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Abstract. The purpose of this paper is to establish bounds on the rate of convergence of
the conjugate gradient algorithm when the underlying matrix is a random positive definite
perturbation of a deterministic positive definite matrix. We estimate all finite moments of
a natural halting time when the random perturbation is drawn from the Laguerre unitary
ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used
to analyze the expected iteration count in the framework of smoothed analysis, introduced
by Spielman and Teng (2001). The rigorous results are compared with numerical calculations
in several cases of interest.
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1 Introduction

It is conventional in numerical analysis to study the worst-case behavior of algorithms, though
it is often the case that worst-case behavior is far from typical. A fundamental example of this
nature is the behavior of LU factorization with partial pivoting. While the worst-case behavior
of the growth factor in LU factorization with partial pivoting is exponential, the algorithm
works much better in practice on ‘typical’ problems. The notion of smoothed analysis was
introduced by Spielman and his co-workers to distinguish between the typical-case and worst-
case performance for numerical algorithms in such situations (see [16, 18]). In recent work, also
motivated by the distinction between typical and worst case behavior, the authors (along with
P. Deift, S. Olver and C. Pfrang) investigated the behavior of several numerical algorithms with
random input [2, 14] (see also [15]). These papers differ from smoothed analysis in the sense that
‘typical performance’ was investigated by viewing the algorithms as dynamical systems acting on
random input. The main observation in our numerical experiments was an empirical universality
of fluctuations for halting times. Rigorous results on universality have now been established in
two cases — the conjugate gradient algorithm and certain eigenvalue algorithms [3, 4]. The work
of [3] presents a true universality theorem. The work [4] revealed the unexpected emergence of
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Tracy—Widom fluctuations around the smallest eigenvalue of LUE matrices in a regime where
universality emerges. Thus, the analysis of a question in probabilistic numerical analysis led to
a new discovery in random matrix theory.

Our purpose in this paper is to explore the connections between our work and smoothed
analysis. We show that the results of [4] extend to a smoothed analysis of the conjugate gradient
algorithm over strictly positive definite random perturbations (which constitute a natural class
of perturbations for the conjugate gradient algorithm). To the best of our knowledge, this is
the first instance of smoothed analysis for the conjugate gradient algorithm. More precisely,
the results of [4] are used to establish rigorous bounds on the expected value of a halting time
(Theorem 1.1 below). These bounds are combined with numerical experiments that show an
interesting improvement of the conjugate gradient algorithm when it is subjected to random
perturbations. In what follows, we briefly review the conjugate gradient algorithm, smoothed
analysis and the Laguerre unitary ensemble, before stating the main theorem, and illustrating
it with numerical experiments.

1.1 The conjugate gradient algorithm

The conjugate gradient algorithm is a Krylov subspace method to solve the linear system Ax = b

when A > 0 is a positive definite matrix. In this article, we focus on Hermitian positive definite

matrices acting on CV, though the ideas extend to real, symmetric positive definite matrices.
N

We use the ¢2 inner product on CV, (u,v);2 = 3 u;0;, and A > 0 means that A is Hermitian
i=1

and (u, Au)y2 > 0 for all u # 0. When A > 0, its inverse A~! > 0, and we may define the norms

Hu||fu = (u, Au) 2 and Hu||2 <u,A_1u>£2.

w—1 —

In this setting, the simplest formulation of the conjugate gradient algorithm is as follows [8, 10].
In order to solve Az = b, we define the increasing sequence of Krylov subspaces

Ky = span {b, Ab, ..., AF1b},

and choose the iterates {z1}32,, xo = 0, to minimize the residual r, = b — Az, in the w!

norm:

xp = argmin | Az — bl| -1, |[Azg — b||,-1 = min ||Az — b||,-1.
AT R €K,

Since A > 0, z € K for some £ < N (in our random setting it follows that Ky = CN with
probability 1), so that the method takes at most N steps in exact artithmetic!. However, the
residual decays exponentially fast, and a useful approximation is obtained in much fewer than N

steps. Let Apax and A\pin denote the largest and smallest eigenvalues of A and £ = Apax/Amin the
condition number. Then the rate of convergence in the ¢? and w~! norms is [7, Theorem 10.2.6]

k
It <2 (Y221 ol (1)

Since A is positive definite, we have

Amaxllel < (2, A7) n < A ll2llZ-

max min

n calculations with finite-precision arithmetic the number of steps can be much larger than N and this will
be taken into account in the numerical experiments in Section 1.4. The results presented here can be extended
to the finite-precision case but only in the limit as the precision tends to co using [8]. Tightening these estimates
remains an important open problem.
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Applying this estimate to (1.1) we find the rate of convergence of the residual in the £ norm

k
Irile <29 (Y221) ol (12

These rates of convergence provide upper bounds on the following e-dependent run times,
which we call halting times:

Te(A,b) = min{k‘: lIres1fle < e} ,
[I7o]l 2

Tw.e(A,b) = min {k: Il e} . (1.3)

I7ollw-1

Note that we have set zyp = 0 so that 7o = b (the estimates above hold for arbitrary z(). In
what follows, we will also assume that ||b]|,2 = 1, so that the definitions above simplify further.

1.2 Smoothed analysis

Our main results are a theorem (Theorem 1.1) along with numerical evidence to demonstrate
that the above worst-case estimates, can be used to obtain bounds on average-case behavior
in the sense of smoothed analysis. In order to state the main result, we first review two basic
examples of smoothed analysis [18], since these examples clarify the context of our work.

Roughly speaking, the smoothed analysis of a deterministic algorithm proceeds as follows.
Given a deterministic problem, we perturb it randomly, compute the expectation of the run-time
for the randomly perturbed problem and then take the maximum over all deterministic problems
within a fixed class. Subjecting a deterministic problem to random perturbations provides
a realistic model of ‘typical performance’, and by taking the maximum over all deterministic
problems within a natural class, we retain an important aspect of worst-case analysis. A para-
meter o2 (the variance in our examples) controls the magnitude of the random perturbation.
The final estimate of averaged run-time should depend explicitly on o2 in way that demonstrates
that the average run-time is much better than the worst-case. Let us illustrate this idea with
examples.

