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The paper considers formation of quasi-monochromatic radio frequency oscillations under the influence of a
short carrier-free pulse of electric current, in the transmission line of doubly connected cross-section partially filled
with a magnetized ferrite. The frequencies and amplitudes of the oscillations are determined by dispersive and non-
linear properties of the structure which are, in their turn, governed by the geometry and size of the line proper, and
the spatial structure of the ferromagnetic material with its intrinsic dispersion. The dependences shown by the
oscillation parameters in physical experiments are reproduced and analyzed via numerical simulation within models
which account separately for different physical properties of the material and the structure.

PACS: 41.20 Gz; 41.20 Jb
INTRODUCTION

The physical effects leading to direct conversion of
short carrier-free electric pulses into radio frequency
oscillations have been a subject of intense studies for
quite a long time [1, 4-12]. In fact, this possibility
stands out as a real achievement in the field of high
power electronics, reached over the few past decades.
The early work in the field, dating back to 1960s [1-3],
was concentrated on excitation of electromagnetic shock
waves in lumped-parameter nonlinear trans-mission
lines (NLTL) and formation of pulsed waveforms with a
sharp leading edge [2, 3]. Later on, the interest shifted
toward studying the radio frequency oscillations that
accompanied passage of the shock through the NLTL.
They could be observed both in lumped parameter lines
containing discrete components with some kind of
nonlinear behavior, and in waveguides filled with a
ferromagnetic material [4, 5, 9-11]. In the latter case it
is essential that the guide’s cross-section should
topologically be a double connectivity object, so as to
admit unipolar electric pulses. The obvious candidates
are coaxial cables and planar strip lines.

In the experiments where the transmission line
contained a ferrite core magnetized very nearly to
saturation, the short carrier-free current pulse could give
rise to quasi-monochromatic oscillations [4, 5, 9], or
rather, damped sinusoidal waveforms of frequencies fo
falling into the decimeter wave range (often between 0.3
and 6 GHz). Such signals revealed a rather small
number of periods, which actually suggests a fairly
broad bandwidth, Af/f =~ 1. Thus, gyromagnetic
nonlinear transmission lines can be seen as a new
technology to produce short radio frequency pulses of
very high (megawatt level) intensity. They may prove
useful for many applications with modest demands as to
spectral line purity or total radiated energy, like
subsurface radar or EMC test beds [7, 8]. The advantage
of such systems is their ability to operate without
intense particle beams or high vacuum [5, 9, 11]. Still,
despite these practical achievements and continued
efforts of many researchers, the underlying physics
remains poorly understood. The widely shared idea
concerning reasons for the appearance of the
oscillations has been the impact of the magnetization
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vector’s precession about the direction of the total d.c.
magnetic field in the ferrite [4, 6, 11]. Unfortunately,
this does not explain either the oscillation frequency
dependence upon the line’s cross-section diameter or
even the frequency value itself. In this paper we are
trying to summarize the better established facts
concerning generation of RF oscillations in NLTLs and
suggest a consistent electrodynamic vision of the
principal effects.

1. WAVE PROCESSES IN THE NLTL

The coaxial structure used in our (and other)
experiments, Fig.1, will be described in a cylindrical
frame of reference (z,p,¢), where z is the coordinate
along the line’s axis; p the radial, and ¢ the angular
coordinate. It involved two uniform lines, TL1 and TL2,
at the input and output, respectively, and the NLTL
partially filled with a ferrite. The cross-section sizes of
all three TLs were the same, Dz =52 mm and
D:=20 mm, which figures determined a 38 Ohm
impedance for the TEM mode, and the lengths of
100 mm for TL1 and TL2, and 800 mm for NLTL.
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Fig. 1. Schematic of the transmission line

The TL1 and TL2 were fully filled with a [liquid]
dielectric with constant parameters ¢ = 2.25 and p= 1,
whereas in the NLTL the filling medium occupied two
layers. The outer one, Dy/2 < p < D3/2, contained the
same isotropic dielectric as the input line TL1, while the
space Di/2 < p < D,/2 accommodated a cylindrical
ferrite core with D, =32 mm (actually, a set of closely
spaced ferrite beads). The entire structure was placed in
a d.c. magnetic field Ho=e:Ho provided by an external
solenoid. The geometric and electrical parameters of the
structures described by other workers [4-6, 11] differed
considerably, so to compare and interpret the reported
results, the diameters D, line lengths L and the
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magnitudes of ¢ and p could be varied in numerical
simulations (see below).

