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Electromagnetic analysis of a cylindrical gyrotron cavity with longitudinal wall corrugations is performed on the
basis of the approximate surface impedance model (SIM) and the full-wave spatial harmonic method (SHM). The
good convergence of SHM with respect to the number of spatial harmonics is shown. The perturbation approach is
extended to a cylindrical corrugated cavity with finite wall conductivity. With this approach attenuation of TE cavity
modes due to ohmic wall losses is investigated. For the TEgs mode, as an example, the number of corrugations,
which ensures reasonable accuracy of SIM, has been determined. For such number of corrugations, good agreement
between SIM and SHM is demonstrated for mode eigenvalue, eigenfields and attenuation.
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INTRODUCTION

Millimeter and submillimeter gyrotrons are subject of
much current interest due to widespread use in
spectroscopy, medical technologies, material processing,
space research and security systems. Among the
gyrotron applications, electron-cyclotron heating of
magnetically  confined plasma in  controlled
thermonuclear fusion devices remains the chief
application for more than half a century. For instance,
heating system of the International Thermonuclear
Experimental Reactor (ITER) requires more than twenty
170-GHz MW-class gyrotrons, which are now under
development worldwide. Of special concern are
gyrotrons operated at the second harmonics of cyclotron
frequency because of the lower requirement on operating
magnetic field. The weakness of such gyrotrons is the
competition between operating gyrotron mode and
parasitic modes excited at the first (fundamental)
cyclotron harmonic. This unwanted effect shortens the
operating region of harmonic gyrotrons, reduces their
efficiency and output power.

To avoid harmonic mode competition, one has to
suppress selectively the fundamental competing modes.
This can be done with distributed longitudinal
corrugations (slots) made on the cylindrical surface of a
gyrotron cavity [1]. The effect of corrugations on cavity
modes is frequency-dependent. For this reason,
parameters of the corrugated wall can be selected in such
a way as to increase losses of the fundamental (low-
frequency) competing modes relative to those of the
operating (high-frequency) mode.

Such beneficial effect of corrugations has been
demonstrated in [1] on the basis of the approximate
surface impedance model (SIM), which is commonly
used in the analysis of RF structures with densely-
spaced periodic corrugations. According to this model,
the corrugated wall is approximated by a smooth
cylindrical surface with averaged (effective) anisotropic
impedance, which depends on the corrugation
parameters and mode frequency. The widely accepted
criterion of SIM validity is as follows [2]:

N >2|m|, (1)
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where N is the number of corrugations, m is the azimuth
mode index.

In [1], the number of corrugations has been selected
large enough (N =20) to fulfill the condition (1) for
the operating TEge mode (m=28) under consideration.
Despite this, results of SIM appear to be incorrect in this
case. This has been demonstrated in [3] and is explained
by the strong coupling between azimuthal space
harmonics of the corrugated gyrotron cavity [4]. This
coupling is ignored in [1]. Following [4], alternative
criterion of SIM validity was used in [3]

N >|m[+ x, )
where y is the mode eigenvalue.

The mode eigenvalue y always exceeds |m]|.

Therefore, when compared to (1), condition (2) is valid
for a larger number of corrugations N . Reasonable
accuracy of SIM calculations for the TEsg mode of [1]
was shown in [3] in the case of increased N subject to
(2).

The TEsg mode is high-order mode (|m| << y). For

such modes, criterion (2) yields large number (about 45)
of corrugations, which are difficult to fabricate.
Therefore, of interest are modes with lower mode
eigenvalues y. An example is the TEg3 mode [5, 6]. Our
purpose is to investigate the validity of the surface
impedance model for this mode. For this purpose we will
use the full-wave rigorous approach known as spatial
harmonics method (SHM). In [3], this method was
applied to study the eigenvalue and eigenfields of a
gyrotron cavity made from the perfect electric conductor.
However, it is known that for a corrugated gyrotron
cavity the ohmic wall losses can be extremely high [1, 7]
and thus can distinctly affect gyrotron performance [8].
For this reason, our purpose is also to take into account
the finite conductivity of the gyrotron cavity and to
investigate effect of the ohmic wall losses on attenuation
of TE cavity modes.

