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Abstract. We contend that what are called Linear Canonical Transforms (LCTs) should
be seen as a part of the theory of unitary irreducible representations of the ‘2+1’ Lorentz
group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the
radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous
representation series of the Lorentz group in its parabolic subgroup reduction. The reduction
by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on
functions, discrete or continuous in other Hilbert spaces. We gather the summation and
integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and
mixed representations of the linear group of 2× 2 real matrices. We add some comments on
why all should be considered canonical.
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1 Introduction

Linear canonical transforms (LCTs) have been developed as the diffraction integral kernel for
generic paraxial optical systems by Stuart A. Collins [7], and also defined as the group of
unitary integral transforms that preserves the basic Heisenberg uncertainty relation of quan-
tum mechanics in D = 1 or higher dimensions by Marcos Moshinsky and Christiane Quesne
[16, 17, 23]. Further, LCTs can be seen as the group actions generated by the Lie algebra of
quadratic Hamiltonian operators [25]. Also, radial [18, 26] and hyperbolic [27] canonical trans-
forms have been defined after separation of variables in D ≥ 2 dimensions. More recently there
has been interest in canonical transformations that are represented by matrices, infinite, semi-
infinite or finite-dimensional – the latter due to the finite capacity of measuring and storing
devices, but with serious concomitant difficulties.

In both the optical Lagrangian formulation [7] or in the quantum-mechanical Hamiltonian
approach [16], one arrives at a parametrization of all possible linear transformations through
a 2D × 2D real symplectic matrix M ∈ Sp(2D,R). For reference we gather here the basic
D = 1-dimensional formulas. We consider the matrix

M =

(
a b
c d

)
, ad− bc = 1, (1)

as the presentation of the group Sp(2,R), which is equal to the groups of all real 2× 2 matrices
of unit determinant SL(2,R), and is isomorphic through a complex similarity transformation to
the group SU(1, 1) of 2× 2 pseudo-unitary matrices. This group of 2× 2 matrices in fact covers
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twice, i.e., is 2:1 homomorphic to the ‘2+1’-Lorentz group of 3× 3 pseudo-orthogonal matrices
L(±M) ∈ SO(2, 1),(

a b
c d

)
2:1←→

1
2(a2−b2−c2+d2) bd−ac 1

2(a2−b2+c2−d2)
cd−ab ad+bc −cd−ab

1
2(a2+b2−c2−d2) −bd−ac 1

2(a2+b2+c2+d2)

 . (2)

These accidental iso- and homomorphisms between symplectic and relativity groups have been
exploited to describe and relate various physical and optical models [11, 15, 19, 31].

However, in spite of its apparent simplicity, the group of 2×2 matrices (1) has an infinite cover
group Sp(2,R). It is the double cover – the metaplectic group Mp(2,R) – which is represented

by the well-known integral form of linear canonical transforms CM ≡ C
(
a
c
b
d

)
of the usual Hilbert

space of functions f(x) ∈ L2(R),

fM(x) ≡ (CMf)(x) =

∫
R

dx′CM(x, x′)f(x′),

CM(x, x′) :=
1√
2πib

exp

(
i

2b

(
dx2 − 2xx′ + ax′ 2

))
, (3)

where the phase of the prefactor is taken to be

1√
2πib

=
1√

2π|b|
exp

(
−i14π sign b

)
.

Unitarity is evident in that CM−1(x, x′) = CM(x′, x)∗.
Phases are quite delicate here; Collins did not consider the group property of the trans-

forms [7]; yet Moshinsky and Quesne [16] realized that CM1CM2 = ±CM1M2 , with a sign depending
on the signs of the b1, b2 and b12 elements in a rather complicated way [29, Chapter 9]. The

double-cover issue can be simplified by observing that for F =
(

0
−1

1
0

)
, the kernel (3) is that

of the Fourier transform F , but for a phase: CF = e−iπ/4F . Since F4 = 1 , only C8F will return
the cycle to the unit 1 . In the limit b → 0 from the lower complex half-plane, the kernel (2)
becomes a Dirac delta,

lim
b→0

CM(x, x′) =
exp(icx2/2a)√

a
δ
(
x′ − x

a

)
. (4)

We may skip further detailed consideration of the D = 1 integral linear canonical transforms
and their properties, which are mostly standard knowledge, and from whose D = 2 case one can
build the radial and hyperbolic LCTs in a bottom-up construction. Rather, the purpose of this
review is to give a top-down panorama of LCTs.