The processes taking place in the system can be
outlined as follows. The unipolar voltage surge fed into
TL1 from an external pulse-forming source travels
toward the front end of the NLTL. The axial symmetry
of the entire structure suggests that all field magnitudes
at ¢ = po+27 shall be equal to the values at p=¢o, and
hence the angular dependences of the wave fields are
exp(ing) with n =0, + 1, £ 2, etc. Since TL1 presents no
structural non-uniformity or anisotropy, the ‘d.c.” pulse
may propagate there in the form of a dispersionless
(TEM) wave where the participating spatial components
are, by virtue of excitation, only two, namely E,
(associated with the voltage across the line conductors)
and B,=H, (proportionate to the current through the
line). In frequency-spectrum terms, both represent
continuous  sets of  harmonic  components
~R(p,p)exp(iwt-ikz), so far with OR/0p=inR=0, which all
travel at the same speed. The spectrum extends from
‘almost d.c.” to 1/t, where t is the pulse’s rise time.
(Accordingly, all frequency components obey the same
linear disper-sion law w=«v). The highest frequency in
the set determines the ‘sharpness’ of the pulsed
waveform edge. The lowest, of amplitude about 0.5A¢
carries the major part of the pulse’s energy (Ao is the
peak amplitude of the pulsed waveform).

Upon entering the ferrite-filled part of the line the
signal can no more exist as a wave packet with a single
dispersion law for all frequency components. First,
because the wave mode with non-zero E, and B, _gets
diffracted at the dielectric-ferrite interface (where the
electric and magnetic parameters of the medium change
abruptly), and hence acquires longitudinal field
components E; and B, which the former E, and B, are
coupled to through the Maxwell equations (1),
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The n=0 solution is not the only one excited here.
The wave modes with |n|> 1 possess different, often
complex dispersion laws. The TEM (n=0) wave itself
transforms into a TM mode with three spatial
components, E,, By, and E; and reveals a slightly
nonlinear dispersion law, therefore being sometimes
known as a ‘quasi-TEM’ mode.

The magnetic induction B in the ferrite is
B=po(H+M), where M is the magnetization vector. The
ferromagnet that was pre-magnetized to Mo=e;M; by the
d.c. bias field Ho now gets re-magnetized in the
perpendicular field e,H, which is carried by the current
pulse, He=he(t). Accordingly, the M-vector assumes
components oriented in the p-, ¢-, and z-directions. The
variations of M, and M, with time represent the
precession motion of M around the direction of Mo. The
dynamics of variations in M can be described within
some version of the Landau-Lifschitz (L-L) equation
[13], e.g., the L-L-Gilbert form,
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OM/dt = -yp[MxH] - yo po/Ms: [Mx[MxH]], 2
where y = 2.8-:10'° Hz/T is the gyromagnetic ratio and H
the total magnetic field in the medium. It includes the
static field Ho and the time-dependent components h(t).
When calculated from the Maxwell equations with due
account, via boundary conditions, of the geometry and
sizes of the NLTL’s structural elements, the H vector in
(2) also includes the so called demagnetizing factors
[13]. Now, a < 1 is a phenomenological parameter of
this macroscopic equation, accounting for magnetic
relaxation effects.