1. MATHEMATICAL MODEL

Consider TE mode of a circular waveguide with
longitudinal wall corrugations. The transverse cross-
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section of the waveguide is shown in Fig. 1. First,
assume that the waveguide conductivity o is infinitely
high.

The components of the mode field are expressed in
terms of the membrane function ¥, which is
proportional to exp{-iwt+ik,z} and satisfies the wave
(Helmholtz) equation:

(A, +k?)w=0 (3)
with the Dirichlet boundary condition on the contour
oS of the waveguide cross section:

oY

—=0, 4

p (4)
where @ is the mode frequency, k, is the longitudinal
wavenumber, k* =k*—k?, k* = @’ ¢, , vector n is the
outward normal to the contour oS .

s

Fig. 1. Transverse cross section of a circular waveguide
with longitudinal wall corrugations

To solve the eigenvalue problem (3) and (4), the
full-wave spatial harmonics method [3, 4] is used. In
this method, the waveguide cross-section is divided into
two regions (see Fig. 1). The membrane function ¥ in
regions 1 and 2 is represented as a superposition of the
space Bloch and Fourier harmonics, respectively. The
number of harmonics under consideration equals 2Ng+1
for Bloch harmonics and Ne+1 for Fourier harmonics.
The membrane function ¥ (the field component H,)
and its derivative dW¥/dr (the field component E,)
must be continuous at the interface between adjacent
regions. This condition yields characteristic equation for
the mode eigenvalues y =Kk R, of the corrugated
waveguide [3]. These eigenvalues can then be used to
determine the membrane functions and the
electromagnetic fields of TE modes. The results of SIM
can be obtained in the extreme case of N; =N_ =0.

Let us next take into account the finite conductivity
o of the waveguide wall and its effect on the attenuation
of TE guiding modes. Mode attenuation in the
imperfectly conducting waveguide can be determined
by the perturbation approach [1, 9], which requires the
skin depth & =./2/ww,c be much lower than the

wavelength A =2z/k . According to this approach, the
complex longitudinal wavenumber of TE mode is
expressed as follows:
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In the case of a circular waveguide with longitudinal
wall corrugations the high accuracy of the perturbation
approach was shown in [7]. However, investigations in
[7] are based on the approximate surface impedance
model and therefore need to be checked. In the next
section, we will examine the results of SIM for
eigenvalues, fields and mode attenuation of TE modes.
As an example, TEgs mode with frequency of about
400 GHz will be considered [5, 6].

2. COMPARATIVE STUDY OF SHM AND
SIM

Consider a corrugated waveguide with the following
parameters: N=20, Ro=0.215cm, ¢, /os =0.5. Fig. 2

shows eigenvalue of the TEgs mode (m=8) as a
function of the corrugation depth d. The well-known
criterion (1) of SIM validity is fulfilled in the case of
N=20. Despite this, results of SIM deviate widely from
those followed from the rigorous spatial harmonics
method, especially for large values of the corrugation
depth d. This deviation is due to the coupling between
spatial Bloch harmonics [3].

To validate the obtained results, the convergence of
SHM must be clearly shown. Fig. 3 depicts the relative
error in evaluation of the mode eigenvalue y with
respect to the number of spatial harmonics in use:

;((Nh +1)—;((Nh)

