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An algorithm of calculation of approximating functions, which establish the one-to-one correspondence between
the real coordinate mesh with arbitrary step and magnetic flux label in the whole plasma volume, was developed. It
allows one to calculate flux label along the lines of sight of the applied diagnostics and to define the probes locations
and RF antenna position in relation to the last closed magnetic surface. Moreover, now it is possible to provide fast
visualization of magnetic configuration during the experiment.
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INTRODUCTION

Calculation of the specific vacuum magnetic config-
uration of “Uragan-2M” torsatron using Nemov’s de-
composition of magnetic field potentials [1] takes few
minutes of PC processor time. Calculations with using
Biot — Savart law [2] take even more time. The results
of calculation of one configuration (60 toroidal cross-
sections) occupy about 250 Mb of memory storage. On-
line operation with such data arrays or calculation of
magnetic configuration during the experiment is hardly
possible. The principal objective of this work was to
develop the algorithm of calculation of approximating
functions, which establish the one-to-one correspond-
ence between the real coordinate ¥ mesh with arbitrary
step and magnetic flux label w in the whole plasma

volume.

1. THE ALGORITHM DESCRIPTION

Three coordinate systems which can be easily con-
nected each other were used in this work. These coordi-
nate systems are presented in Fig. 1.

The first coordinate system is the cylindrical one
with the axis along the main axis of the torus (R,¢,Z)
for initial calculations of magnetic field lines (Poincare
plots).

The second coordinate system is the “quasicylindri-
cal” one (p,@,z), which is connected with the magnetic
axis. It is necessary for intermediate calculations. Coor-
dinates P and z are defined as

£ =R =Ry ((0)! =27 —Zy ((P), 1)
here R, and z_.. are coordinates of the magnetic axis.

axis axis

Fig. 1. Coordinate systems: 1 — vacuum vessel;
2 —magnetic axis; 3 — last closed magnetic surface
(LCMS)

The third coordinate system (r,8,¢) is quasitoroidal
one, which is also connected with the magnetic axis

r=yp?+122, 9=arctan(z/p). )

As an input parameters, L = 34 magnetic surfaces con-
sisting of M = 400 poloidal points with N = 60 toroidal
cross-sections were calculated using method [1] and
used as example (Fig. 2). It should be noted that the
values of the set (L, M, N) may vary. Also, the magnetic
axis position in each of N cross-sections must be sup-
plied. The dependencies of R, and Z.;, on toroidal

angle ¢ are shown in Fig. 3. As can be clearly seen

from this figure, these dependencies are perfectly ap-
proximated by series of the form

Raxis (50) = Z(S)Vs COS(4S(/’)7 Z 5sis ((/’) = Zst Sin(45(/7)' 3)

The least squares method (LSA) was used to approx-
imate Vs and W;s. As it turned out, the averaged approxi-
mation error was of the order of 10°cmatS=7.
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Fig. 2. Poincare plots in three toroidal cross-sections separated by Ag = /8
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Fig. 3. Dependencies of R, (solid line) and
Z,s (dashed line) on toroidal angle

Hereinafter, each toroidal cross-section is indexed by
n (1 <n<N). Each magnetic surface is indexed by
I (1 <1< L). And each point at magnetic surface is in-
dexed by m’ (1 < m’ < M). All subsequent actions relate
to each magnetic surface and each toroidal cross-
section.

Unfortunately, input data R, .., and Z, ..., are dis-

tributed over magnetic surface irregularly in angle 9.
This makes the accurate approximation of magnetic
configuration impossible. In order to overcome this ob-
stacle, it is necessary to rearrange input data. First, set
R mn and Z, . was transformed into set p; v , and

Z;. . n- As it is seen from Fig. 4, p; v, and z;

depend on m almost periodically. This motivated the
expansion of py ., and z, ., into trigonometric se-

ries over m. To this purpose, dependencies of 9, , on ¢

were established (Fig. 5) and coefficients of linear re-
gressions @, , were defined.

