox=(e/m)E,, (1)
Z=(e/m)E,.
Here E, =-d®,/dx=(E/r)x, E, =-d®,/dy=(E/r)y,

E,=—d®,/dz=(E/r)z — are the components of
strength of a radial electric field, ®,(r) — is a field po-

tential, r=(x2+y2+zz)%— radius, E =—dd,/dr —is a
strength of a radial electric field. The cyclotron frequen-
cy o, =eH /mc can be positive or negative depending

on the sign of the charge e.
We are interested in the motion of the particle main-
ly in the plane transverse to the magnetic field xy . Let

us write the first two Eqgs. (1) in complex form. We in-
troduce a complex radius vector in the plane xy:

u=x+iy . We multiply the second Eq. (1) by i, add to

the first equation and take into account that the electric
field component in the plane transverse to the axis Oz

is equal to E, =E,+iE,=(E/r)u. As a result, we
obtain the motion equations (1) in the plane xy in com-
plex form

i+iol—(e/m)(E/r)u=0 . )

The motion equation in Oz direction (1) can be pre-
sented in the form:

Z—(eE/mr)z=0 .
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We transform the motion equation (2) to a coordi-
nate system rotating with frequency ®,, around the

axis Oz . We introduce the radius vector in a rotating
coordinate system u’=x'+y" according to formula
u=u'exp(iogt). (3)
Substituting Eqg. (3) in (2), we obtain the motion
equation in a rotating system:

U’ +iof’ —[ eE'/(mr)]u'=0. (4)
In the Eqg. (4) the following notations are introduced:

O, =20, + 0, , ®)

eE'/(mr) = o, + 0,0, +eE/(mr) (6)

(in Egs. (4), (5) @, =eH'/mc).

Comparison of Egs. (4) and (2) shows that the parti-
cle motion equation in fields E,H in the transverse
plane X', y" in a coordinate system rotating with a fre-
quency o,, looks like the motion equation in the fields
E',H’ (5), (6) in the laboratory system [3].

We make a few remarks to the equations (4) — (6).
They are valid for an arbitrary rotation frequency o,

for an arbitrary dependence on the radius of the electric
field E, for a finite and infinite particle motion along
the radius. They do not contain an approximation of
weak magnetic or electric fields. The quantities E and
E', H and H’ can be of different signs. The combina-
tions of the fields eE/(mr) and eE’/(mr) (6) differ by
a constant that does not depend on the radius r. For
particles with different values of the ratio (e/m), the

values of E’,H" differ.

Using Egs. (5) and (6), it is not difficult to show that
under the rotational transformation (3) the combination

of fields Q° = w? —4eE/(mr) remains invariant, i. e.
0% = o} —4eE/(mr) = —4eE'/(mr)=Q*%. (7)

The existence of an invariant is a general property of
second-order linear ordinary differential equations (see
[4], part 1, §25.1; [5], §3.3.2). Strictly speaking the

quantity 1 =0Q/4 is called the invariant of equation (2).
In the general case ( E/r = const ) Egs. (2), (4) are non-

linear. Moreover, they are a system of nonlinear equa-
tions. But, as we see, the invariant also exists in this
case.

When E/r =const the coefficients in Egs. (2), (4)
do not depend on the radius r and the equations are

linear. The quantity Q° (7) also does not depend on the
radius and in the plane of the parameters "electric field-
magnetic field" parameters E, B and E’, B’ are locat-

ed on the line of equal value Q”=const. In the axes
[4eE/(mr), w? | isolines ©Q° =const are straight lines.