In Section 2 we return to the Lie algebra so(2, 1) of the Lorentz group SO(2, 1) realized
by second-order differential operators corresponding to harmonic and repusive oscillators, with
a singular centrifugal or centripetal potential, and the generator of scaling. Linear combinations
yield free propagation and a square-radius coordinate. In Section 3 we list the eigenfunctions
and spectra of those operators for the centrifugal case that fall into the Bargmann Dk discrete
series of representations. There are three subgroup orbits that are examined in three subsections:
elliptic, parabolic, and hyperbolic. Section 4 follows the same structure for the centripetal case
that fall into the Bargmann Cεs continuous series. This is what we deem to be six faces that
Sp(2,R) linear canonical transforms can show in various Hilbert spaces. The resulting matrix
and integral kernels were computed in 1981 by Basu and Wolf [6], so the results are not new, but
are gathered here for the first time as proper, unitary LCTs. The concluding Section 5 offers
some reasons to call all representations canonical, and some comments on finite-dimensional
approximations to these transforms.
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2 The Lorentz algebra

The generic form of the second-order differential operator realization of the Lorentz Lie algebra
so(2, 1) can be obtained from the oscillator algebra [17], adding a term γ/r2 to the second
derivative, whose interpretation is that of a centrifugal potential as γ = m2 − 1

4 ≥ −
1
4 for

solutions of angular momentum m ∈ Z. Separation into hyperbolic coordinates yields γ < −1
4

when added by a centripetal force. The formal operators are associated with Hamiltonians, and
are generators of Sp(2,R) subgroups as follows:

Jγ0 :=
1

4

(
− d2

dr2
+
γ

r2
+ r2

)
, exp(iφJγ0 ) 7→

(
cos 1

2φ − sin 1
2φ

sin 1
2φ cos 1

2φ

)
,

Jγ1 :=
1

4

(
− d2

dr2
+
γ

r2
− r2

)
, exp(iζJγ1 ) 7→

(
cosh 1

2ζ − sinh 1
2ζ

− sinh 1
2ζ cosh 1

2ζ

)
, (5)

Jγ2 := − i

2

(
r

d

dr
+

1

2

)
, exp(iαJγ2 ) 7→

(
exp−1

2α 0

0 exp +1
2α

)
,

where the ‘harmonic oscillator’ Jγ0 generates the compact (elliptic) SO(2) subgroup (and its co-
vers), while the ‘repulsive oscillator’ Jγ1 and ‘scaling operator’ Jγ2 generate equivalent noncompact
(hyperbolic) subgroups SO(1, 1). Their commutation relations are

[Jγ1 , J
γ
2 ] = −iJγ0 , [Jγ2 , J

γ
0 ] = iJγ1 , [Jγ0 , J

γ
1 ] = iJγ2 . (6)

Also relevant are the linear combinations

Jγ+ := Jγ0 + Jγ1 =
1

2

(
− d2

dr2
+
γ

r2

)
, exp(ibJγ+) 7→

(
1 −b
0 1

)
,

Jγ− := Jγ0 − J
γ
1 = 1

2r
2, exp(icJγ−) 7→

(
1 0

c 1

)
, (7)

where the ‘free system’ Jγ+ and the ‘square-radius’ Jγ− generate the Euclidean (parabolic) sub-
groups ISO(1), which are equivalent under the Fourier transform. Note carefully that these are
not ‘raising and lowering’ operators for discrete eigenvector bases. Instead and particularly,
Jγ− determines the diagonal radial position operator with respect to which we refer the eigen-
functions of all other operators, as done below. These eigenfunctions depend crucially on the
value of γ in (5), as given by the Casimir eigenvalue

C := (Jγ1 )2 + (Jγ2 )2 − (Jγ0 )2 = κ1 ,

κ = −1
4γ + 3

16 =: k(1− k), k = 1
2

(
1±

√
γ + 1

4

)
, (8)

where k is the Bargmann index [2] that determines (up to parities) the essentially self-adjoint
irreducible representations of the algebra in a Hilbert space L2(R+) with measure dr – which
are unexpectedly imbricate.