15

z (cm)

-15

Fig. 4. Dependencies of py5 17 (solid line)
and z;5 17 (dashed line) onm

Finally, the values @, ,, were averaged over the toroidal

angle w,zZ{“a)m/N. These allowed to expand

P and z; o, into series
K k K kK o
pia(m)=3Ya, cos(m’a),k)+ Zb,’nsm(m’a),k),
k=0 k=1

K K
7, 1(m)= l(z_joc,‘f . cos(m’a),k)+ kz_‘,ldffn sin (m'a),k). 4)
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The value K = 11 was used to find coefficients by
LSA. The error of LSA in this case was under 10-? cm.
Then these series were used in order to recalculate sets
Pimn and z; ., atvalues &, , which are separated by

constant step A9=2z/M . Values of m'w,, corre-

sponding to these 9, were calculated from Eqgs. (2),

(4) iteratively with relative error ~ 10, New M = 128
was adopted and new poloidal index m = 1.2...128 K

(Fig. 6).
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Fig. 6. New set of input data in toroidal cross-section
n=15
After that set r, , , was calculated using new o

and 7, ,. An averaged radius was calculated as

N M
n=> Zﬁ,m,n/(M -N) and flux surface label y, was

n=lm=1

defined as y, =T, /F_ . Such definition provide y =0
at the magnetic axis and y =1 at the LCMS.
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Thus, on the rays, which started from magnetic axis in
toroidal cross-section n in poloidal direction mA%, the

one-to-one correspondence established between r,

and Vmon - Mon = rm,n('/’) and Ymn :l//m,n(r/ac)'
where a, is the vessel radius (see Fig. 7). This corre-
spondence was approximated like

Vina(F/2c)= 3 6, o(1/2c)

and
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Fig. 8. Coefficients of polynomial decomposition of y vs
poloidal angle for n = 15(f * — solid; f 2— dashed;
f 3 — dot and dashed lines)

As the calculations showed, | = 3 is sufficient for these
representations (Fig. 8).

I J K
V/m,n(r/ac"ng):Z X >h
i=1{ j=0Lk=0

i, j,k

rm,n(‘/”gl(p):acz z 2HT
i=1l j=0Lk=0
As the result, for the specific magnetic configuration
w(F) or F(y) completely defined by set of I - J - K
constants, which allow appropriate reconstructions dur-
ing less then 1 s PC time.

2. VERIFICATION OF THE ALGORITHM

In order to check the accuracy of the proposed algo-
rithm, the relative error in the calculations of r,, ,(y)

was defined for several values of m and n, see Fig. 9 for
example. The relative error of calculations turned out to
be less then 1073,

-4
8x10

0 0.25 05 075 1

Fig. 9. The relative error of calculations of r
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cos(4kgo)}cos(j.9)+ % L(E_ﬁi, j,ksin(4k¢)}sin(j,9)}(r/ac)i |

cos(4k(p):l cos(j9)+

Then, coefficients fnimn (see Fig. 8) and Fr:m
were expanded into series over 9:

: S I
fmn = 205 ' cos(j9)+ X.gy 'sin(j9),
j=0 j=L

. J ] J o~

Fn.n = 2Gr’ cos(j9)+ X.Gy ! sin(j9). ®)
j=0 j=1

At last, expansions over ¢ were fulfilled:

. K ;.
g" ()= hb 1K cos(ake)
k=0

. K_: .
g" (@)= =it K sin(ake)
K (©)
G )= TH" K cos(ake)

k=0

I K _:
G i) = A K sin(ake)

In these expansions J = 15 and K = 10 were accept-
ed. Combining together all expansions, following ex-
pressions were obtained Another verification of the ac-
curacy of the approximation was carried out by calculat-

ing 6= E-Vy/ . By definition, ¢ must be equal to zero.

In fulfilled calculations, it is of the order of 1073
(Fig. 10).