As can be seen from (2), the B = B(H) relation is (a)
nonlinear and (b) non-scalar (reflecting anisotropy of
the medium). Qualitatively, the effects of magnetic
nonlinearity can be described in two ways:

1. Considering an ‘effective magnetic permeability’
of the ferrite, u=1+M(H)/H, we see it to be dependent
on the magnetic field strength. Accordingly, the
propagation velocity v = c(su)*? of the pulsed wave
becomes dependent on the amplitude of H, (i.e., current
amplitude). As a result, the higher-amplitude pulse
components are in advance of the lower-amplitude
components, thus sharpening the front edge and
provoking shock formation. (Of course, this is a rather
simplified treatment, as the B=B(H) relation is
anisotropic and the refractive index c/v can hardly be
associated with any scalar ‘effective u”).

2. Looking at the pulse propagation process from
frequency domain positions, effects of nonlinearity are
understood as generation of higher-order harmonics by
each frequency component in the continuous spectrum
of the pulse. As long as they all move at velocities that
remain close to the pulse’s group velocity, we observe
pulse edge sharpening. When some of the higher
frequency components get close to and beyond the cut-
off frequency of a dispersive TM or TE mode supported
by the line, that mode may be excited and seen as a
decaying sine wave.

The linear in H solution to the L-L-G+Maxwell
equation set that describes the magnetostatic wave in the
ferrite also looks like a decaying sine wave, which has
led many writers to believe that the oscillations were
associated exclusively with precession of the
magnetization vector. Meanwhile, the frequency of
magnetic moment precession is not the only
characteristic frequency in the structure. The NLTL, as
a line of finite-sized cross-section (and containing a
layered insert at that) exhibits many characteristic
frequencies and suggests a variety of dispersion laws for
the electromagnetic modes that might be excited. The
magnitudes determining the precession frequency are
wo = uoyHo and wm = uoyMs (where Ms is the saturated
level of magnetization). In our experiments, as well as
in [6] these magnitudes lay between 1 GHz and about
wwm =10 GHz, while the oscillations recorded showed
frequencies between 0.9 and 6 GHz. Note that wo and
wm Stayed constant in every specific experiment,
whereas the transverse magnetic field H, changed
noticeably over the duration of the current pulse. The
numerical experiments performed with ‘triangular’
pulse waveforms (below, Figs. 2, 3) are in this respect
of special interest. Throughout the trailing edge of large
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extension the magnitude of H, changes by a factor
greater than10, while the RF oscillation frequency never
varies by more than 15 or 25 %. This small amount of
frequency variations, compared with the greatly
changing pulse amplitude, apparently suggests an
equally low significance of the magnetic state of the
medium, i.e. of magnetization dynamics. Then we have
to admit that the oscillation frequency is not (at least,
not always) related to the precession frequency.

As an alternative, consider the dependences upon
sizes of the structural elements. The great many
experiments with nonlinear TLs of different outer
diameters D3, sizes of the ferrite beads and magnitudes
of the magnetic fields involved allow bringing their
results concerning the oscillation frequency f to the
general form f ~ D Thus, Dolan [4] operated with
coaxial lines of very small diameter (D; =3 mm) and
observed oscillations at a high frequency f = 6 GHz. A
series of our real experiments [9, 10] and simulations
[12] with a variety of NLTL diameters also revealed a
fair agreement with the formula f ~ D?. With the
diameters D3 varying from 20 to 50 mm the oscillation
frequencies changed between 2.3 and 0.9 GHz.
Gubanov et al. [5] experimented with lines of large
diameter ~80 mm and observed oscillations at lower
frequencies (0.8 to 2 GHz). Finally, the writers [6]
employed TLs of a still larger diameter (275 mm) and
obtained oscillations at a much lower frequency,
f~0.3 GHz. These data point to the decisive role of
structural non-uniformity within the waveguide’s cross-
section as for the laws of EM wave propagation. To
clarify the role of individual primary mechanisms, three
groups of numerical experiments have been conducted.
They concerned excitation of EM modes in a coaxial
waveguide partially filled with a magneto-sensitive
dielectric medium.

2. NUMERICAL MODELING

The passage through and transformations of the
initial  carrier-free  pulse in the three-sectional
transmission line have been simulated numerically for
three models of the middle part (the NLTL).The
differences in the models related to the internal layer
D1/2<p<D,/2 which represents the magnetic-sensitive
material. The cases considered were as follows,

(i) Both the ¢ and p of the magnetic material are
constant scalar magnitudes, however different from the
parameters of the outer layer, D2/2<p<D3/2.