In the axes [4eE/(mr), mc] they have the form of pa-
rabolas. Their behavior is shown in Figure in the axes
[4eE/(mr), mc] , as well as the arrangement of points

corresponding to fields E,H and quantities E',H".
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The behavior of isolines Q* = const in the parameter
plane|[ 4eE/(mr), o, | when E/r =const . The shaded

area (1) in the left part of the figure indicates the region
of a weak magnetic field in which the Larmor ’s theorem
is applicable. The shaded area (2) on the right-hand
side of the figure indicates the region of infinite motion
of the particles, Q? <0; the line (3) is the boundary of
the region Q* =0. In the region Q* >0, the motion of
the particle is finite on radius. The locations of the
points E,H and E’,H’ correspond to the rotation fre-

quency o, >0

The value Q figures in the theory of non-neutral plas-
mas. For a radius-independent expression Q° (7)
(E/r=const ) and a finite motion of the particle along

the radius (Q? > 0), the quantity Q is called the "vortex
frequency" [6], the "modified" cyclotron frequency. It
determines the frequency of the particle's oscillations
along the radius r . Strictly speaking, the frequency Q
was introduced in problems with the cylindrical sym-
metry of the electric field (E, =0). As we see, the same
combination of fields (7) also arises when a particle
moves in a spherically symmetric electric field and a
homogeneous magnetic field.

The motion equation in the direction Oz in the ro-
tating coordinate system has the same form as in the
laboratory system (z=2z"). The three-dimensional mo-
tion equation in a rotating frame looks like a motion
equation in an axially symmetric field with components
E! =(E'/r)|u| and E; =E, =(E/r)z. The multipliers
(E’/r) and (E/r) are not equal to each other.

We consider several special cases for Egs. (5), (6)
when E/r =const .

a) Let in the laboratory frame o, =0, E%#0.In a

rotating coordinate system, the particle motion equation
in the transverse plane looks like the motion equation in
fields equal to
O, =20, , 8
eE’/(mr) = o}, +eE/(mr) = /4+eE/(mr). (9)
This case is considered in the Larmor’s theorem in
the weak magnetic field approximation. Outside this

approximation, the electric fields E and E’ (9) do not
coincide. It should be specially noted that the equality
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(8) , which is the essence of Larmor's theorem, is valid
in a magnetic field of any strength.
b) In the laboratory system ., =0, E=0. In a ro-
tating frame we have
o, =20 eE’/(mr) = o,

o > 0. (10)
c) In the laboratory system o, #0, E=0. A rotat-

ing system can always be found in which the motion
equation has the form as it has in the absence of a mag-
netic field (@, =0). In this case, the rotation frequency

o,, and the electric field E' are equal

Oy =-0,/2, eE'/(mr)=—w/4+eE/(mr), (11)
and the motion equation in the plane x'y' has the form
of a reduced or normal form of equation (2) ([4], part 1,
§25.1,[5], §3.3.2): ' —eE'/(mr)u’=0.

d) When E/r =const one can always find a rotating
frame in which the motion equation has the form as in
the absence of an electric field (E'=0): U'+iou'=0.
The rotation frequencies of such a system (o,, ) coin-
cide with the "slow" or "fast" frequencies of particle
rotation in crossed fields [6], and the cyclotron frequen-
cy (o) — with the "modified" cyclotron frequency Q
taken with the corresponding sign:

O =(1/2)(-0,£Q), o, =1Q . (12)

e) It is always possible to find a rotating coordinate
system in which the particle moves both in a magnetic
field directed opposite to the original (®, =-®,). The

frequency of rotation of such a system (®,,) and the
electric field in it (E") are equal
O =-0,, eE'/(mr)=eE/(mr).

rot

rot ?

(13)

f) If the fields E',H" act in the laboratory system,
then in the coordinate system rotating with frequency
-, from (5), the motion equation looks like an equa-
tion in the fields E,H .

2. GENERALIZED LARMOR’S PROBLEM

Two equations (5), (6) contain five parameters — the
fields E,H and E’,H’ and frequency o,, . Depending
on parameters that we consider to be known and param-
eters that we want to determine, different problems orig-
inate. In the previous section, two values E',H" were
uniquely determined from two equations (5), (6) for the
given fields E,H and the rotation frequency of the co-
ordinate system @, .