J=1 (7)
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J =
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Fig. 10. The relative error in equality I§~V¢// =0
for prescribed values of y

CONCLUSIONS

On an example of the U-2M torsatron it has been
shown that application of the developed in this paper
algorithm to the specific magnetic configuration allows
one to define completely w(r/a;) or r(y) by setof

I - J -K constants, which give appropriate reconstruc-
tions during less then 1 s PC time and occupy about
10 Kb of memory storage. The small volume of con-
sumed memory gives the possibility to calculate in ad-
vance the decompositions of the big number of the
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magnetic configurations. Then these decompositions
may be used for:
- calculations of y along the along the lines of

sight of the applied diagnostics;

- definition of probes locations and RF antenna po-
sition in relation to the last closed magnetic surface;

- procuring of the fast visualization of magnetic
configuration;

- definition of local parameters in transport or wave
codes, for example, in modeling of slow wave propaga-
tion in Wendelstein 7X.
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Fig. 11. Profile of the rotational transform

This algorithm may be used also for calculations of
the input parameters — rotational transform profile
(Fig. 11) and Furies decomposition of the LCMS - for
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Fig. 12. Reconstructed LCMS of torsatron U-2M
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BBICTPBI U TOYHBIN AJITOPUTM TPEXMEPHOI PEKOHCTPYKLIUA
MATHUTHbBIX HOBEPXHOCTEM B CTEJUIAPATOPAX

B. @ununnos, /I. I'pexos, B. Onegup

[IpexacrapneH ObICTPBIA U TOYHBIH AITOPUTM BBIYHUCIICHUSI AIIIIPOKCUMHUPYIOIINX (YHKIUHA, KOTOpPbIE YCTaHABIIU-
BalOT B3aMMHO OJHO3HAYHOE COOTBETCTBHE MEXIY NMPOCTPAHCTBEHHBIMU KOOPAMHATAMH B 00beMe IUIa3MBI U MET-
KO MarHWTHBIX MoBepxHOCTeH. C MOMOIIBI0 3TUX (PYHKIMI MOXKHO BBIYUCISATh 3HAYCHHE METKH MarHHUTHBIX TO-
BEPXHOCTEH BJIOJIb JIMHUHA 30HAMPOBAHMS PA3IUYHBIX JUArHOCTHUK, ONPEIEISITh IOJIOKEHHUE 30HI0B U MO3UIHIO
BU-anTeHH OTHOCHTENBHO KpaifHeH 3aMKHYTOH MarHUTHOH IMOBEpXHOCTH. boiee Toro, cTamo BO3MOXHEIM obectie-
YUTH OBICTPYIO BU3YATU3AIHIO MAarHUTHON KOH(UTYpAIlUN TOPCATPOHA BO BPEMs IIPOBEICHHS YKCIIEPIMEHTA.

IIBUJIKUI TA TOUHUI AJITOPUTM TPUBUMIPHOI PEKOHCTPYKIII
MATHITHUX IOBEPXOHb Y CTEJAPATOPAX

B. @ininnos, /1. I'pexos, B. Oneghip

Hageneno mBuakuii Ta TOYHUH alTOPUTM OOYHCIICHHS (QYHKIIN, IO allpOKCUMYIOTh MarHiTHI IOBEPXHI TopcaTt-
poHa. BoHH 3IHCHIOIOTE B3aEMHO OJJHO3HAYHY BiAITOBITHICTH MK MIPOCTOPOBUMH KOOPIMHATAMH B 00’ €Mi TUIa3MHU
Ta MO3HAYKOI0 MAarHiTHUX MIOBEPXOHb. 3a JIOTIOMOTOI0 IUX (YHKIIIH MOXHA OOYMCIIIOBATH 3HAYECHHS ITO3HAYKH Mar-
HITHUX TIOBEPXOHB B3/IOBXK JIiHIH 30HIYBaHHS Pi3HUX JIarHOCTUK, BU3HAYATH PO3TALIYBAaHHS 30H/IB Ta MOJIOKEHHS
BU-anTeH BiTHOCHO OCTaHHBOI 3aMKHYTOI MarHiTHOI MOBepxHi. BiIbII TOTO, CTaE MOXKIUBUM 3a0€3MIEUNTH IIBUAKY
Bi3yautizallito MarHiTHOI KOH(Irypamii TopcaTpoHa IiJ] yac MPOBEACHHS KCIIEPHMEHTY.
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