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It is shown that the dynamics of particles in the field of a wave packet, whose group velocity is zero, is almost
always chaotic. Earlier we showed that in the field of a large number of cyclotron resonances, the higher moments
of particle dynamics can be much larger than the lower moments. A kinetic description of such dynamics can be
realized only on the basis of the generalized Fokker-Planck equation. Such an equation is obtained. Some features
that appear as a result of taking into account the higher moments are described.
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INTRODUCTION

It is known that the regimes with dynamic chaos are
characteristic practically for all nonlinear oscillatory
systems. The strict proof of the conditions of transition
to the regime with dynamic chaos represents rather
difficult task. In the vast majority of physical problems
there is an opportunity to use simple analytical criterion
of transition to dynamic chaos — Chirikov's criterion.
This criterion is simple. His physical contents is
transparent. It is used in huge number of researches.
However this criterion is still phenomenological
criterion and in many cases it needs to be used with
caution. In particular, in work [1] it is suggested that
when the ratio of width of nonlinear resonances to the
distance between these resonances it is greater, than
number of waves, dynamics can be not chaotic, but
regular. This rather transparent physical reason. This
question is studied below in the first section.

The second feature of the description of the regimes
with dynamic chaos is that for the description of these
regimes the equations like Fokker-Planck's equations
are often used. However such equations take into
account the influence on the dynamics of particles only
the first, second moments of this dynamics. In work it
has been shown what in many cases of the dynamic of
charged particles in the conditions of cyclotron
resonances is described by the moments which have
such feature that the highest moments are large, than the
lowest moments. In this case the equations of type of
Fokker-Planck demand generalization on a case of
taking note of these highest moments. Such generalized
equations are written out below in point.

1. PARTICLE DYNAMICS IN THE FIELD
OF THE WAVE PACKET

To determine the main features of the motion of charged
particles in the field of a wave packet, we consider the
simplest model in which such features can be shown. As
such a model can serve as one-dimensional model of the
motion of charged particles in the field of a large
number of waves:
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In order to clarify the conditions for the appearance of
regimes with dynamic chaos, we first consider the
motion of a particle in one of these waves. From
equation (1) we can then obtain the well-known
integral:
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here: p=kz—at , QZ:H—Z, E=del/dr; = wt.
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Using the integral (2), we find the width of the
nonlinear resonance:

(bmax =+2Q ’ (bmin =-2Q. (3)

To determine the distance between the resonances, we
note that the effective interaction of particles with the
wave of the packet occurs under the conditions of
Cerenkov resonance. In this case it is easy to determine
the distance between the resonances:

ap=-sk[ v —(8/, )] 0

At obtaining of (4) we took into account that
v=v, =w/k. Using expressions (3) and (4), it is easy
to find the conditions for the onset of local instability:
K:(ﬁ) 2/A =N 2/A . (5
Aw [1—vg /vph] [l—vg /vph]
here v, is group velocity; N is number of waves in the

packet.

Looking at formulas (4) and (5), it is already
possible to make several important conclusions. The
first is clear (from formula (4)) that if the group velocity
tends to the phase velocity of the wave, then the
distance between the resonances tends to zero. This
means that all waves of the packet are located on a
rectilinear section of the dispersion. In the phase space,
the resonances of such waves all coincide. For particles,
such resonances are practically indistinguishable.
Dynamics should be regular. Second, on the other hand,
if the group velocity of the waves tends to zero (for
example, Langmuir waves in a plasma), then, as can be
seen from formula (5), the resonance overlap criterion
turns out to be much smaller than the number of waves
participating in the packet. In this case, as for the first
time, apparently, it was noted in the work, the dynamics

ISSN 1562-6016. BAHT. 2018. Ne6(118)

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, Ne 6. Series: Plasma Physics (118), p. 176-179.



of the particles should be chaotic. We note here that the
nonrelativistic dynamics of particles always corresponds
to the case A<<1.