¢, (Ny) = (6)
X ( N, )
where Ny=Ng=NE.
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Fig. 2. The eigenvalue y =k, R, as a function of the
corrugation depth d for the TEg 3 mode of a cylindrical
corrugated waveguide
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Fig. 3. Relative error of eigenvalue evaluation versus Ny
for the TEg 3 mode of a cylindrical waveguide with
longitudinal wall corrugations (d=0.02 cm)
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As expected, increase in number Ng and Ng of space
harmonics improves the accuracy of SHM calculations.
However, this makes the characteristic equation for TE
modes more cumbersome and the numerical
calculations more time-consuming. The reasonable
choice is Nn = 2. For such number of space harmonics,
relative error shown in Fig. 3 for SHM does not exceed
71074

The good convergence of the SHM calculations for
the field of the TEgsz mode can be clearly seen from
Fig. 4, which shows the mismatches of the field
components E, and H, at the interface r=Ro between
regions 1 and 2 (see Fig. 1). Value in bracket shown in
this figures (e.g. SHM (20)) denotes the number
Nhn=Ng=Ng of space harmonics under consideration. The
mismatches have the following form:

E(pl(RO’ )_E(/)Z(RO’
S, (0)= E(Zl(RO,(p) (p)I, )
_ Hzl(R0’¢’)_H22(R01¢)|
R BTN o

and decrease with increasing Np.
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at the groove aperture for different Ny (d=0.02 cm)
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The validity of the surface impedance model can be
expanded by increasing the number N of longitudinal
corrugations [3]. This effect is shown in Fig. 5, where

the mismatch between SIM and SHM results is
presented:
N)—
5Z(N):;{SHM( ) Xsim . ®)
Xsim

It can be seen that for the TEgs mode the
eigenvalues followed from SHM and SIM are close
enough as N > 30. Such number of corrugations is in
agreement with improved criterion (2) of SIM validity.
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Fig. 2 shows the mode eigenvalues calculated by
approximate and full-wave methods for N=30. The
agreement between them is seen to be reasonable
without regard to the depth d of corrugations.

Using the perturbation approach, we evaluate the
complex longitudinal wavenumber (5) for the TEss
mode of the corrugated gyrotron cavity with imperfectly
conducting walls. The walls are assumed to be made of
copper with reduced conductivity 2.9-107 S/m [1]. The
attenuation of the TEgsz mode of the corrugated
waveguide versus corrugation depth d is depicted in
Fig. 6 for different number of corrugations.
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Fig. 5. The mismatch J, (N) for eigenvalue of the TEg 3

mode of a corrugated waveguide versus the number of

corrugations N (d=0.02 cm)
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Fig. 6. Attenuation of the TEg3 mode of the imperfectly
conducting corrugated waveguide versus the
corrugation depth d for N=20 (a) and N=30 (b),
Rek,2=15 cm

From Fig. 6,a follows that the ohmic wall losses
evaluated by SIM and SHM are completely different for
the TEg3 mode of the corrugated cylindrical waveguide
with N =20 subject to (1). This is not particularly
surprising, since in this case SIM incorrectly determines
both the mode eigenvalue (see Fig. 2) and eigenfields
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(see Fig. 4), which affect the attenuation of the TEs3
mode (see (5)). The situation changes as the number of
corrugations is increased to 30. In this case criterion (2)
is fulfilled and SIM calculations appear to be fairly
accurate. As a result, SIM and SHM predict similar
attenuation for the TEs3; mode of the circular corrugated
waveguide made of cooper, if the number of
corrugations satisfies inequality N > 30 (see Fig. 6,b).

CONCLUSIONS

Electromagnetic properties of a cylindrical gyrotron
cavity with longitudinal wall corrugations have been
studied on the basis of the approximate SIM and the
rigorous SHM approaches. The good convergence of the
SHM calculations with respect to number of spatial
harmonics has been demonstrated for the mode
eigenvalue and eigenfields. The results of SHM have
been used to evaluate attenuation of TE modes due to
finite conductivity of the cavity material. For this
purpose, the perturbation approach has been extended to
circular waveguide with corrugated wall. It has been
shown that SIM may vyield inadequate results, even
though the number of corrugations N satisfies the well-
known criterion of SIM validity. To expand SIM
validity, this number must be increased. For the TEg;s
mode, as an example, the required value of N has been
determined. It has been demonstrated that for such
number of corrugations SHM and SIM agree closely in
eigenvalues, eigenfields and attenuation of the TEss
mode.
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COBCTBEHHBIE 3HAYEHUA 1 COBCTBEHHBIE TOJIA TO®PUPOBAHHOI'O PE3OHATOPA
I'MPOTPOHA C MTPOBOJAIUMU CTEHKAMU