In this section we consider another formulation of
the problem, somewhat more general than that consid-
ered by Larmor [1]. Let us compare the particle motion
equations in two cases: 1) the particle moves in a cen-
trally symmetric electric field E, and a homogeneous

magnetic field H,, and 2) the particle moves in the
fields E, and H,. The fields H, and H, are not sup-

posed to be weak. Let us determine whether there is a
rotating coordinate system in which the particle motion
equation in fields E,, H, in the plane transverse to the

magnetic field coincides with the particle motion equa-
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tion in the fields E;,H, written in the laboratory sys-

tem. What is the rotation frequency of such a system
®,,, » If this system exists?

In this formulation of the problem, the fields E,,H,
and E,,H, are assumed to be given and only the fre-
quency o, is to be found. To determine one value
®,, » We have two equations (5), (6), i.e. the system is

overdetermined. In the notations of the problem under
consideration, the equations take the form:

('0(:1 = 20‘)rot + 0)02 ' (14)
+eE,/(mr), (15)

are the particle cyclotron frequencies in the

eEl/(mr) = (Dfot + (’Oczwrot

where o,

fields H,,. From (14) we find the required rotation
frequency of the coordinate system in the fields E,,H,:

Oyt = (1/2)(0)c1 _O)CZ) ' (16)

It is determined only by magnetic fields. This fact
corresponds to the spirit of Larmor's theorem, according
to which rotation is equivalent to a magnetic field. Sub-
stituting (16) into (15), we find the relation to which the
fields E;,H, and E,,H, must satisfy, so that equality
(15) is fulfilled simultaneously with (14):

=02, 17)
where QF, = o}, —4eE,, /(mr). Thus, the particle mo-
tion equation in fields E,, H, in the plane transverse to
the magnetic field coincides in a rotating coordinate
system with the motion equation in fields E;,H, in the
laboratory system only at a rotation frequency (16) and
only if the "modified" cyclotron frequencies Q:, (17)
coincide. Or , which is the same, the invariants of mo-
tion equations coincide, I, =1,. For fields E;,H, and
E,,H, that do not satisfy the relation (17), there is no
rotating coordinate system in which the particle motion
equations coincide.

These conclusions are consistent with the property
of "equivalence in function" of second-order linear or-
dinary differential equations of the form (2), (4) ([4]
part 1, §25.1; [5] §3.3.2). However, in the case under

consideration, the equations are in general nonlinear.
The remarks listed in section 2 relate to this section too.

The behavior of the isolines Q7 = const is shown in
Figure in the whole plane of the values of the fields
E,H . A coincidence of the motion equations is possi-
ble if both points (E,,H, and E,, H,) lie on the single
isoline. The region of a weak magnetic field in which
Larmor's theorem is approximately valid (the shaded
region 1 in Figure), constitutes a small part of the entire
plane of the parameters E, H . In this region, the exact
expression for the isoline (7) is approximated by an ex-
pression Q° ~—4eE/(mr)=const. The isoline corre-
sponding to this approximation is a vertical line inter-
secting the horizontal coordinate axis at a point
4eE/(mr)<0.
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In the remaining part of the plane, it is necessary to
use the exact equalities (16), (17), according to which
the isolines Q% = const have the form of a parabola.

The motion equation in the direction Oz does not
changes under the transition from the laboratory to the
rotating coordinate system, so the motion equations in
the direction Oz in the fields E;,H,and E,,H, always
differ. The coincidence of the equations of motion in all
three dimensions is impossible.

The obtained results (5), (6) and (16), (17) are also
valid for the electric field of the cylindrical symmetry
(E,;, =0). The patterns of the behavior of the isolines

Q? =const in Figure and all comments to them are
transferred without change to this case. The remarks
presented in Section 2 are valid too. The motion equa-
tions in the direction Oz have the form Z=0. They
coincide in any radial fields E;,E,. When the motion

equation in the transverse plane in fields E,,H, in a

rotating frame (16) coincides with the equation in the
fields E,,H, in the laboratory system, the equations
coincide in all three directions. With an appropriate

choice of the initial conditions, the solutions of the
equations also coincide.