(i) The dielectric permittivity & is a scalar constant
value, while the permeability p is a scalar dependent on
H (isotropic magnetic).

(iii) The layer is a gyrotropic medium (ferromagnet)
with a constant isotropic dielectric permittivity.

This choice of model materials permits considering
three electrodynamic models of the entire transmission
line, namely: model I, an electromagnetically linear
one; model Il, accounting for nonlinear effects; and
model 1Il, a nonlinear and anisotropic model
incorporating the L-L equation (2).

A numerical analysis of equation sets (1) and (2) for
these models was performed in the FDTD technique
[12] and in two dimensions, however still with the
limiting assumption of n = 0.
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2.1. LINEAR MODEL, I

First, consider a linear model where material para-
meters of both dielectric layers in the middle TL are
constant but unequal values. Once again, the outer
dielectric possesses u = 1 and ¢ = 2.25 as in TL1,
whereas the internal dielectric is characterized by p =7
and ¢ = 16. The Landau-Lifschitz equation is not
included in the computations, and B=pouH. The input
line TL1 is fed with short ‘triangular’ pulses with sharp
leading edges 0.2 to 3 ns in width, of a 10 ns duration.
The simulations show that pulses with a relatively wide
front edge (rise times greater thanl1.5 ns) travel through
the line without visible distortions. Contrary to that, a
pulse with an initially shorter rise time transforms into a
different waveform at the output. Its leading edge
spreads wider and oscillations with a decreasing
amplitude appear, overlaid on the top (see Fig. 2).

4

|

wl ]
i

0 PP

U, kV

o 10 2 r;ls 30 40
Fig. 2. Model I: Output waveforms of a pulse with
tr = 0.8 ns (curve 1) in TLs of different lengths:
L=200 mm (curve 2); L=500 mm (3), and

L =800 mm (4)
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Fig. 3. Model II: Output waveforms of a pulse with
tr=2 ns (curve 1) in TLs of different lengths:
L=200 mm (curve 2); L=500 mm (3), and
L =800 mm (4)

Shown in Fig. 4 is a 2D dynamics of the E,, H, and
Ez field components in a ‘triangular’ pulsed electro-
magnetic wave with parameters Up= 200 kV, pulse
length tpo5=5 ns and rise time tr = 0.8 ns. As discussed
above, all frequency components of the wideband
pulsed signal travel through TL1 in the form of a TEM
mode and get scattered at the entrance to the middle part
of the line. Some of them get transformed into a
dispersive ‘quasi-TEM’ mode, having acquired a
longitudinally oriented electric component, E,. Others,
whose frequencies happen to be close to cut-off
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frequencies of some higher-order TM or TE modes can
give rise to these latter, provided that, apart from the
frequency proximity, matching also takes place of
propagation constants and field vector orientations
(polarization). Note that such wave modes (clearly
identifiable as TMop) can be seen in Fig. 4 where they
follow behind the main pulse’s body as their group
velocities are lower than that of the ‘quasi-TEM’
packet.

N=417, l:,;lklﬂ: lllll‘ﬂ-lﬁ.n’. kViem, lllll.‘.‘"._‘u KV/iem, max=415.988 kV/em
25| \/ A3
Em

w15

200 300 400 500 600 7001 800
Il.u-lkld: min=0.006 kA/m, max=72.957 kA/m, max=119.163 l‘l-\lln

\ /

00, 800

E, fleld: min;=68.452 KV/cm, max;=27.612 KV/em, max=325.376 WV/em

200 300 400 500 600 800
I, mm

Fig. 4. Model I, linear: Field intensity representations
of the E,, H, and Ez components in a ‘triangular pulse’
form