T.U. Tkaueea, B.U. Il]epounun, B.H. Tkauenko

Ha ocHOBe mpuOIMKCHHON MOBEPXHOCTHOH wumnemaHcHoir wmoxenun (SIM) wu  crpororo merona
IOPOCTPAaHCTBEHHBIX TapMOHMK (SHM) mpoBeseH 3IeKTPOMArHUTHBIN aHAN3 IMIXHIPHYECKOTO PE30HATOpa
THPOTPOHA ¢ MPOAONBHBIMU rodpamu. [lokasana xopoiias cxoauMocth Metoga SHM ¢ yBenuueHueM 4ywmcia
MPOCTPAHCTBEHHBIX TapMOHHMK. Teopus BoO3MyIIeHHH o0000IIeHa Ha ciiydaid To(QpUpPOBaHHOTO pe30HATOpa
THPOTPOHA C KOHEYHOH MPOBOAMMOCTBIO cTeHOK. C ee TOMOIIpI0 UccienoBaHo 3aTyxanue TE-mon pesonaropa B
pe3ynbpTaTe OMHYECKHX TIOTeph B CTeHKaX. B kauecTBe mpumepa, it Moabl TEg3 onpeneneHo KOImdecTBO TOQpoB,
obecreunBaromiee 10CcTaTOYHy0 TO9HOCTE SIM. [l Takoro koimdecTBa rogpoB MPOJEMOHCTPHPOBAHO XOPOIIIEe
cornacue pacyetoB SIM u SHM 115t coOCTBEHHOTO 3HaYCHUS MOIBI, €€ COOCTBEHHBIX IMOJICH U 3aTyXaHUsI.

BJIACHI 3BHAYEHHA TA BJIACHI ITIOJIA TO®POBAHOI'O PE3OHATOPA T'TPOTPOHA
3 MPOBIIHUMH CTIHKAMMUA

T.1. Tkauoea, B.1. Il]ep6inin, B.I. Tkauenko

Ha ocHoBi HabmmxeHoi moBepxHeBoi iMmenancHoi moxeni (SIM) Ta cTpororo MeToay MpOCTOPOBUX T'apMOHIK
(SHM) mpoBeneHO eneKTpOMarHiTHHH aHai3 HMTIHAPUYHOTO PE30HATOpa TipOTPOHY 3 IO3J0BXKHIMHU TO(ppamMu.
ITokazano noOpy 30ixkHicTe Meroxy SHM 31 30iIbIIEHHSM YHCIa TPOCTOPOBHX TapMOHIK. Teopito 30ypeHb
y3araJlbHeHO Ha BUTQJIOK rO(ppOBaHOTO PE30HATOpA TIPOTPOHY 3 KIHIIEBOIO MPOBIAHICTIO CTIHOK. 3 ii JOMOMOTOIO
nociipkeHo sracaHds TE-Mox pe3oHaTopa B pe3ysibTaTi OMIYHHMX BTpar y cTiHKax. SIk mpuxian, ans moau TEgs
BU3HAYEHO KUIBKICTb ro¢piB, mo 3abesneuye pocraTHio TouHicTh SIM. J[lisg Takoi KimbKoOCTi ro¢pis
MPOJIEMOHCTPOBAHO 100py 3roay po3paxyHKiB SIM ta SHM s BiacHOTro 3Ha4eHHS MOAM, i BIACHUX MOJIB Ta
3aracaHHsl.
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