Further analysis of particle dynamics has been
carried out by numerical methods. For this, the right-
hand side of equation (1) has been represented in this
form:

G :ésin{(kﬂ%ka—(wﬂil—wjt} (6)

Formula (6) describes the structure of the fields that
make up the wave packet. A feature of the field of such
wave packet is its interference of the fields composing
the packet. As an example, Fig. 1 shows the form of the
field of this packet at fixed coordinates and time in the
case of 25 waves (Aw=Vv,Ak). As the number of
waves in the packet increases, the distance between the

field maxima increases, and the amplitude of each of the
maxima increases.
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Fig. 1. Form of the field for packet of waves with
25 waves

We will consider dynamics of charged particles in
the field of two waves with A=0.1 amplitudes in the
beginning. At the same time, for simplicity, frequencies
of waves @ =1, ®,=0.99 and wave number k =1
have been chosen.

An analysis of the dynamics of charged particles in
the field of two waves with amplitudes A = 0.1 showed
that the chaotic dynamics of particles begins at K >0.4.
Such dynamics are retained up to values K~31.

Dependences of the particle velocity on time, their
spectra and correlation functions are shown in Figs. 2, 3.
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and correlation function cf for K=0.46

400 T

ISSN 1562-6016. BAHT. 2018. Ne6(118)

e e
(Nt |
Il

0.8

PsV 1

110 " I

3
110 -
0 - 1

Fig. 3. Particle velocity V , power spectral density PsV
and correlation function cf for K~31

And only after this, with further increase in the
parameter K, the dynamics becomes regular.
Especially this tendency can be shown when the group

velocity is zero (v, =0).

When considering the dynamics of particles in a
packet the amplitude of all the packet waves are A=0.1,
and the wave frequencies of the packet were chosen in
the range @, =0.99, w, =1.0, wave number k,=1.
The wave of the packet was uniformly distributed in the
interval between these two fixed waves.

The analysis of particle dynamics in the packet
shows that practically always when v, =0 the

dynamics of particles is chaotic Fig. 4.
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Fig. 4. Particle velocity V , power spectral density
PsV and correlation function cf for K=1,
number of waves in the packet N=10

If, however, Aw=AK-v,;V, =V, that corresponds

to the linear section of the dispersion of the waves
composing the packet, then the dynamics for a
sufficiently large number of waves turns out to be
regular Fig. 5.
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Fig. 5. Particle velocity V , power spectral density
PsV and correlation function cf for K=1000,
number of waves in the packet N=10

This corresponds to the case that in Fig. 1 the next
field pulse goes to infinity. Therefore, the effective
interaction of particles with the field occurs only in the
region of one maximum of this field. The dynamics is
regular.

2. ROLE OF THE MOMENTS IN DYNAMICS
OF PARTICLES

In paper [2] analysis of the moments at overlapping
of cyclotron resonances shows that there are conditions
under which the higher moments describing the
dynamics of transverse momenta can be greater than the
previous ones. The analysis of particle dynamics cannot
be carried out by means of equations of the Fokker-
Planck type, since only the second moments are taken
into account in such equations [3]. The illustration of
this feature is shown in the Fig. 6.
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Fig. 6. Dependences of the magnitudes of the
moments p, divided by the factorial of their number

for the field amplitude: a) £0=0.1; b) £=0.19
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In these figures the dependence of the magnitude of
the moments on their number is presented. And the
magnitude of each moment is divided by the factorial of
its number (by m!). It can be seen from these figures
that, for low external field strength
(& =eE/mcw=0.1), the moments rapidly fall with

increasing number (see Fig. 6,a). However, for higher
strengths (for g, =0.19), the higher moments turn out

to be larger than the moments with smaller numbers. In
these cases, to describe the dynamics of particles, it is
necessary to generalize the Fokker-Planck equations to
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the case of taking into account the role of higher
moments. To do this, let us write down the relationship
between the particle density at the instant of
time 7 + Az and the particle density at the instant of time
T

n(p,r+A7) = [[n(p-p,0)]f(pYdp’.  (7)

—o0

Expression (7) is a mathematical reflection of the fact
that the density of particles having a momentum p ata

time 7+Az will be determined by all other particles
(with other energies) and which, with probability
f(p'), acquire momentum p’ after a time interval

At . Itis convenient to rewrite equation (7) in the form:
n(p,z+A7)-n(p,z) = [ [n(p-p',2)-n(p,7)]f(p)dp’.