2.2. NONLINEAR SCALAR MODEL, Il

Consider the case where the dielectric constants of
both filling materials in the TL are constant values and
the medium in the internal layer shows nonlinear
magnetic properties. Assuming it to remain isotropic (to
emphasize the effects owing to nonlinearity) we write
B=pon(H)H, taking the scalar magnetic permeability to
be of form
Mg . (3)

,/H;+H§

Let the saturated magnetization be Ms=300 kA/m, which
figure is representative of a lot of ferrite grades. The
bias field corresponding to the point of saturation on the
‘technical magnetization® curve will be taken as Ho=30
kA/m. The computations show the quasi-periodic
oscillations to appear even with a sizable initial width of
the incoming pulse (see Fig. 3), unlike the linear case.
The rise time tz of the pulsed wave is reduced in the
course of its propagation through the NLTL, i.e. the
spectrum is enriched in higher frequency components,
due to non-linearity, at the expense of low frequencies.
This effect of pulse sharpening may become stabilized
because of dispersion, in particular near the cut-off
frequency of some higher-order mode which would
manifest itself as an oscillatory waveform. In the
present numerical experiment the width of the pulse’s
leading edge got stabilized at tr=0.4 ns, as measured at
the output. At this point, it is worth to compare the
oscillation amplitudes at different positions along the
TL length, as presented in Figs. 2, 3, for the linear and
nonlinear models, respectively. In the linear case, the
peak amplitude remains nearly unchanged as the pulse
travels along the line (see curves 2-4 in Fig. 2). In the
non-linear case (see Fig. 3) the homologous waveform
crests in curves 2-4 grow in magnitude as the pulse
travels from position 2 to position 4.

H(H¢)=1+
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This means that the principal energy carrying mode of
the NLTL has become coupled to and started pumping
energy into the dispersive mode(s) posing as
oscillations. The evolution of the E,, H, and Ez field
components can be seen in Fig. 5

2.3. NONLINEAR GYROTROPIC MODEL, 111
The “full” nonlinear, gyrotropic model Il suggests

application of the Landau-Lifschitz equation as a cons-
tituent relation for the Maxwell set. Similar as for Mo-

del 11, the saturated magnetization is Ms=300 kA/m.

NSIALE,_field: i .
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Fig. 5. Model I1, nonlinear, isotropic: Field intensity
representations of the E,, H, and Ez components in a
‘triangular’ pulse form

3004 } 14

2004+

U, kV

1004+

T T
10 20
Lns

Fig. 6. Model I11: Output waveforms of a pulse with
tr = 2 ns at the input (curvel) in TLs of different

lengths: L =200 mm (2); L = 500mm (3),
and L =800 mm (4)
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Fig. 7. Model 111, nonlinear, anisotropic: Field intensity
representations of the E,, H, and Ez components in a
‘triangular’ pulse form

The relaxation parameter « in (2) equals « = 0.1. The
results obtained in the numerical experiment with
Ho =30 KA/m; U = 200 kV; tpos= 5ns, and tr = 2 ns
(an initially broad leading edge) are given in Fig. 6 and
Fig. 7. Once again, the pulse voltages estimated at
several locations within the NLTL reveal a noticeable
growth in amplitude, admittedly as a result of
interaction between the now coupled linear eigenmodes.
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Also, the oscillation period seems shorter than in the
case of Model II. In our view, this may be evidence for
involvement of a different, higher-order waveguide
mode matched with a small number of frequency
components from the ‘quasi-TEM’ wave packet. The
‘quasi-TEM” mode is noticeably dispersive at higher
frequencies, hence frequency-selective as for getting in
synchronism with other modes.