1.2.1 Smoothed analysis: The simplex algorithm

Assume A = (@y,as, ..., ay) is a deterministic matrix of size N x d, and j and z are deterministic
vectors of size N and d, respectively. Let T'(A,y, z) be the number of simplex steps required to
solve the linear program

maximize z'z, subject to Az <7,

with the two-phase shadow-vertex simplex algorithm.

We subject the data A and 7 to a random perturbation oA, and oy, where A and y have iid
normal entries with mean zero and standard deviation max; ||(¥;, @;)||. It is then shown in [19]
that the expected number of simplex steps is controlled by

E[T(A+0A,§+0y,z)] < P(1/o,N,d),

where P(a,b,c) is a polynomial. Thus, problems of polynomial complexity occupy a region of
high probability.
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1.2.2 Smoothed analysis: LU factorization without pivoting

Let A be an N x N non-singular matrix and consider computing its LU factorization, A = LU,
without partial pivoting. The growth factor of A, defined by

Ul
p(A) = =1,
1Al

may be exponentially large in the size of the matrix, as seen in the following classical example:

1 0 0 0 1 1 0 O 0 0]t o000 1
-1 1 0 0 1 -1 1 0 0 0/|01 00 2
A=|-1 -1 1 0 1|=|-1 -1 1 0 O0||0 0 1 0 4
-1 -1 -1 1 1 -1 -1 -1 1 0[]0 0 O 1 8
-1 -1 -1 -1 1 -1 -1 -1 -1 1|]0 0 0O O 16

Generalizing this example to all N, we see that p([l)_ = 2N=1/N. This is close to the worst-case
estimate of Wilkinson [22]. Now consider instead p(A+ o0 A) where the random perturbation A is
an N x N matrix consisting of iid standard normal random variables. One of the results of [16]
is

1 N(N+1)

P(p(A+0A) >1+1) < N (1.4)

Hence the probability that p(A + ocA) > 2¥~1/N is exponentially smalll The above estimate
relies on a tail bound on the condition number
_ 14.1n(1 + +/2(logt)/9
P(k(A+0A) > 1) < n (log £)/9n)

to

The example above may also be used to demonstrate exponential growth with partial pivoting.
However, to the best of our knowledge, there are no smoothed analysis bounds analogous to (1.4)
that include the effect of pivoting.

1.3 The main result

We now formulate a notion of smoothed analysis for the halting time of the conjugate gradient
algorithm. In order to do so, we must choose a matrix ensemble over which to take averages.
Since the conjugate gradient algorithm is restricted to positive definite matrices it is natural
to choose random perturbations that are also positive definite. The fundamental probability
measure on Hermitian positive definite matrices is the Laguerre unitary ensemble (LUE), or
Wishart ensemble, defined as follows. Assume N is a positive integer and o > — NN is another
integer. Let X be an N x (N + «) matrix of iid standard complex normal random variables?.
The Hermitian matrix W = X X* is an LUE matrix with parameter 1 + a/N.

The parameter o plays an important role in our work. The case o = 0 is critical in the
following sense. When —N < «a < 0, the random matrix W = X X* is positive semi-definite
and 0 is an eigenvalue of multiplicity —a with probability 1. In particular, the condition number
of W is infinite almost surely. On the other hand, when « > 0, the random matrix W is almost
surely strictly positive definite. When a = 0, Edelman [5] showed that the condition number
of W is heavy-tailed, and does not have a finite mean (see also [16] and the previous examples).
On the other hand, if o grows linearly with N, say A}l_r}nm a/N = p > 0, the leading-order

2A standard complex normal random variable is given by Z = X + 1Y where X and Y are independent real
normal random variables with mean zero and variance 1/2.
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asymptotics of the smallest eigenvalue of W, and thus the condition number, are described by
the Marcenko—Pastur distribution with parameter p. In particular, as N — oo the smallest
eigenvalue of W(NN)/(N + «) remains strictly separated from 0. In recent work with P. Deift, we
explored an intermediate regime a ~ 4¢N'/2, and established Tracy-Widom [21] fluctuations of
the smallest eigenvalue and the condition number (see [4, Theorems 1.1 and 1.3]). We further
showed numerically that the nontrivial fluctuations of the condition number are reflected in the
performance of the conjugate gradient algorithm on Wishart matrices in this regime. In this
article, we broaden our exploration of this intermediate regime, choosing

a=a(N)= L\/@NWJ for some 0 <~y <1/2. (1.5)

In order to formulate a notion of smoothed analysis for the conjugate gradient algorithm, we
must subject a deterministic positive-definite matrix A with ||A|| < 1 to a random perturbation
of the form o2H, where ||H|| = O(1), and then take the supremum over all A with ||A| < 1. It
turns out that the largest eigenvalue of W = X X* is approximately v = 4N +2a+ 2. Thus, our
implementation of smoothed analysis for the conjugate gradient algorithm involves estimating

sup  E[re(A + o2H,b)], sup  E[rpc(A+ o?H,b)], H=W/v,
420, [ 4]|<1 40, |[4]1<1

with explicit dependence on ¢ and . The factor o is used here so that o represents the scaling

of the variance of the entries of X. Our main result, proved in Section 3.2, is the following.

Theorem 1.1. Assume « satisfies (1.5) and € > 0. Let H = v 1 X X* where v = 4N + 2a + 2
and X is an N x (N + «) matriz of iid standard complex normal random variables. Then with

1\ 1
pe=2[(1+5 )= >0,
g C

we have the following estimates.