We decompose the integrand into a series of relatively
small displacements:

an < {(P)")amn
)

~ m! op"’

m=2j; j={1,23..} (8)

where <(p)m> are the moments of the transverse

particle momentum at cyclotron resonances. If to be
limited to accounting only of the second moments, then
we obtain the usual diffusion equation for the particle

density with the diffusion coefficient D = < p2>/2 ;

=D—. 9
or op? ®)
For the case presented in Fig. 2, it is necessary to
take into account 4-5 terms in the sum (8). In order to
clarify the role of higher moments, it suffices to analyze
the solutions of equation (8) taking into account only
the second and fourth moments:
or op? op*
If the parameter g is small ( g <<1), then the solution
of equation (10) can be sought in the form of a series in
this parameter:
n=n,+ 40+, +.. (11)
Substituting this series into equation (10), we will find
the equations for finding the terms of this series. For
example, to find the second term, we can get the
following sequence
2 4
%_aa_nzozo; [nl:ﬂa_nf;
ot op op

since Ln, =0, then and Ln, =0. The equations for the

other terms of the series (11) will have an analogous
form. Finally, the series (11) can be written in the form
of a series of geometric progression:

n(p.Y)=n,[1+ B+ +..]=n(p.0)/ (1-B). (12)

This expression shows that the solutions of the
Fokker-Planck equation are stable with respect to the
influence of small higher moments.

In the general case, the solution of equation (10) can be
sought in the self-similar form:

2
@_Dan

(10)

. N o*Ln
Ln, = LLn, =4 640:0
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(P =5V y=5 (13)
Substituting this solution into initial equation, we obtain
2 4 2 2
B ov, @ ﬂer@y+av:0. (14)

t4b487y+tzmazy EY
The parameters a and b are arbitrary. If the parameter
B is small (3* <<1), then we obtain at b=1/2 the

Fokker-Planck equation. It is known that its solution has
the form:

pZ
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n(p.t) 2ot
As we saw above (see (12)), such function changes a
little when considering higher moments, if they are
small. Below we consider special cases that allow us to
see the role of higher moments in the dynamics of
particles. For this, first of all, we will assume that the
parameter o is very small (a® <<1). In this case,
equation (14) is simplified:
2 4
fTST\;er%erav:O.
Equation (16) is also quite complicated for analysis.
Therefore, we will be limited only to the asymptotic
solution for large values of time (t — o).
Choose values a=1, b=1. In this case, for large
values of time, equation (15) can be rewritten in the
form:

(15)

(16)

0
oW g, a7
oy
The solution equation (16) has the form:
v=C(p)/y. (18)

Here, the "constant" C is an arbitrary function of the
momentum. In this case, the solution of the original
equation (16) at t — oo will have the form:

n(p,) =C(p)/p. (19)
"Constant" C(p) is determined from the condition of
conservation of the total number of particles (N ):

N =T%p. (20)
5 P

It is visible that this relationship will be valid if we
choose the "constant” C(p) in the form:

C(p) =p-exp(-¢p),
here — £=1/N. Then the expression for the particle
density at large times will be described by the formula:
n(p,) =exp(-p/N). (21)
Comparing formula (21) with formula (15) for large

times, the qualitative difference in the dependence of
the particle density on the momentum is clearly visible.

CONCLUSIONS

We note the most important results of the paper.
Analysis of the motion of charged particles in wave
packets, whose group velocity is zero, has shown that
practically always this dynamics is chaotic. On the other
hand, if the packet is formed by waves that are located
on a rectilinear section of the dispersion, the dynamics
of the particles in such a packet remains regular.

