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Electromagnetic analysis of a cylindrical gyrotron cavity with longitudinal wall corrugations is performed on the 

basis of the approximate surface impedance model (SIM) and the full-wave spatial harmonic method (SHM). The 

good convergence of SHM with respect to the number of spatial harmonics is shown. The perturbation approach is 

extended to a cylindrical corrugated cavity with finite wall conductivity. With this approach attenuation of TE cavity 

modes due to ohmic wall losses is investigated. For the TE8,3 mode, as an example, the number of corrugations, 

which ensures reasonable accuracy of SIM, has been determined. For such number of corrugations, good agreement 

between SIM and SHM is demonstrated for mode eigenvalue, eigenfields and attenuation.  

PACS: 84.40.-x, 84.40.Ik, 52.35.Hr 

 

INTRODUCTION  

Millimeter and submillimeter gyrotrons are subject of 

much current interest due to widespread use in 

spectroscopy, medical technologies, material processing, 

space research and security systems. Among the 

gyrotron applications, electron-cyclotron heating of 

magnetically confined plasma in controlled 

thermonuclear fusion devices remains the chief 

application for more than half a century. For instance, 

heating system of the International Thermonuclear 

Experimental Reactor (ITER) requires more than twenty 

170-GHz MW-class gyrotrons, which are now under 

development worldwide. Of special concern are 

gyrotrons operated at the second harmonics of cyclotron 

frequency because of the lower requirement on operating 

magnetic field. The weakness of such gyrotrons is the 

competition between operating gyrotron mode and 

parasitic modes excited at the first (fundamental) 

cyclotron harmonic. This unwanted effect shortens the 

operating region of harmonic gyrotrons, reduces their 

efficiency and output power.  

To avoid harmonic mode competition, one has to 

suppress selectively the fundamental competing modes. 

This can be done with distributed longitudinal 

corrugations (slots) made on the cylindrical surface of a 

gyrotron cavity [1]. The effect of corrugations on cavity 

modes is frequency-dependent. For this reason, 

parameters of the corrugated wall can be selected in such 

a way as to increase losses of the fundamental (low-

frequency) competing modes relative to those of the 

operating (high-frequency) mode. 

Such beneficial effect of corrugations has been 

demonstrated in [1] on the basis of the approximate 

surface impedance model (SIM), which is commonly 

used in the analysis of RF structures with densely-

spaced periodic corrugations. According to this model, 

the corrugated wall is approximated by a smooth 

cylindrical surface with averaged (effective) anisotropic 

impedance, which depends on the corrugation 

parameters and mode frequency. The widely accepted 

criterion of SIM validity is as follows [2]: 

 2N m , (1) 

where N is the number of corrugations, m is the azimuth 

mode index.  

In [1], the number of corrugations has been selected 

large enough ( 20N  ) to fulfill the condition (1) for 

the operating TE8,9 mode ( 8m  ) under consideration. 

Despite this, results of SIM appear to be incorrect in this 

case. This has been demonstrated in [3] and is explained 

by the strong coupling between azimuthal space 

harmonics of the corrugated gyrotron cavity [4]. This 

coupling is ignored in [1]. Following [4], alternative 

criterion of SIM validity was used in [3] 

 N m   , (2) 

where χ is the mode eigenvalue.  

The mode eigenvalue χ always exceeds m . 

Therefore, when compared to (1), condition (2) is valid 

for a larger number of corrugations N . Reasonable 

accuracy of SIM calculations for the TE8,9 mode of [1] 

was shown in [3] in the case of increased N  subject to 

(2).  

The TE8,9 mode is high-order mode ( m   ). For 

such modes, criterion (2) yields large number (about 45) 

of corrugations, which are difficult to fabricate. 

Therefore, of interest are modes with lower mode 

eigenvalues χ. An example is the TE8,3 mode [5, 6]. Our 

purpose is to investigate the validity of the surface 

impedance model for this mode. For this purpose we will 

use the full-wave rigorous approach known as spatial 

harmonics method (SHM). In [3], this method was 

applied to study the eigenvalue and eigenfields of a 

gyrotron cavity made from the perfect electric conductor. 

However, it is known that for a corrugated gyrotron 

cavity the ohmic wall losses can be extremely high [1, 7] 

and thus can distinctly affect gyrotron performance [8]. 

For this reason, our purpose is also to take into account 

the finite conductivity of the gyrotron cavity and to 

investigate effect of the ohmic wall losses on attenuation 

of TE cavity modes. 

1. MATHEMATICAL MODEL 

Consider TE mode of a circular waveguide with 

longitudinal wall corrugations. The transverse cross-
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section of the waveguide is shown in Fig. 1. First, 

assume that the waveguide conductivity σ is infinitely 

high.  