(1) Halting time with the (> norm:

sup  E[re(A+ o’H, b)j]
lAll<1,A>0

1 ; i
< EN](I_V)pZ,(log N1_7p026_1)3(1 +0(1)), as N — oo.
(2) Halting time with the weighted norm:

, 1. A ,
sup  Elr,(A+0%H,b)] < —.Nj(l_V)p],(log 2¢ 1) (1+0(1)), as N — oo.
IA]I<1, 420 2

(3) Successive residuals: For ry, = ri,(A+ o2H,b), the kth residual in the solution of (A +
o2H)x = b with the conjugate gradient algorithm

HTkJrl‘j:| ( 2 J
sup E[ Dl (1 ——2———(1+0(1))) , as N— oo,
AI<1, A>0 e’ peN1=7 + 1

where || - || is either || - |z or || - || p-1-
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Remark 1.2. The parameters (y,0) control the effect of the random perturbation in very
different ways. In Lemma 3.4 we precisely describe how increasing v leads to better conditioned
problems. For all 0 < v < 1/2 (and conjecturally for v > 1/2) the asymptotic size of the
expectation and the standard deviation of 7. is O(N'77log N), meaning that the conjugate
gradient algorithm will terminate before its maximum of N iterations with high probability. For
instance, assume « satisfies (1.5) with ¢ = 2. We use Markov’s inequality and Theorem 1.1 for
j > 0 and sufficiently large® N to obtain

sup IP’(TE (A +o%H, b) > Nl_)‘)
lA]<1, A>0

< (14t j/zN‘j(W—M(l [AN' (1 4 072) 2 1))
S zjj ; og g € } .

Hence for A < v and j large, this probability decays rapidly.

Remark 1.3. We only prove Theorem 1.1 for LUE perturbations in the range 0 < v < 1/2.
However, we expect Theorem 1.1 to hold for all 0 < v < 1, as illustrated in the numerical
experiments below. In order to establish Theorem 1.1 in the range % < v < 1itis only

necessary to establish Lemma 3.4 for these values of «v. This will be the focus of future work.

Remark 1.4. Theorem 1.1 provides aymptotic control on the jth moments of halting times
for each j. This formally suggests that one may obtain a bound on an exponential generating
function of the halting times above. However, we cannot establish this because the condition
number x has only O(«) moments at any finite N.

Remark 1.5. By restricting attention to positive definite perturbations we ensure that the
conjugate gradient scheme is always well-defined for the perturbed matrix A + ¢2H. This also
allows the following simple, but crucial lower bound, on the lowest eigenvalue of the perturbed
matrix

>\min (A + O-QH) > )\rnin(A)a

which then yields an upper bound on the condition number of the perturbed matrix x(A-+c?H).
We have not considered the question of random perturbations of A that are Hermitian, but not
necessarily positive definite. Such perturbations are more subtle since they must be scaled
according to the smallest eigenvalue of A. Nor have we considered the question of whether such
perturbations provide good ‘real-life’ models of a smoothed analysis of the conjugate gradient
scheme. Nevertheless, the above framework shares important features with [16] in that the
problem is “easier” for large values of o and the worst case of the supremum over the set
{A >0, ||A]| <1} can be realized at singular A.

1.4 Numerical simulations and the accuracy of the estimates

In this section we investigate how close our estimates on E[r.(A + 02 H,b)] are to the true value
of the expectation. We present numerical evidence that in the “c = c0” (also obtained by A =0
and o = 1) case the estimates are better for larger values of 7, and continue to hold beyond
the v = 1/2 threshold of Theorem 1.1. We also give examples for specific choices of A and
demonstrate that, as expected, the actual behavior of the conjugate gradient algorithm is much
more complicated for A # 0.

Because the conjugate gradient algorithm is notoriously affected by round-off error, we adopt
the following approach to simulating 7.(M,b), M = A + o2 H with finite-precision arithmetic:

3Here N should be sufficiently large so as to make the error term in Theorem 1.1 less than unity.
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e In exact arithmetic, the conjugate gradient algorithm applied to Mz = b, M = U*AU,
with initial guess x¢g = 0, has the same residuals as the algorithm applied to Ay = U*b.
Indeed, if zj, satisfies ||Mzy — bl[,,-1 = m’icn | Mz — b||,-1 then for y = Uz, y, = U*zy,

IS\

HMack—bHQW_1 = (Mxp—b,xp—x) = (Ayr —U*b, yx —y). Thus, defining HH?I)_I = (A1)
we have

[Ayr, — Ub[| -1 = min [[Ay — Ub| 51,

yeKk

Ky = U*Ki = span {U*b, AU*b, ..., A" 1U*b}.

This is an exact characterization of the iterates of the conjugate gradient algorithm applied
to Ay = U"b.

e Sample a matrix H = X X*/v and compute the spectral decomposition A+0?H = UAU*.
Sample a vector b with iid Gaussian entries and normalize? it, so that ||b||,2 = 1. Prior to
normalization the entries of b are iid Gaussian, thus b is uniformly distributed on the unit
sphere in (CV,¢?). Note that if A =0, M = 0?H is a Wishart matrix, we find that U*b
is also uniformly distributed on the unit sphere in (CV,¢?). That is, b and U*b have the
same law.

e Applying the diagonal matrix A to a vector is much less prone to round-off error since it
involves only N multiplications, as opposed to N2 multiplications for the dense matrix H.
Thus, to minimize round-off error we compute the iterates of the conjugate gradient algo-
rithm applied to Ay = b with A as above, and b uniformly distributed on the unit sphere
in (CN,¢%). As noted above when A = 0, these iterates have the same law as those of
Hz = b when b and b have the same law, and when H is a Wishart matrix. By computing
the number of iterations necessary (in high-precision arithmetic) so that ||yxi1/e2 <€, we
obtain one sample of the halting time 7.(M,b) without significant round-off errors.

1.4.1 The “oc = c0” case

Now, we investigate how close our estimates on E[7.(H,b)] (which can be obtained from Theo-
rem 1.1 by formally sending o — o). In Figs. 1, 2 and 3 we plot the sample mean 7; over 1,000
samples as IV increases. Throughout our numerical experiments b is taken to be iid uniform
on [—1,1] and then normalized to be a unit vector. With this consideration, it is clear that
the estimate in Theorem 1.1 is good for v = 2/3 (despite the fact that we have not proved it
holds in this case), fairly tight for v = 1/2 and not as good for v = 1/3. These calculations
demonstrate that the worst case bounds (1.2) and (1.1) provide surprisingly good estimates in
a random setting. Further, they appear to be exact in the sense that Theorem 1.1 predicts the
correct order of the expectation of 7. as N — oo.
Comparing these numerical results with Theorem 1.1 we conclude that:

(1) Tail estimates on the condition number derived from tail estimates of the extreme eigen-
values, can be used to obtain near optimal, and in some cases optimal, estimates for the
expected moments of the condition number.