3 The Dk canonical transforms

We consider first the case when the coefficient γ is of centrifugal origin in D = 2 using polar
coordinates x = r cos θ and y = r sin θ, r ∈ R+, θ modulo 2π. We want the measure to be dr, so
after similarity transformation,

√
r∇2/

√
r = ∂2r +r−2(14 +∂2θ ), with ∂2θ 7→ −m2 for the subspaces

of angular momentum m ∈ Z so that k = 1
2(|m| + 1) ∈ {12 , 1,

3
2 , . . .}. This is the Bargmann
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discrete representation series D±k [2].1 The eigenfunctions and spectra of the five operators (5)
and (7), are [6]

0Φk
m(r) =

√
2n!

(2k−n−1)!
r2k−1/2e−r

2/2 L(2k−1)
n (r2)

=

√
2 (2k+n−1)!

Γ(2k)
√
n!

r2k−1/2e−r
2/2

1F1

(
−n
2k

; r2
)
, m = k+n, n ∈ Z,

+Φk
ρ(r) = eiπk

√
ρrJ2k−1(ρr), ρ ∈ R+,

−Φk
ρ(r) = δ(ρ− r), ρ ∈ R+,

1Φk
µ(r) =

eiπ(2k+µ)/2 2iµΓ(k+iµ)

Γ(2k)
√
π

1√
r
Miµ,k−1/2(−ir2),

=
eiπ(k+µ)/22iµΓ(k+iµ)

Γ(2k)
√
π

r2k−1/2eir
2/2

1F1

(
k−iµ

2k
;−ir2

)
, µ ∈ R,

2Φk
µ(r) =

1√
π
r−1/2+iµ, µ ∈ R, (9)

where L
(µ)
n are the Laguerre polynomials, Jµ is the Bessel function of the first kind, and Mλ,µ

is one of the Whittaker functions. In Dirac notation, XΦk
λ(r) ≡ −〈k, r|k, λ〉X , with X ∈

{0, 1, 2,+,−} indicating the eigenkets of JγX , with eigenvalues λ ∈ ΣX in the spectra of (9).

Next, we should obtain the transformation of the functions in (9) under the generic LCT

CM ≡ C
(
a
c
b
d

)
. To this end for each generator JγX in the lists (5) and (7) we decompose CM into

a right-ordered product of the subgroup with a diagonal-plus-phase transformation as (4),

C
(
a
c
b
d

)
= C

(
a′

c′
0

1/a′

)
exp

(
iαJγX

)
, (10)

where a′, c′ and α will be algebraic and trigonometric functions of a, b, c, d, respecting ad−bc = 1.
The right factor applied to XΦk

λ(r) will multiply it by the phase eiλα, while the left factor will
be given by (4), with the sole precaution of taking 1/

√
a ≡ (sign a)2k/

√
|a| stemming from the

radial reduction of the D = 2 case with angular momentum.

3.1 Elliptic basis: lower-bound discrete Dk-LCTs

We consider first the eigenbasis of the compact generator Jγ0 , 0Φk
m(r), in the D+

k Bargmann
representation series, whose eigenvalues are lower-bound and discrete, λ ≡ m = k + n, n ∈ Z+

0 .
The decomposition (10) yields a′ =

√
a2 + b2, a′c′ = ac+ bd and eiα = (a−ib)/(a+ib). Then,

C
(
a
c
b
d

)
0Φk
m(r) =

(
a−ib

a+ib

)m exp
(

ir2 ac+bd
2(a2+b2)

)
(a2 + b2)1/4

0Φk
m

(
r√
a2+b2

)
. (11)

From this we can find the representation matrices of the group,

XDk
λ,λ′(M) =

∫ ∞
0

X〈k, λ|k, r〉− dr −〈k, r|CM|k, λ′〉X ,

1The same were named by I.M. Gel’fand and M.A. Năımark to be the complementary representation se-
ries [8, 21]. Note that k ↔ 1 − k correspond to the same κ; the interval 0 < k < 1 is exceptional in that
the operators have a one-parameter family of self-adjoint extensions [30], and also harbor the exceptional, or
supplementary irreducible representation series [2, 8, 21]. We shall be working within the Friedrichs extension.
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by straightforward integration of the confluent hypergeometric functions that appear in the
tables of Gradshtĕın and Ryzhik [10]. In the SO(2) basis, this is a matrix with rows and
columns numbered by m = k + n, n ∈ Z+

