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     It is shown that the dynamics of particles in the field of a wave packet, whose group velocity is zero, is almost 

always chaotic. Earlier we showed that in the field of a large number of cyclotron resonances, the higher moments 

of particle dynamics can be much larger than the lower moments. A kinetic description of such dynamics can be 

realized only on the basis of the generalized Fokker-Planck equation. Such an equation is obtained. Some features 

that appear as a result of taking into account the higher moments are described. 
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INTRODUCTION 

     It is known that the regimes with dynamic chaos are 

characteristic practically for all nonlinear oscillatory 

systems. The strict proof of the conditions of transition 

to the regime with dynamic chaos represents rather 

difficult task. In the vast majority of physical problems 

there is an opportunity to use simple analytical criterion 

of transition to dynamic chaos – Chirikov's criterion. 

This criterion is simple. His physical contents is 

transparent. It is used in huge number of researches. 

However this criterion is still phenomenological 

criterion and in many cases it needs to be used with 

caution. In particular, in work [1] it is suggested that 

when the ratio of width of nonlinear resonances to the 

distance between these resonances it is greater, than 

number of waves, dynamics can be not chaotic, but 

regular. This rather transparent physical reason. This 

question is studied below in the first section. 

The second feature of the description of the regimes 

with dynamic chaos is that for the description of these 

regimes the equations like Fokker-Planck's equations 

are often used. However such equations take into 

account the influence on the dynamics of particles only 

the first, second moments of this dynamics. In work it 

has been shown what in many cases of the dynamic of 

charged particles in the conditions of cyclotron 

resonances is described by the moments which have 

such feature that the highest moments are large, than the 

lowest moments. In this case the equations of type of 

Fokker-Planck demand generalization on a case of 

taking note of these highest moments. Such generalized 

equations are written out below in point. 

1. PARTICLE DYNAMICS IN THE FIELD 

OF THE WAVE PACKET 

To determine the main features of the motion of charged 

particles in the field of a wave packet, we consider the 

simplest model in which such features can be shown. As 

such a model can serve as one-dimensional model of the 

motion of charged particles in the field of a large 

number of waves: 
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In order to clarify the conditions for the appearance of 

regimes with dynamic chaos, we first consider the 

motion of a particle in one of these waves. From 

equation (1) we can then obtain the well-known 

integral: 
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Using the integral (2), we find the width of the 

nonlinear resonance: 

     max 2     ,    min 2    .       (3) 

To determine the distance between the resonances, we 

note that the effective interaction of particles with the 

wave of the packet occurs under the conditions of 

Cerenkov resonance. In this case it is easy to determine 

the distance between the resonances: 
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At obtaining of (4) we took into account that 

/ kphv v   . Using expressions (3) and (4), it is easy 

to find the conditions for the onset of local instability: 
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here 
gv  is group velocity; N is  number of waves in the 

packet. 

Looking at formulas (4) and (5), it is already 

possible to make several important conclusions. The 

first is clear (from formula (4)) that if the group velocity 

tends to the phase velocity of the wave, then the 

distance between the resonances tends to zero. This 

means that all waves of the packet are located on a 

rectilinear section of the dispersion. In the phase space, 

the resonances of such waves all coincide. For particles, 

such resonances are practically indistinguishable. 

Dynamics should be regular. Second, on the other hand, 

if the group velocity of the waves tends to zero (for 

example, Langmuir waves in a plasma), then, as can be 

seen from formula (5), the resonance overlap criterion 

turns out to be much smaller than the number of waves 

participating in the packet. In this case, as for the first 

time, apparently, it was noted in the work, the dynamics 
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of the particles should be chaotic. We note here that the 

nonrelativistic dynamics of particles always corresponds 

to the case 1A .  

Further analysis of particle dynamics has been 

carried out by numerical methods. For this, the right-

hand side of equation (1) has been  represented in this 

form: 
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Formula (6) describes the structure of the fields that 

make up the wave packet. A feature of the field of such  

wave packet is its interference of the fields composing 

the packet. As an example, Fig. 1 shows the form of the 

field of this packet at fixed coordinates and time in the 

case of 25 waves (
gv k   ). As the number of 

waves in the packet increases, the distance between the 

field maxima increases, and the amplitude of each of the 

maxima increases. 

 

 
Fig. 1. Form of the field for packet of waves with  

25 waves 

     We will consider dynamics of charged particles in 

the field of two waves with A=0.1 amplitudes in the 

beginning. At the same time, for simplicity, frequencies 

of waves 1 21, 0.99    and wave number 1 1k   

have been chosen.  