CONCLUSIONS

The propagation of a short current pulse through a
coaxial transmission line that involves a section
partially filled with a ferromagnetic material has been
analyzed numerically to clarify the role of different
physical effects in converting the pulse into quasi-
monochromatic radio frequency oscillations. The
analysis was performed within three particular models
which allowed treating separately the basic effects
potentially responsible for the appearance of the
oscillations and their amplification and/or decay along
the line. Contrary to a widely shared concept, the central
frequency of the wideband oscillations is not always
associated with the magnetic moment’s precession in
the ferrite. Depending on the total diameter of the
coaxial waveguide, size of the ferrite core, transverse
non uniformity of the filling and its electric and
magnetic  parameters, the oscillations may be
represented by various eigenmodes in the line with their
specific frequencies and dispersion laws.
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KBA3BUTAPMOHHWYECKHE OCHALISINUA B KOAKCUAJIbHOM JIMHUU
C HAMATTHUYEHHbBIM ®EPPUTOM

C.IO. Kapenun, B.b. Kpacosuuxuii, H.H. Mazoa, B.C. Myxun, B.I'. Cunuyotn

PaccmatpuBaetcs  (hopmupoBaHue

paano4acTOTHBIX

KBa3UMOHOXPOMATUYICCKUX OCL[I/IJ'IJ'IHL[I/Iﬁ B
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TOTIOJIOTUYECKH JIBYCBSI3HBIX MEPENAIONINX JIMHUAX, 3aII0JIHEHHBIX HaMarHWYeHHBIM (peppHUTOM, IOJ BO3JEH-
CTBHEM KOPOTKOTO 3JICKTPHYECKOTO MMIyibca 0e3 Hecyleil yacToTel. YacToTa W aMIUIMTYAa BO30Y)KZaeMbIX
OCLWJULLIMN OTIPEIENSIFOTCSl ANCTIEPCHOHHBIMI M HEJTMHEHHBIMU XapaKTePUCTHKAMHU JIMHUU, KOTOPbIE 3aBHCAT
OT Pa3MepOB M F€OMETPUH CaMOH JIMHWY, a TaKKe COOCTBEHHBIX TUCIICPCHOHHBIX CBOMCTB ()eppuTa U CIOUCTOH
CTPYKTYPBI 3aII0JHEHHsI. 3aBHCHMOCTH NMapaMeTPOB OCIIUISIIIAI OT XapaKTEPUCTHK CUCTEMBI, YCTAHOBJICHHBIE B
psifie SKCIIEPUMEHTOB, BOCIPOM3BEICHB! B UHCIICHHBIX MOJENAX, KOTOPHIE Pa3/eNbHO YYUTHIBAIOT yKa3aHHbBIE
XapaKTePUCTUKH.

KBA3BITAPMOHIYHI OCHUAJAIII B KOAKCIAJIBHINM JIIHIi 3 HAMATHIYEHUM ®EPUTOM
C.IO. Kapenin, B.b. Kpacosuuyvkui, 1.1. Mazoa, B.C. Myxin, B.I'. Ciniyun

PosrasHyTO (opMyBaHHS pPaniodacTOTHUX KBAa3iMOHOXPOMATHYHWX OCHWJIAIIN TiJ BIUIMBOM KOPOTKOTO
€JIEKTPUYIHOTO IMIyNbCy 0€3 Hecydoi 4acTOTH B TOTOJOTIYHO JBO3B’SA3HMX JIHIAX Tepeaadi, 10 3almoBHEHI
HamarHiueHUM ¢eputoM. YacToTa i aMIUTITy[a OCHWIIALIN, 10 30YIKYIOTHCS, BU3HAUYCHI TUCTIEPCIHHUME Ta
HENHIMHAMH XapaKTepUCTUKaMM JIiHil, IO 3ajexaTh Bif ii po3MmipiB Ta TeoMeTpii, a TaKoX BIaCHUX
JUCTIEPCIHHUX BIIACTHBOCTEH (epuTy Ta mapyBaToi CTPYKTYpH 3allOBHEHHS JiHil. 3aJeXHOCTI IMapaMeTpiB
OCHWJIALIN Bil XapaKTEPUCTHK CHCTEMH, 110 Oy BCTAHOBIICHI B HHA3III EKCIICPUMEHTIB, BIITBOPEHO B YHUCIOBUX
MOJIEJISIX, KOTPI BPaXOBYIOTh BKa3aHI XapaKTEPUCTUKU OKPEMO.

ISSN 1562-6016. BAHT. 2018. Ne6(118)