(2) Inlight of rigorous results and heuristic expectations of universality in random matrix theory,
we find it reasonable to expect Lemma 3.4 and Theorem 1.1 to hold for more general real
and complex sample covariance matrices, not just LUE.

(3) The worst-case estimates given in (1.1) and (1.2) produce effective bounds on the moments
of the halting time, and predict the correct order of growth of the mean as N — oco. The

4Choosing b in this way is convenient for these manipulations but it is not necessary. We choose a non-Gaussian
vector for our actual experiments.
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Figure 1. (a) The sample mean 7, as a function of N for v = 1/2 and ¢ = 1 with ¢ = 10=%. The
plot also shows the deterministic maximum of N iterations for the conjugate gradient algorithm (solid
line), the upper bound computed in Theorem 1.1 (dashed line) and the curve 7.5N'/2 (dotted line) to
demonstrate that 7. grows faster than N'/2. (b) A fit of the data points using the function F(N) =
aN'/?log N 4+ bN'/2 ¢ > 0 and b > 0 plotted against the data. Here we find a = 0.67 and b = 3.51
indicating that Theorem 1.1 predicts the correct scaling in IV for 7.
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Figure 2. (a) The sample mean 7; as a function of N for v = 2/3 and ¢ = 1 with ¢ = 10~%. The plot
includes the linear upper bound 7. < N (solid line), the upper bound computed in Theorem 1.1 (dashed
line) and the curve 10N'/? (dotted line) to demonstrate that 7; grows at approximately N'/3. (b) A fit
of the data points using the function F(N) = aN'/3log N +bN'/3, 4 >0 and b > 0 plotted against the
data. Here we find ¢ = 0.152 and b = 8.66. Again, Theorem 1.1 predicts the correct scaling for 7.

importance of this observation is that these bounds are known to be sub-optimal. Thus,
our results show that the matrices for which these estimates are sub-optimal have a small
probability of occurrence.

1.4.2 Perturbed discrete Laplacian

The numerical examples of the previous section are dominated by noise. In this subsection and
the next, we investigate the effect of small LUE perturbations on structured matrices A. This
is a more subtle problem since it is hard to conjecture the growth rate of E[r.(A + 0?H,b)]
as o and vy vary for a given A. We present numerical experiments on random perturbations of
two examples that have been studied in the literature on the conjugate gradient algorithm —
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Figure 3. (a) The sample mean 7; as a function of N for v = 1/3 and ¢ = 1 with e = 10=*. The plot also
shows the upper bound of N iterations (solid line), the upper bound computed in Theorem 1.1 (dashed
line) and the curve 6 N?/3 (dashed) line to demonstrate that 7z grows faster than N2/3. (b) A fit of the
data points using the function F'(N) = aN?/3log N + bN?/3, a > 0 and b > 0 plotted against the data.
The parameters a = 0.916 and b = 0 fit the data very well.
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Figure 4. Numerical computations for sample mean of the halting time in the case of a randomly
perturbed discrete Laplacian operator —A,, , +o?H. We let m = k = L\/N | and make the following
choices of parameter values ¢ = 0 (d), ¢ = 0.1, vy = 1/2 (0), 0 = 0.1, v = 1/3 (x) and ¢ = oo,
v =1/2 (4). (a) The sample mean for all four parameter choices. (b) Three parameter choices plotted
along with the functions 2¢/N (dashed) and 7N'/* (solid).

discrete Laplacians and singular matrices with clusters of eigenvalues. In both these examples,
we numerically estimate the growth with N of the halting time 7.(A + 0?H,b) for a range of &
and 7. These numerical computations are compared with the unperturbed (¢ = 0) and noise
dominated (“oc = o0”) cases. Broadly, we observe that finite noise gives faster convergence
(smaller halting time) with a different scaling than what is expected with no noise. We also find
that when A # 0, the halting time is not strongly affected by . At present, these are numerical
observations, not theorems. We hope to investigate the accelerated convergence provided by
noise in future work.

In our first example, A is the mk x mk 2D discrete Laplacian defined by the Kronecker
product

Ap i = Im ® Doy + Doy @ I,
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where Ds ,, is the m x m symmetric tridiagonal matrix with —2 on the diagonal and 1 on the
off-diagonals. We choose m = k = |v/N| in the computations.

Some results of numerical experiments with this choice of A are shown in Fig. 4. The scaling
of the sample mean of the halting time, 7¢, is O(v/N) in the extreme cases when o = 0 or 0 = 0o
(see + and O in Fig. 4). However, when ¢ is O(1), we find that 7z ~ N/ (see o and x in
Fig. 4). Further, this result is not sensitive to . Therefore there is a complicated relationship
between the deterministic matrix A, the random perturbation H and the halting time that is
not captured by Theorem 1.1.

1.4.3 Perturbed eigenvalue “clusters”

In our second example, we consider random perturbations of a singular matrix with clusters of
eigenvalues. This construction is motivated by [11, Section 5.6.5] and [9].

We define A to be the mk x mk diagonal matrix obtained by sampling the Marchenko—Pastur
law as follows®. Let (j, j = 1,...,k be defined by

: L Ry j

Then we define for 1 < j <k, 1<l <m

0, J=0,

i =9 <e_ Lm/2j> 101162’ P (1.6)

Finally, set A = M,, ; = diag()\¢;) with any (consistent) ordering.
This produces a mk x mk diagonal matrix with m zero eigenvalues, and k(m — 1) eigenvalues
that are each clustered at quantiles of the Marchenko—Pastur law. Note that

C1k 1
dch(lk, k — oo,
OO

and so (1, = O(k™2). We divide by k? in (1.6) to ensure we maintain a positive semi-definite
matrix. As in the previous section we set m = k = |v/N| in the computations and plot similar
sample mean results in Fig. 5. Despite the fact that M,, ;. is a singular matrix, the conjugate
gradient algorithm converges rapidly for the perturbed matrix M, + o?H. In particular,
Fig. 5(b) shows a rate of growth that is only O(y/log N).

Finally, in the construction of M,, ; we imposed the condition that m eigenvalues are zero.
If we considered a case where more and more eigenvalues are set to zero as m, k — oo we would
expect a transition to the o = oo case.