     An analysis of the dynamics of charged particles in 

the field of two waves with amplitudes A = 0.1 showed 

that the chaotic dynamics of particles begins at 0.4K  . 

Such dynamics are retained up to values K~31. 

Dependences of the particle velocity on time, their 

spectra and correlation functions are shown in Figs. 2, 3. 

 

 

Fig. 2. Particle velocityV , power spectral density PsV  

and correlation function cf  for К=0.46 

 

  

 

Fig. 3. Particle velocity V , power spectral density PsV  

and correlation function cf  for K31 

     And only after this, with further increase in the 

parameter K , the dynamics becomes regular. 

Especially this tendency can be shown when the group 

velocity is zero ( 0gv  ). 

     When considering the dynamics of particles in a 

packet the amplitude of all the packet waves are A=0.1, 

and the wave frequencies of the packet were chosen in 

the range 1 20.99, 1.0   , wave number 2 1k  . 

The wave of the packet was uniformly distributed in the 

interval between these two fixed waves.  

The analysis of particle dynamics in the packet 

shows that practically always when 0gv   the 

dynamics of particles is chaotic Fig. 4. 

 

 

  

Fig. 4. Particle velocity V , power spectral density 

PsV and correlation function cf  for К=1,  

number of waves in the packet N=10 

If, however, ;g g phk v v v     , that corresponds 

to the linear section of the dispersion of the waves 

composing the packet, then the dynamics for a 

sufficiently large number of waves turns out to be 

regular Fig. 5. 
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Fig. 5. Particle velocity V , power spectral density 

PsV and correlation function cf  for К=1000, 

 number of waves in the packet N=10 

This corresponds to the case that in Fig. 1 the next 

field pulse goes to infinity. Therefore, the effective 

interaction of particles with the field occurs only in the 

region of one maximum of this field. The dynamics is 

regular. 

2. ROLE OF THE MOMENTS IN DYNAMICS 

OF PARTICLES 

     In paper [2] analysis of the moments at overlapping 

of cyclotron resonances shows that there are conditions 

under which the higher moments describing the 

dynamics of transverse momenta can be greater than the 

previous ones. The analysis of particle dynamics cannot 

be carried out by means of equations of the Fokker-

Planck type, since only the second moments are taken 

into account in such equations [3]. The illustration of 

this feature is shown in the Fig. 6. 

 

a b 

Fig. 6. Dependences of the magnitudes of the 

moments xp  divided by the factorial of their number  

for the field amplitude: а) ɛ0=0.1; b) ɛ0=0.19 

     In these figures the dependence of the magnitude of 

the moments on their number is presented. And the 

magnitude of each moment is divided by the factorial of 

its number (by !m ). It can be seen from these figures 

that, for low external field strength 

( 0 / 0.1eE mc   ), the moments rapidly fall with 

increasing number (see Fig. 6,a). However, for higher 

strengths (for 0 0.19  ), the higher moments turn out 

to be larger than the moments with smaller numbers. In 

these cases, to describe the dynamics of particles, it is 

necessary to generalize the Fokker-Planck equations to 

the case of taking into account the role of higher 

moments. To do this, let us write down the relationship 

between the particle density at the instant of 

time   and the particle density at the instant of time 

 : 

 ( , ) ( , ) f( )n p n p p p dp  




       .      (7) 

Expression (7) is a mathematical reflection of the fact 

that the density of particles having a momentum p  at a 

time     will be determined by all other particles 

(with other energies) and which, with probability 

( )f p , acquire momentum p  after a time interval 

 . It is convenient to rewrite equation (7) in the form: 

 ( , ) ( , ) ( , ) ( , ) f( )n p n p n p p n p p dp    




        . 

We decompose the integrand into a series of relatively 

small displacements:  
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where  
m

p  are the moments of the transverse 

particle momentum at cyclotron resonances. If to be 

limited to accounting only of the second moments, then 

we obtain the usual diffusion equation for the particle 

density with the diffusion coefficient 
2 / 2D p : 
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     For the case presented in Fig. 2, it is necessary to 

take into account 4-5 terms in the sum (8). In order to 

clarify the role of higher moments, it suffices to analyze 

the solutions of equation (8) taking into account only 

the second and fourth moments: 
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If the parameter   is small ( 1  ), then the solution 

of equation (10) can be sought in the form of a series in 

this parameter: 
2
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Substituting this series into equation (10), we will find 

the equations for finding the terms of this series. For 

example, to find the second term, we can get the 

following sequence 
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since 0
ˆ 0Ln  , then and 1

ˆ 0Ln  . The equations for the 

other terms of the series (11) will have an analogous 

form. Finally, the series (11) can be written in the form 

of a series of geometric progression: 

 2

0 0( , ) 1 ... ( , ) / 1n p t n n p t          .  (12) 

This expression shows that the solutions of the 

Fokker-Planck equation are stable with respect to the 

influence of small higher moments. 