0 , that was found by Bargmann [2],

0Dk
m,m′

(
a
c
b
d

)
:=
(
0Φk
m, C

(
a
c
b
d

)
0Φk
m′

)
=

∫ ∞
0

dr 0Φk
m(r)∗ C

(
a
c
b
d

)
0Φk
m′(r) (12)

=
22kΓ(m+m′)√

Γ(k+m)Γ(1−k+m)Γ(k+m′)Γ(1−k+m′)

× [(d−a)−i(b+c)]m−k[(a−d)−i(b+c)]m
′−k[(a+d)+i(b−c)]−m−m′

× 2F1

(
k−m, k−m′

1−m−m′
;
a2+b2+c2+d2+2

a2+b2+c2+d2−2

)
. (13)

Then, when f ≡ {fn}∞n=0 is a vector in the Hilbert space of square-summable sequences `2(Z+
0 ),

the Sp(2,R) action

fM ≡ CM : f = 0Dkf , fM;n ≡ (fM)n =

∞∑
n′=0

0Dk
k+n,k+n′(M)fn′ , (14)

is an LCT which is unitary in the Hilbert space of sequences `2(Z+
0 ).

In fact, (13) provides a unitary summation transform kernel for every value k > 0, not
necessarily stemming from integer angular momentum m, where k = 1

2(|m|+ 1) ∈ {12 , 1,
3
2 , . . .}

are single- and double-covers of the SO(2, 1) group, i.e., single covers of Sp(2,R). When k is
quarter-integer (in particular k = 1

4 and 3
4 , to be revisited below), we have representations of

the metaplectic group Mp(2,R), and various higher covers for fractional k’s.
In the D+

k Bargmann representations, the generator Jγ0 has an equally-spaced spectrum
{m}∞m=k which is bound from below by k > 0. There is also a paired series of representations D−k
where that spectrum is upper-bound by −k, i.e., m = −k−n, n ∈ Z+

0 . This stems from the outer
algebra automorphism Jγ0 ↔ −J

γ
0 (reversing the sign of the spectrum), Jγ1 ↔ −J

γ
1 , Jγ2 ↔ Jγ2 ,

and so Jγ± ↔ −J
γ
±. This generates an outer group automorphism whose representations in any

subgroup reduction yields the D−k matrices or integral kernels

XD
k,(−)
λ,λ′

(
a
c
b
d

)
↔ XD

k,(+)
σλ,σλ′

(
a
−c
−b
d

)
, (15)

where JγX has spectrum {λ} ∈ ΣX and parity σ ∈ {+,−} under this automorphism. In fact,

the matrices in (15) are related by a similarity transformation with
(
1
0

0
−1

)
, a non-symplectic

matrix which describes reflection in geometric optics [28, Chapter 4].
We have spoken of D±k for k > 0. What about k < 0? The Bargmann index k acts as a

lower bound for the values of m in D+
k , and as an upper bound in D−k in the one-step recursion

relations obtained with raising and lowering operators on the eigenvectors of Jγ0 ; but they are
one-way barriers. At k = 0 the m = ±k lines cross, so that when k < 0 is integer or half-
integer, the m’s have a lower bound at negative k and an upper bound at positive −k. Raising
and lowering the m’s in this range will yield a (2k+1)-dimensional matrix, which is a faithful,
although non-unitary irreducible representation of Sp(2,R). Of course, a well-known theorem
(see [9]) states that non-compact groups do not possess finite-dimensional unitary irreducible
representations.

3.2 Parabolic basis: continuous radial Dk-LCTs

The eigenfunctions +Φk
ρ(r) and −Φk

ρ(r) in (9) of the parabolic generators Jγ+ and Jγ− in (7) form
generalized bases for L2(R+). Consider thus the Sp(2,R) representation given as an integral
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kernel by

−Dk
ρ,ρ′

(
a
c
b
d

)
:=
(
−Φk

ρ, C
(
a
c
b
d

)
−Φk

ρ′

)
=
(
−Φk

ρ, C
(
a
c
b
d

)
C
(
0
1
−1
0

)
+Φk

ρ′

)
(16)