2 Estimating the halting time

2.1 Outline of the proof

In this section, we explain the main steps in the proof of Theorem 1.1. We also abstract the
properties that are known to hold for LUE perturbations (as established in Section 3), stating
these estimates as a general condition on the tails of the smallest and largest eigenvalues that
suffice to prove Theorem 1.1.

®We use the Marchenko—Pastur law because it gives the asymptotic density of eigenvalues of the LUE we are
considering [12].
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Figure 5. Numerical computations for sample mean of the halting time in the case of a randomly
perturbed eigenvalue clusters: M, ; + 0?H. Again, we let m = k = L\/NJ and make the following
choices of parameter values 0 = 0.1,y =1/2 (0), 0 = 0.1,y =1/3 (x) and 0 = 00, v =1/2 (+). (a) The
sample mean for all four parameter choices. (b) Three parameter choices plotted along with the function
610g1/2(1 + N) + 28.5 to demonstrate how slow the halting time grows for 0 < o < co.

In order to explain the main idea, we focus on controlling the halting time 7,  using esti-
mate (1.1). For brevity, let us define the parameter

_VE-1
CVEAHT

Since k > 1, the parameter 0(x) € [0,1). Let us also define the positive real number

0(r)

Ke(r) = inf {0(x)" < ¢/2} = =205

It follows immediately from (1.3) and the normalization |ro||,2 = 1 that 7, < K, so that for
every a > 0,

P (Tw,e > a) <P (K >a) =P(loge/2 < alogb(k)) .
Note that log (k) < 0 and that as k — oo,

2
logO(k) ~ v
Thus, basic convergence properties of the conjugate gradient algorithm may be obtained from
tail bounds on the condition number. Finally, the condition number is estimated as follows.
Since K = Amax/Amin it is clear that upper bounds of the form P(A\pax > t) and ]P’()\;nln > t)
for arbitrary t € (0,00) may be combined to yield an upper bound on P(k > a) by suitably
choosing t(a). As noted in the first three lines of the proof of Theorem 1.1 below, estimates
of upper and lower eigenvalues for Wishart ensembles established in [4] immediately extend to

estimates for matrices of the form A + o2H.

2.2 A general sufficient condition

The abstract property we use to establish Theorem 1.1 is the following.



12 G. Menon and T. Trogdon

Condition 2.1. Given a random positive-definite matriz H, assume there exist positive con-
stants c¢1 and &, constants Cy, Co, and a that are greater than 1, and a positive function
f:(0,00) = (0,00) such that

Tnax(t) : = POmax(H) > t) < Tax(t) := Cre~atNE=a) 4> 1
Tin(t) := PO (H) > 1) < Toin(t) := Co[t/F(N)] 7%, £ > (14 6)f(N). (2.1)

min
Assume further that Trax /min are strictly monotone functions of t and A}im f(N) = oc.
— 00

While the conditions above seem arbitrary at first sight, we will show how they emerge
naturally for the LUE ensemble in the next section. In particular, we show that these conditions
are satisfied by a class of LUE matrices in Lemmas 3.3 and 3.4.

Lemma 2.2. Assume Condition 2.1 and that o grows with N as in (1.5). Then there ezists
a constant C > 0 such that

a2

_ —a/2+e 1
B((H) > 1) < C[a™ 4/ JN)] ™Y, ey = 5ot

when t > a(1 4 6n)f(N) where
SN=(1+86(1+C(N"+sN"1)) -1

Proof. First, if xy > ab and all these numbers are positive, then either x > a or y > b. Thus
for 0 < s <1, the tails bounds of Condition 2.1 imply

v <m > Tnii)((s)Tr;iL(s)) <2

This bound may be ‘inverted’ in the following way. If we define T1(s) = T, L ()T, 1 (s), then

P (W > t> < 2T°(t). S

Our goal is to obtain an upper bound on T (t) using the upper bounds Toax and Toin. If
Timax(t1) = s and Tiyax(t2) = s then ty > t1. Therefore,

1
T—l (S) <a-+ OgCI/s

o N 5 s < Tmax(a)a

S

—2/a
02] ;8 < Tuin((146) (V).

Tk (s) < F() [

Since (1 +logt/n)™ <t when t > 1 and n > 1, we can estimate

log C1 /s log C1 /s Cy )\ V(e
=R Y A o) « - .
@t alN @ (1 + aciN @ s

Hence

S

T (s) < aCy/ "M f(V) [c
2

—2/a
] sTW/@erN) g < min{Tnax(a), Tin (1 + 6) F(N)) .

Inverting this expression, we find

—a/2+en

T(t) < o't/ f(N)C e e . en=r—o

2ac1N + o’

DN | =

t > max {T™ (Trmax(a)), T~ (Tmin (1 + ) F(N))) }.
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Let us examine this lower bound more carefully. We increase C' so that C; < Cb, if necessary,
so that

T~ (Tnax(a)) = aTr;iL(Tmax(a)) < af(N) [gj

T™H(Tin (L +0) f(N)) = (1 + 8) f(N) T pa(Tinin (1 + 8) f (V)

< a(l+8)f(N) (1 08 C1/Cr - a2loall + 5))

<a(l1+6)(1+CN 1+ ad))f(N),

]2/0‘ < af(N),

where C is a suitable constant. Then using the assumption (1.5) and Cy > 1, C' /(2acrN) 021 ~2en/a

is bounded by a constant, say, C'/2 > 0. This establishes the lemma. [ |

Let X denote the set of NV x N strictly positive definite complex matrices and recall that
the constant § is defined in Lemma 2.2. The following lemma is applied to control the halting
time in terms of the condition number, and the reader may turn to the lemmas that follow to
see instances of functions g.

Lemma 2.3. Let g: [1,00) — R be continuous and differentiable on (1,00). Assume g satisfies
g(1) = 0 and ¢'(x) < Cz’ for C > 0, £ € R and z sufficiently large. Assume a function
M: ¥ — R satisfies M(H) < g(k(H)). Then if H satisfies Condition 2.1 and a/2—en —€ > 1
there exist constants C, K > 0 such that

b}v-‘rf
a/2—eny—L0—1’

E[M(H)] < g(bx) + C(1 + 6x5) /K

forby = af(N)(1+dn).
Proof. First,
E[M(H)] < Elg(x(H))],

and by integration by parts

Elg(x(H))] = / " g(s)dP(s(H) < 5) = / " (5)P(r(H) > 5)ds.