In the general case, the solution of equation (10) can be 

sought in the self-similar form:
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Substituting this solution into initial equation, we obtain  
2 4 2 2
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The parameters a  and b  are arbitrary. If the parameter 

  is small ( 2 1  ), then we obtain at 1 2b   the 

Fokker-Planck equation. It is known that its solution has 

the form:  
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 As we saw above (see (12)), such function changes a 

little when considering higher moments, if they are 

small. Below we consider special cases that allow us to 

see the role of higher moments in the dynamics of 

particles. For this, first of all, we will assume that the 

parameter   is very small ( 2 1  ). In this case, 

equation (14) is simplified: 
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Equation (16) is also quite complicated for analysis. 

Therefore, we will be limited only to the asymptotic 

solution for large values of time ( t  ). 

Choose values 1, 1a b  . In this case, for large 

values of time, equation (15) can be rewritten in the 

form: 
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The solution equation (16) has the form: 

(p) / yv C .      (18) 

Here, the "constant" C is an arbitrary function of the 

momentum. In this case, the solution of the original 

equation (16) at t   will have the form:  

( , ) (p) / pn p C  .     (19) 

"Constant" (p)C is determined from the condition of 

conservation of the total number of particles ( N ): 

0

(p)C
N dp

p



  .         (20) 

It is visible that this relationship will be valid if we 

choose the "constant" (p)C  in the form: 

 (p) p exp( )C p   ,
     

 

here – 1/ N  . Then the expression for the particle 

density at large times will be described by the formula:  

 ( , ) exp /n p p N   .     (21) 

Comparing formula (21) with formula (15) for large 

times, the qualitative difference in the dependence of 

the particle density on the momentum is clearly visible. 

CONCLUSIONS 

     We note the most important results of the paper. 

Analysis of the motion of charged particles in wave 

packets, whose group velocity is zero, has shown that 

practically always this dynamics is chaotic. On the other 

hand, if the packet is formed by waves that are located 

on a rectilinear section of the dispersion, the dynamics 

of the particles in such a packet remains regular. 

The equation is obtained that generalizes an equation 

of the Fokker-Planck type to the case of the influence of 

higher moments of chaotic particle dynamics. It is 

shown that if the higher moments are small, then 

solutions of equations of the Fokker-Planck type also 

remain practically unchanged. However, if, for example, 

the fourth moment is significantly larger than the second 

moment, then the differences can be both quantitative 

and qualitative.  
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ОСОБЕННОСТИ СПЕКТРОВ НЕЛИНЕЙНЫХ ОСЦИЛЛЯТОРОВ В РЕЖИМАХ 

 С ДИНАМИЧЕСКИМ ХАОСОМ 

В.А. Буц, В.В. Кузьмин, А.П. Толстолужский 

     Показано, что динамика частиц  в поле волнового пакета, групповая скорость которых равна нулю, 

практически всегда хаотична. Ранее нами показано, что в поле большого числа циклотронных резонансов 

высшие моменты динамики частиц могут быть значительно  большими, чем низшие моменты. Кинетическое 

описание такой динамики может быть осуществлено только на основе обобщенного уравнения Фоккера-

Планка. Такое уравнение получено. Описаны некоторые особенности, появляющиеся в результате учета 

высших моментов.  

ОСОБЛИВОСТІ СПЕКТРІВ НЕЛІНІЙНИХ ОСЦИЛЯТОРІВ У РЕЖИМАХ 

З ДИНАМІЧНИМ ХАОСОМ 

В.О. Буц, В.В. Кузьмін, О.П. Толстолужський  

     Показано, що динаміка частинок у полі хвильового пакета, групова швидкість яких дорівнює нулю, 

практично завжди хаотична. Раніше нами показано, що в полі великої кількості циклотронних резонансів 

вищі моменти динаміки частинок можуть бути значно більшими, ніж нижчі моменти. Кінетичний опис такої 

динаміки може бути здійснено тільки на основі узагальненого рівняння Фоккера-Планка. Таке рівняння 

отримано. Описано деякі особливості, що з'являються в результаті обліку вищих моментів 