The components of the mode field are expressed in 

terms of the membrane function Ψ, which is 

proportional to  exp zi t ik z   and satisfies the wave 

(Helmholtz) equation: 

  2 0k      (3) 

with the Dirichlet boundary condition on the contour 

S  of the waveguide cross section: 

 0
n





, (4) 

where   is the mode frequency, zk  is the longitudinal 

wavenumber, 2 2 2

zk k k   , 2 2

0 0k    , vector n is the 

outward normal to the contour S . 
 

 

Fig. 1. Transverse cross section of a circular waveguide 

with longitudinal wall corrugations 
 

To solve the eigenvalue problem (3) and (4), the 

full-wave spatial harmonics method [3, 4] is used. In 

this method, the waveguide cross-section is divided into 

two regions (see Fig. 1). The membrane function Ψ in 

regions 1 and 2 is represented as a superposition of the 

space Bloch and Fourier harmonics, respectively. The 

number of harmonics under consideration equals 2NB+1 

for Bloch harmonics and NF+1 for Fourier harmonics. 

The membrane function Ψ (the field component zH ) 

and its derivative d dr  (the field component E ) 

must be continuous at the interface between adjacent 

regions. This condition yields characteristic equation for 

the mode eigenvalues 0k R  of the corrugated 

waveguide [3]. These eigenvalues can then be used to 

determine the membrane functions and the 

electromagnetic fields of TE modes. The results of SIM 

can be obtained in the extreme case of 0B FN N  . 

Let us next take into account the finite conductivity 

σ of the waveguide wall and its effect on the attenuation 

of TE guiding modes. Mode attenuation in the 

imperfectly conducting waveguide can be determined 

by the perturbation approach [1, 9], which requires the 

skin depth 
02    be much lower than the 

wavelength 2 k  . According to this approach, the 

complex longitudinal wavenumber of TE mode is 

expressed as follows: 
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In the case of a circular waveguide with longitudinal 

wall corrugations the high accuracy of the perturbation 

approach was shown in [7]. However, investigations in 

[7] are based on the approximate surface impedance 

model and therefore need to be checked. In the next 

section, we will examine the results of SIM for 

eigenvalues, fields and mode attenuation of TE modes. 

As an example, TE8,3 mode with frequency of about 

400 GHz will be considered [5, 6]. 

2. COMPARATIVE STUDY OF SHM AND 

SIM  

Consider a corrugated waveguide with the following 

parameters: N=20, R0=0.215 cm, 0.5L S   . Fig. 2 

shows eigenvalue of the TE8,3 mode ( 8m  ) as a 

function of the corrugation depth d. The well-known 

criterion (1) of SIM validity is fulfilled in the case of 

N=20. Despite this, results of SIM deviate widely from 

those followed from the rigorous spatial harmonics 

method, especially for large values of the corrugation 

depth d. This deviation is due to the coupling between 

spatial Bloch harmonics [3].  

To validate the obtained results, the convergence of 

SHM must be clearly shown. Fig. 3 depicts the relative 

error in evaluation of the mode eigenvalue χ with 

respect to the number of spatial harmonics in use: 

  
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where Nh=NB=NF. 

 

 
Fig. 2. The eigenvalue 0k R  as a function of the 

corrugation depth d for the TE8,3 mode of a cylindrical 

corrugated waveguide 

 
Fig. 3. Relative error of eigenvalue evaluation versus Nh 

for the TE8,3 mode of a cylindrical waveguide with 

longitudinal wall corrugations (d=0.02 cm) 
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As expected, increase in number NB and NF of space 

harmonics improves the accuracy of SHM calculations. 

However, this makes the characteristic equation for TE 

modes more cumbersome and the numerical 

calculations more time-consuming. The reasonable 

choice is Nh = 2. For such number of space harmonics, 

relative error shown in Fig. 3 for SHM does not exceed 

7·10-4. 
The good convergence of the SHM calculations for 

the field of the TE8,3 mode can be clearly seen from 
Fig. 4, which shows the mismatches of the field 
components Eφ and Hz at the interface r=R0 between 
regions 1 and 2 (see Fig. 1). Value in bracket shown in 
this figures (e.g. SHM (20)) denotes the number 
Nh=NB=NF of space harmonics under consideration. The 
mismatches have the following form: 
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and decrease with increasing Nh. 

 

 

 
Fig. 4. The field mismatches  

E  (a) and  
zH  (b) 

at the groove aperture for different Nh (d=0.02 cm) 

 

The validity of the surface impedance model can be 

expanded by increasing the number N of longitudinal 

corrugations [3]. This effect is shown in Fig. 5, where 

the mismatch between SIM and SHM results is 

presented: 

  
 SHM SIM

SIM

N
N


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
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It can be seen that for the TE8,3 mode the 

eigenvalues followed from SHM and SIM are close 

enough as N > 30. Such number of corrugations is in 

agreement with improved criterion (2) of SIM validity. 