Using Lemma 2.2 for by = af(N)(1+ 0x) and N sufficiently large

> by bN —a/2+en  poo
/ g'(s)P(k(H) > s)ds < / g (s)ds+C ( > / g—a/2+en+
1 1 1+40n b

byt
af2—eny—0—1"

< g(by) + C(1+6y) /K

This last inequality follows from the scaling (1.5):

« 1

_ = _ v—1
220N 4+1 (’)(aN )’

EN

and hence a/2 — ey = O(«). For any fixed ¢ there exists a constant K = K,

1
< K/a. 2.2
af2—ey—0—1" /e (22)
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We apply this lemma to the following functions.

Lemma 2.4. Let b be a fixed vector then for any j >0

(1) Halting time with the (> norm: 7.(H,b)’ < g(k(H))’ where
_ logy/s2¢e !

= m.

Further, for everyn >0 and € > 0 there exists a constant C, such that for s € [1,00)

g(s)

1 _ 1log \/s2¢1 N
g(s) < 5V/slog Vs2e ™! < Cegs' 7, g/(s) < 5 < Cegs™ /210,

(2) Halting time with the weighted norm: 7, (H,b)? < g(k(H))? where

log 2¢~ !

This function g satisfies the following estimates

< llog 26_1‘

1 —1 /
< —
g(s) < 5Vslog2e™,  g'(s) < 5 75

(3) Successive residuals: For ri = ri(A,b), (HT’”ll')] < g(k(H))’ where

I

9(s) = <£;> <1, g(s)<s%2

and || - || stands for either || - ||,z or | - ||A-

Proof. All the bounds follow from (1.1) and (1.2) as explained in the introduction to this
section. The estimates on the functions g(s), each of which satisfies g(1) = 0, may be obtained
by elementary manipulations. |

We can now prove our generalized result.

Theorem 2.5. Assume a random matriz H satisfies Condition 2.1 and o satisfies (1.5). Then
forby = af(N)(1+dn), Oy > 0 and, any vector b =1, the following estimates hold:

(1) Halting time with the (> norm:
. 1 i —_
E[re(H,bY] < ;03" (logby e ™) (L +0(by (1 4+ 03) /%)), as N = co.
(2) Halting time with the weighted norm:
. 1.2 —1\g —1/2 77— —a/K
E|7y,(H,b)’] < ng (loge ") (14 0(by "N7(1+dn) ), as N — oo.

(3) Successive residuals: For ri = ri(H,b)

||7"k+1||j] < 2 )j —1/2 7 — —o/K
E Ll <(1-—=—) 400y /°*N(1+y)"5), as N — oo,
e Jona1) HOl TN 00T

where || - || stands for either || - ||z or || - ||-1-
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Proof. Before we begin, we recall (2.2).
(1) Halting time with the /2 norm: As H satisfies Condition 2.1 we can apply Lemma 2.3
with the estimates in Lemma 2.4(1) for j > 0 and n > 0. We use that in this case

o 1 i (=8)/244
90 =g (9)g(s)' " < GO, sUI2Hm,
and hence ¢ = (j — 3)/2 + jn in Lemma 2.3. Therefore,
E[r.(H,b)] < b]/2(log b2 Y 4 5CCT (14 65) KBl P0 P TIN
If by = O(N¢) for some ¢ > 0, we choose 1 > 0 such that j¢n < . Thus,
E[r.(H,b)] < b]/2(logb1/2 N (1406 (14 6x) %)),  as N = .

(2) Halting time with the weighted norm: We follow the same calculations as (1) with
the estimates in Lemma 2.4(2) for j > 0. Here

and hence £ = (j — 3)/2 in Lemma 2.3. Therefore,

A 1 . . .
E[Tw,e(H,b)J] Sgb%Q(loge ) +]C£ﬁ(1+6 N a/Kb%2bN1/2N v,

Finally,
E [ (H, 5] < 042 (log ™) (1 + O3 AN 71014 65)7K)), as N oo

(3) Successive residuals: We follow the same calculations as (1), (2) with the estimates in
Lemma 2.4(3) for j > 0. Here

d . . o
9 =g (s)g(s)’ L < js™3/2

and hence ¢ = —3/2 in Lemma 2.3. Then with Ry = ||7g+1]/]|7]]

+JC PNTI(L + 65) /K

s (o )

Therefore

j 2 1/2
E[Ri]g(l—m> + OB PN (1 468)"%K),  as N — oo, |

The constant §y > 0 is used in the above theorem to make precise the fact that if we integrate
the tail of the condition number distribution just beyond af(N) the error term is exponentially
small as o — oo.
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3 The Laguerre unitary ensemble

The following is well-known and may be found in [6, Section 2], for example. This discussion is
modified from [4, Section 2]. Let W = X X* where X is an N X (N + «) matrix of iid standard
complex Gaussian random variables. Recall that the (matrix-valued) random variable W is the
Laguerre unitary ensemble (LUE). Then it is known that the eigenvalues 0 < Apin = A1 < Ag <
-+« < AN = Amax of W have the joint probability density

N

1 Y
PN(AL - AN) = s [Trge™ IT =
C(N J=1 1<j<k<N
Recall that the Laguerre polynomials, {Lga) () 720, are a family of orthogonal polynomials on

[0, 00), orthogonal with respect to the weight e”*2®. We normalize them as follows [13]

o . . —1)J
L§- )(l‘) = k‘jl’] +O(l’j 1), k‘j = ( )

9

4!
* (o o o 'j+a+1
/0 LZ(- )(a:)Lg- )(x)e x%dx :5ij7( i )

Then the following are orthonormal with respect to Lebesgue measure on [0, c0),
. 1/2 00
. j! —x/2, /27 ()
Yj(z) = TGtatl) e "a* L (2), ; ¥j(@)i(x)de = &i;.