CONCLUSIONS

Larmor's theorem and the results of Sections 2 and 3
can be useful in finding solutions of the motion equa-
tions. Knowing the solution in single point of isoline
Q? =const, one can find a solution in any other point
of the same isoline without solving the problem, and
using only the transformation (3). For example, know-
ing the solution in some negative electric field in which
the ion trajectory is a hypocycloid, find a solution in a
positive field in which the trajectory is an epicycloid. It
is also necessary to take into account that along with the
transformation of motion equation the initial conditions
must also be transformed.
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CBOVCTBA YPABHEHUI JIBUKEHUA 3APSI’KEHHOM YACTHIIBI B CKPEIIEHHBIX ITOJISAX
U TEOPEMA JIAPMOPA

10.H. Enucees
IIpoBeneHo cpaBHEHHE ypaBHEHMH ABMKCHMS 3apsDKEHHOM YacTHIBI B CKPELICHHBIX IOJIX B JIAOOPATOPHOH H
BO BpalllaloLIEiics cucTeMax KoopAauHat. Iloka3aHo, 4TO ypaBHEHME JBHKEHUS B IOJISX (E, H) B NONEPEYHON K
MAarHMTHOMY IIOJIIO IIJIOCKOCTH BO BPAILAIOLIEHCS CUCTEME UMEET TAKOM K€ BUJ, UTO U YPAaBHEHUE ABUXKCHUS B I10-
JISIX JpYrod HaIpsKEHHOCTH (E', H ') B 1aboparopHoii cucteme. OnpeiesieH HHBapHaHT ypaBHEHUS ABIKCHUS MIPU
npeoOpa3oBaHKyu BpanieHus. PaccMoTpeHa 3amava, oboOmaromas 3aaaqy, paccMoTpenHyto Jlapmopom. Ompenene-
HBI 4aCTOTA BPAILEHUS U YCIOBHE, IPH KOTOPHIX yPaBHEHUE JBUKEHUS YACTHULBI B MOJISX (El, H 1) B J1aDOpaTOpHOiA

CHUCTEME COBIIAIACT C YPABHCHUCM JIBU)KCHUSA B IIOJIAX (Ez, Hz) BO Bpamalomeﬁc;l CHUCTEMC.

BJACTHUBOCTI PIBHSIHb PYXY 3APSAIKEHOI YACTKH B CXPEIIEHUX MOJIAX
I TEOPEMA JIAPMOPA

FO.M. €nicees

IIpoBeneHo 3icTaBleHHs PIBHAHB PYXY 3apsHKCHOT YaCTKH B CXPEIICHUX IMOJIIX y TaOOpaTOpHii i 00epToBil
cucreMax koopauHat. [TokazaHo, 10 PiBHAHHA PYXy B IOJISIX ( E.H ) y TIOTIEPEYHiH 10 MarHiTHOTO IOJISI TUIONMHI
B 00epTOBIH cHCTEMi Ma€ TaKWi )K€ BUTIISA, IO ¥ PiBHAHHS PyXy B HOJISIX 1HIIOI HANPY>KEHOCTI (E', H ') B Jabopa-

TOpHi# cuctemi. Bu3HaueHo iHBapiaHT piBHAHHA pyXy IpH TpaHchopmMarlii odepTanHs. PosrisgnyTa 3aga4a, mo y3a-
TaJIBHIOE 3a/1a9y, po3rIAHyTY JlapMopom. Bru3HaveHi wacToTa o6epTaHHS i yMOBa, IPH SIKUX PIBHAHHS PyXy YacTKH

B nomwsix (E;, H,) y naGoparopHiii cucremi 36iraerbes 3 piBusuasM pyxy B nomsix (E,, H,) B oGeprosiit cucremi.
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