Fig. 2 shows the mode eigenvalues calculated by 

approximate and full-wave methods for N=30. The 

agreement between them is seen to be reasonable 

without regard to the depth d  of corrugations. 

Using the perturbation approach, we evaluate the 

complex longitudinal wavenumber (5) for the TE8,3 

mode of the corrugated gyrotron cavity with imperfectly 

conducting walls. The walls are assumed to be made of 

copper with reduced conductivity 2.9·107 S/m [1]. The 

attenuation of the TE8,3 mode of the corrugated 

waveguide versus corrugation depth d is depicted in 

Fig. 6 for different number of corrugations. 

 

 
Fig. 5. The mismatch δχ (N) for eigenvalue of the TE8,3 

mode of a corrugated waveguide versus the number of 

corrugations N (d=0.02 cm) 

 

 
Fig. 6. Attenuation of the TE8,3 mode of the imperfectly 

conducting corrugated waveguide versus the 

corrugation depth d for N=20 (a) and N=30 (b), 

Rekz
2=15 cm-2 

 

From Fig. 6,a follows that the ohmic wall losses 

evaluated by SIM and SHM are completely different for 

the TE8,3 mode of the corrugated cylindrical waveguide 

with N = 20 subject to (1). This is not particularly 

surprising, since in this case SIM incorrectly determines 

both the mode eigenvalue (see Fig. 2) and eigenfields
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(see Fig. 4), which affect the attenuation of the TE8,3 

mode (see (5)). The situation changes as the number of 

corrugations is increased to 30. In this case criterion (2) 

is fulfilled and SIM calculations appear to be fairly 

accurate. As a result, SIM and SHM predict similar 

attenuation for the TE8,3 mode of the circular corrugated 

waveguide made of cooper, if the number of 

corrugations satisfies inequality N > 30 (see Fig. 6,b). 

CONCLUSIONS 

Electromagnetic properties of a cylindrical gyrotron 

cavity with longitudinal wall corrugations have been 

studied on the basis of the approximate SIM and the 

rigorous SHM approaches. The good convergence of the 

SHM calculations with respect to number of spatial 

harmonics has been demonstrated for the mode 

eigenvalue and eigenfields. The results of SHM have 

been used to evaluate attenuation of TE modes due to 

finite conductivity of the cavity material. For this 

purpose, the perturbation approach has been extended to 

circular waveguide with corrugated wall. It has been 

shown that SIM may yield inadequate results, even 

though the number of corrugations N satisfies the well-

known criterion of SIM validity. To expand SIM 

validity, this number must be increased. For the TE8,3 

mode, as an example, the required value of N has been 

determined. It has been demonstrated that for such 

number of corrugations SHM and SIM agree closely in 

eigenvalues, eigenfields and attenuation of the TE8,3 

mode. 
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СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ПОЛЯ ГОФРИРОВАННОГО РЕЗОНАТОРА 

ГИРОТРОНА С ПРОВОДЯЩИМИ СТЕНКАМИ 

Т.И. Ткачева, В.И. Щербинин, В.И. Ткаченко 

На основе приближенной поверхностной импедансной модели (SIM) и строгого метода 

пространственных гармоник (SHM) проведен электромагнитный анализ цилиндрического резонатора 

гиротрона с продольными гофрами. Показана хорошая сходимость метода SHM с увеличением числа 

пространственных гармоник. Теория возмущений обобщена на случай гофрированного резонатора 

гиротрона с конечной проводимостью стенок. С ее помощью исследовано затухание ТЕ-мод резонатора в 

результате омических потерь в стенках. В качестве примера, для моды ТЕ8,3 определено количество гофров, 

обеспечивающее достаточную точность SIM. Для такого количества гофров продемонстрировано хорошее 

согласие расчетов SIM и SHM для собственного значения моды, ее собственных полей и затухания. 

ВЛАСНІ ЗНАЧЕННЯ ТА ВЛАСНІ ПОЛЯ ГОФРОВАНОГО РЕЗОНАТОРА ГІРОТРОНА  

З ПРОВІДНИМИ СТІНКАМИ 

Т.І. Ткачова, В.І. Щербінін, В.І. Ткаченко 

На основі наближеної поверхневої імпедансної моделі (SIM) та строгого методу просторових гармонік 

(SHM) проведено електромагнітний аналіз циліндричного резонатора гіротрону з поздовжніми гофрами. 

Показано добру збіжність методу SHM зі збільшенням числа просторових гармонік. Теорію збурень 

узагальнено на випадок гофрованого резонатора гіротрону з кінцевою провідністю стінок. З її допомогою 

досліджено згасання ТЕ-мод резонатора в результаті омічних втрат у стінках. Як приклад, для моди ТЕ8,3 

визначено кількість гофрів, що забезпечує достатню точність SIM. Для такої кількості гофрів 

продемонстровано добру згоду розрахунків SIM та SHM для власного значення моди, її власних полів та 

загасання. 