The equation is obtained that generalizes an equation
of the Fokker-Planck type to the case of the influence of
higher moments of chaotic particle dynamics. It is
shown that if the higher moments are small, then
solutions of equations of the Fokker-Planck type also
remain practically unchanged. However, if, for example,
the fourth moment is significantly larger than the second
moment, then the differences can be both quantitative
and qualitative.

REFERENCES

1. G.M. Zaslavskii, B.V. Chirikov. Stochastic instability
of non-linear oscillations // Soviet Physics Uspekhi.
1972, v. 14, Ne 5, p. 549-672 (in Russian).

2. S.S. Moiseev, V.A. Buts, N.S. Erokhin, Peculiarities
of Charged Particle Dynamics under Cyclotron
Resonance Conditions // Plasma Physics Reports. 2016,
V.42, Ne 8, p. 761-768.

3. V.A. Buts, V.V. Kuz’'min, A.P. Tolstoluzhsky.
Features of the Dynamics of Particles and Fields at
Cyclotron Resonances // Journal of Experimental and
Theoretical Physics. 2017, v. 125, Ne 4, p. 651-662.

Article received 18.09.2018

OCOBEHHOCTHU CIIEKTPOB HEJIMHENHBIX OCLHAJLISITOPOB B PEXKUMAX
C JMHAMMWYECKHUM XAOCOM
B.A. Byu, B.B. Ky3emun, A.Il1. Toncmonyycckuii
[TokazaHo, 4TO AMHAMMKA YacTHI[ B MOJIE€ BOJHOBOTO MAaKeTa, IPYINIOBas CKOPOCTh KOTOPHIX paBHA HYIIIO,
MPaKTHYECKN BCEr/la XaoTH4YHA. PaHee HaMM MMOKa3aHO, YTO B IOJIe OOJBIIOTO YMCIa HUKIOTPOHHBIX PE30HAHCOB
BBICIIE MOMEHTHI AMHAMUKH YaCTHIl MOTYT OBITh 3HAYUTENIFHO OOJBIIMMH, YeM HU3IINE MOMEHTHI. KiHeTH4yeckoe
ONMCaHNe TAaKOW JUHAMHKH MOXXET OBITh OCYILIECTBJIEHO TOJBKO Ha OCHOBE 0000IIeHHOro ypaBHeHus Dokkepa-
IMnanka. Takoe ypaBHeHHe mHoiydeHo. OmNHCaHbl HEKOTOPbIE OCOOEHHOCTH, MOSBIISIOIINECS B Pe3yJjbTaTe ydera
BBICIIIMX MOMEHTOB.
OCOBJIMBOCTI CIIEKTPIB HEJTHIMHUX OCHOUJISATOPIB ¥ PEXKUMAX
3 JMHAMIYHUM XAOCOM
B.O. Byu, B.B. Ky3vmin, O.1I1. Toncmonysccoxkuii
[Toxa3aHo, M0 AWHAMiKa YaCTHHOK Y IIOJIi XBHJIBOBOTO MAKeTa, IPYNOBA IMIBHIAKICTH SKHX JOPIBHIOE HYIIIO,
MPaKTUYHO 3aBXKJIM XaOTHYHA. PaHile HaMHu TMOKa3aHO, IO B ITOJII BEJMKOi KUTBKOCTI IHMKJIOTPOHHHUX PE30HAHCIB
BUII[i MOMEHTH TUHAMIKH YaCTHHOK MOXKYTh OYTH 3HAYHO OUTHIIUMHU, HIXK HMK4Yi MOMeHTH. KiHeTHIHUIT omvic Takoi
JMHAMIKH MOXe OyTH 37iMCHEHO TUIBKM Ha OCHOBI y3arajgbHeHOro piBHsHHS Pokkepa-lIlnanka. Take piBHSIHHS
orpuMano. OTHcaHO AeSKi 0COOIUBOCTI, IO 3'IBISIFOTHCA B PE3YJIBTaTi 00Ky BUIIMX MOMEHTIB
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