Define the correlation kernel
N—-1
j=0

The kernel Ky defines a positive, finite-rank and hence trace-class operator on L?([a,b]). To
see that K is positive, consider f € C*((s,t)) with compact support and note that

t N—1

[ [ s sarwaa= [ X 4sle)sl0) (o) sy

:inwmw@ﬂ[%@“magg»

j=0 /s

2

[ vt s

s

The eigenvalues A\ < --- < Ay may be described in terms of Fredholm determinants of the
kernel K [1, 6]. In particular, the statistics of the extreme eigenvalues are recovered from the
determinantal formula

PP (no eigenvalues in [a, b]) = det (I — ICN‘LQ([a,b])).

By the Christoffel-Darboux formula [20], we may also write

_ N (TN +a+ DTNV +a)\Y? (gx (@) (y) — n(@)on ()
= AL e~ (@+y)/2,0/2, /2 LE\?‘) (y)Lﬁll(w) - Lg\?) (x)Lgs)—l(y)
(N +a) Y x—y '

Thus, questions about the asymptotic behavior of Ky (z,y) as N — oo reduce to the study of
the large N asymptotics of Lg\c;) and LS\?L.



Smoothed Analysis for the Conjugate Gradient Algorithm 17

3.1 Kernel estimates

We use Fredholm determinants to show that Condition 2.1 holds with appropriate constants
when W = X X* is distributed according to LUE. The main reference for these ideas is [17]. Let
A: L2([t,00)) — L?([t,00)) be a positive trace-class operator with kernel K(x,y). Assume

P(X <t)=det(I — Ay),
then

P(X > t) = |1 — det(] — Ay)| = | det(I) — det(I — Ay)]

< </tOO|IC(x,x)|dm> exp <1+/too|lC(:L‘,m)|dx>.

In this way we can get estimates on the tail directly from the large 2 behavior of K(z, x). Similar
considerations follow if, say, A;: L2([0,t]) — L?([0,]).
As was done in [4], we consider the scaled kernel

N-1 N
Ki(w,y) = > 35mj(a)m;(y)a/ 2y e etz 300 — / 72(2)aCy" % ode,
Jj=0 0
(o)
L (vx A A
mj(z) = jui(k) =2/ + O(xj_l),
]

so that

P(Amax(W)/v < t) = det (1 — IC§V|L2(t’OO)),
P(Amln(W)/V > t) = det (1 — IC}S\[|L2(0¢)).
Next, we pull results from [4] to estimate the kernel K} (z,y) for LUE near the largest and

smallest eigenvalue of W. We first look for the asymptotics of K% (z,y) for (z,y) = (1,1), called
the soft edge. Let = 1 + 2/(22/3M?/3) and define

. s /e . 1 1
Kn(z,y) = ICN(£7?J)W7 M =N + 5(044’ 1).

Then from [4, Proposition 2]:

Proposition 3.1. As N — oo the rescaled kernels converge pointwise,

ICN(l’, y) N Al(x) All(y; : Sll(w) Al(y)’ (.’L‘, y) c RQ,

and the convergence is uniform for (z,y) in a compact subset of [L,00)? for any L € R. Ifz =y
then the limit is determined by continuity. Further, there exists a positive, piecewise-continuous
function G: (L,0)? — (0,00), such that

Kl <G [ [ Gepdedy<oe, [ G <o
L JL L
Furthermore, it suffices to take for a constant C' = C(L) >0

) 1, if © <0,
G(SL‘, y) = C(g($)2X|x—y\<l($a y) + gj(ﬂ?)@(y)% g(ﬂj) = {e—éxgm l;.’ﬂ i 0.
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For K3 (z,y) near (0,0) as the scaling of the kernel depends critically on 7. So, we define
R Oz2 9 2/3
rT=—|1+z|—-
v o

. 92/3 ,A/3

2

and

The next proposition essentially follows directly from [4, Proposition 1] and is in fact a little
simpler with the scaling chosen here.

Proposition 3.2. As N — oo the rescaled kernels converge pointwise,

R

and the convergence is uniform for (z,y) in any compact subset of (—oo, L]? for any L € R.
If x = y then the limit is determined by continuity. Further, there exists a positive, piecewise-
continuous function G: (—oo, L)? — (0,00), such that

L (L L
Kx@nl <Gy, [ [ Gepady<c, [ G <o
Furthermore, it suffices to take for a constant C = C(L) >0

G(z,y) = C(9(2)M(@)X|z—yi<1 + 3(2)3 (1)),

where
0, if —oo<z<—(af2)%/3,
9 2/3 da/4
i) = (1 o )] i = (2P < < () = 1) o2,
el if —b(a/2)?3 <z <1,
\ 1, otherwise,
'0, if —oo<z<—(af2)%/3,
9 2/3 da/4-1
. l+z <> L if = (a/2)¥3 <z < (0(d)? - 1) (a/2)?/3,
h(zx) = @
e if —b(a/2)2* <o < -1,
1, otherwise.

Here ((d) < 1 satisfies £(d) = 1 + O(d*/?) as d — 0.

We now briefly describe how the estimates in terms of § and h arise. The asymptotics of
the kernel K% is given in terms of Bessel functions, after a change of variables. In the regime
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a — 00, the Bessel functions asymptote to Airy functions, as follows [13]

1/4
Jo(at) = < 4 > a_1/3(Ai (a2/3C) + Ai (a2/3g)0(a_4/3)), t>0,

—1/4
Ja’(at):—2< X ) a2 AL (a2/3) + Ai (2)0(a3),  t>0,

t\1—¢2
2 LVl —s2
3= | YT 0<t<1,

3 t S

2 FVs?—1

Z(=)3/2 = YT ds, t> 1.

3 1 S
This expansion is uniform for ¢ € (0,00). Assume 2z € (0,d’) where §' < § < 1/2 and ¢ is given
in terms of z by t = —ij~¢™,(2). The following are from [4]

4 17
—i¢i(2)=2/0 \/ Ssds§4\/5, 0<2< ¢,

it (2) > 4V/zZ[1 6|2 > 2z, 0<z2<{,
2 ppa——i| 4
t

2 LT =
343/22/ Sds:—log2t+log2+210g(1—l—\/1—t)—2\/1—t, 0<t<1,
t S

3\ 2/3
¢> <2> [log2t/¥3,  0<t<1/2.

A subtle issue is the validity of the last bound. We see that —i¢™, (z) < 44/z, and so t(z) <
ZVz and t(2) < (1+ 2(2/a)?/3)1/2. Then considering Lemma 2.3, we see that the dominant
contribution arises from the interval over which the estimate P(k(H) > s) < 1 is used. Thus,
we try to extend the validity of a lower bound on ¢ to t € [0,1]. It follows that

¢>d*Pllogt?,  0<t<{d) <1

Note that £(d) # 1 as ¢’(t) has a bounded derivative at ¢t = 0 and the right-hand side does not.
But as d — 0, £(d) — 1. A quick calculation, using an expansion near ¢t = 1 gives

((t) = a(1 = £d))(1 + O(1 - £(d))) = d*/*(~log £(d))*/?,
and this implies:
[1—(d)])/d*? =0,  £d)=1+o0(d*?),
[1—0(d)]/d?*r 00,  €>0.
Then, following [4, equations (C.3) and (C.4)],

omablel/? < ydaj2 0<t<d),

2
—allc2 o (Y R\ 20°
e s S(a\/g> , 0<z</d) "l
This last inequality implies that ¢ < ¢(d). Then
0<2z</(d) 2
0< 1+ 2(2/a)?? < i(d)?,
—(/2)*? < 2 < (0(d)* = 1)(a/2)*?,

These estimates can then be plugged into [4, Lemma C.2] to get the estimates in Lemma 3.2.
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3.2 Tail bounds
It follows that

PAmax(W) /v > t) < </ ]Kfv(x,x)|d$> exp <1 +/ |/C?V(x,x)\da:> .
t t
So, we estimate fort > 1 and C' > 1

/ Ky (2, z)|de < 25/3M2/3c/ 322 M3z — 1)) da
t t
=20 72(s)ds < 2Ce~sM=D),
22/3M2/3(t71)
So, for a new constant C'
Tinax(t) = POmax (W) /v > t) < Ce™3M (1),

The more delicate estimate is to consider Tinin:

Tonin(t) = P(ALL(W) > ) = P(v Apin(W) <t71) = 1 =P(v " Apin(W) > t71)

min

< (/0 |/C7V(x,1‘)|da:> exp (1 —l—/o |K§V(I,x)]dx> :

We use Proposition 3.2 and invert the scaling Z. If & lies in [0,a?/v?] then 2 € (—o0,1]. We
note that §(z)? < g(z)h(z) so we only need to estimate

5((5) ”3<; ))( () <[] e

for 0 < x < £(d)? O‘—Q t < 4(d)"2%; we just use Tyn(t) < 1. For t > é(d)*Qg—z and a > 0
-1 t—1 V2 da/2
/ Ky (z,z)|de < 20 2/3/ [2m] 1 dx
0 0 «
Ck2/3 U da/2+1 At . _1 ) da/2+1 a2
ZQCda/z[a?] t=de2 < 0d / {042] e/,

It then follows that for a constant C' > 0
do/2+1
Twin(t) < Cd™ la”!? |:012] t a/27 t>4(d)""—.

We arrive at the following.

Lemma 3.3. If W = X X* where X is an N x (N + «) matriz of iid standard complex normal
random variables, « = |V4cN| and v = AN + 2 + 2 then

P(Amax (VW) > 1) < CetPMETD 0 P(AL (v7W) > 1) < CLF(N) ™72,
1 1/32/ ) [12] ) 0
f(N) = [d” ] [aZ} S Ut

The following lemma is a generalization of this result, it essentially follows from the analysis
in [4], by allowing ¢ — 0 in (1.5) at some rate in N as the estimates there are uniform for ¢
bounded. We do not present a proof here as this will be included in a forthcoming work.
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Lemma 3.4. If W = X X* where X is an N x (N + «) matriz of iid standard complex normal
random variables, o = L\/ZCNVJ, 0<v<1/2 and v =4N + 2a + 2 then
P(Amax (VW) > t) < Ce™BMUD 1 p(AL (b7IW) > 1) < C[f(N) /)42,

21 142/(da) 9
f(N) — [d71a71/3]2/(da) |:V:| ’ t> f(d)f v

a2

It is conjectured that these same estimates hold for 1/2 < « < 1 also but this does not follow
immediately from the work in [4].

Proof of Theorem 1.1. It follows that
K(A+0?H) = k(0 2A+ H).

Then
P(Amax (07 2A + H) > t) < P(Aax(H) > t —077),
Pl (0724 + H) > t) <P(ALL(H) > t).

Since we may choose d as needed, we assume that ad ~ N* — co. We then have from Lemma 3.4,
with a possibly new constant C,

PAmax(H) > t) < Ce~*/3M@=1),

1/2
POGL(H) > 0) < CEA=R, ) =[]

a2

This follows from the fact that (N‘I)N_A — 1 for any value of ¢. We define § by 1 + 6 = ¢(d) 2
and then the matrix A+ o?H satisfies Condition 2.1 with ¢; = 4/3,a =1+072, @ — da and f
and ¢ as defined here. Different values of A\ can be used to create different estimates. But for
simplicity, we take A = /2 or d = N~7/2. Then by (3.1), for e small, § = 1 —£(d)~2 > N~V/3-¢
if IV is sufficiently large and

log(1 + 5)NW2 — 00,

with some power of N. Therefore (1 + 6)_d°‘/K tends to zero faster than any power of N if
K > 0 is fixed. We now establish each estimate by appealing to Theorem 2.5.

(1) Halting time with the /> norm: Using by = (1 + ¢~ 2)f(N)(1 + dy) it follows directly
that

E[r (4 +0%X,b)’] < %ij/?(log b2¢ ) + O(NF),  forall k>0.

(2) Halting time with the weighted norm: Again, using by = (1 + 07 2)f(N)(1 + o) it
follows directly that

E[me (A + 02X, b)j] < %bj]f(log 2671)j + O(ka), for all k>0,

(3) Successive residuals: Similarly, it follows directly that

Pl’f’ml!j

2 J
Ll <(1—-————) +0O(N7H), for all k> 0.
HmHJ] ( \/bN+1> (v7)

By equation (1.5), by = ¢ (14 0~ 2)4N?=2/(1 + O(N~/?)), and the result follows. [
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