=
(
−Φk

ρ, C
(
b
d

0
1/b

)
C
(
1
0
−a/b
1

)
+Φk

ρ′

)
=
e−iπk

b

√
ρρ′ exp

(
i
dρ2+aρ′ 2

2b

)
J2k−1

(
ρρ′

b

)
(17)

=
2(ρρ′)2k−1/2

(2ib)2k Γ(2k)
exp

(
i
dρ2−2ρρ′+aρ′ 2

2b

)
1F1

(
2k − 1

2

4k − 1
;

2iρρ′

b

)
. (18)

This we recognize as the radial canonical transform kernel [18, 26] for angular momentum k =
1
2(m+ 1), which can be extended to k > 0, that acts unitarily on the functions f ≡ {f(r)}r∈R+

in the Hilbert space L2(R+) with measure dr. As we had in (14), now

fM ≡ CM : f = −Dk(M)f , fM(r) ≡ (fM)(r) =

∫ ∞
0

dr′ −Dk
r,r′(M)f(r′). (19)

We regain the classical D = 1 LCT kernel in (3) as the direct sum of the representations
k = 1

4 and 3
4 , for functions f(x) whose domain is extended to x ∈ R through writing them

as the sum f(x) = f
(1/4)
e (x) + f

(3/4)
o (x) with even and odd parity summands fe(−r) := fe(r)

and fo(−r) := −fo(r) respectively. For 2k−1 = ∓1, the integral kernels contain J−1/2(z) =√
2/πz cos z and J+1/2(z) =

√
2/πz sin z, z = ρρ′/b, with phases i2k = eiπ/4 and ieiπ/4. Their

sum thus yields eiπ/4 e−ixx
′/b in the oscillating Gaussian of the original LCT kernel (3),

CM(x, x′) = D
(1/4)
M (r, r′) +D

(3/4)
M (r, r′). (20)

Had we chosen the eigenbasis of the free Hamiltonian Jγ+ instead of the square-position Jγ−,

the Bessel function +Φk
ρ(r) in (9) we would have the Hankel transform of (18) by F =

(
0
−1

1
0

)
,

so

+Dk
ρ,ρ′

(
a
c
b
d

)
:=
(
+Φk

ρ, C
(
a
c
b
d

)
+Φk

ρ′

)
= −Dk

ρ,ρ′

(
d
−b
−c
a

)
. (21)

3.3 Hyperbolic basis: the face of Dk-LCTs

There remain the eigenbases of the two equivalent noncompact operators in the list (5): the
repulsive oscillator Hamiltonian Jγ1 and the scaling generator Jγ2 . The latter is the simpler of
the two because its eigenfunctions, 2Φk

µ(r) in (9), are the Mellin transform kernel with µ ∈ R
and k > 0. Since we know the LCT action CM in the parabolic basis, (16)–(19), we apply it to
these eigenfunctions,(

CM : 2Φk
µ

)
(r) =

1√
π

∫ ∞
0

dr′ −Dk
r,r′

(
a
c
b
d

)
r′ −1/2+iµ

=
e−iπk

2k−iµ
√
π

Γ(k+iµ)

Γ(2k)

r2k−1/2 eidr
2/2b

b2k(−ia/b)k+iµ 1F1

(
k+iµ

2k
;
−ir2

2ab

)
. (22)

Needless to say, the joint phases of −ia/b are needed so as not fall into multivaluation problems.
This result, reported in [6], was calculated following the general method to find Mellin transforms
of hypergeometric functions due to Majumdar and Basu [4].

Now it is only necessary to perform the Mellin transform of (22), to obtain

2Dk
µ,µ′

(
a
c
b
d

)
:=
(
2Φk

µ, C
(
a
c
b
d

)
2Φk

µ′

)
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= e−iπk2i(µ
′−µ)Γ(k−iµ)Γ(k+iµ′)

2π Γ(2k)

× b−2k
(
−id

b

)−k+iµ(−ia

b

)−k−iµ′
2F1

(
k−iµ, k+iµ′

2k
;

1

ad

)
. (23)

One should note that the complex power functions are evaluated along the imaginary axis, in
the principal sheet where the cut is chosen along the negative real half-axis.

Let us call this the Dk-hyperbolic basis (not to confuse it later on with hyperbolic LCTs),
because it lies the D+

k representation of Sp(2,R). The corresponding LCT with the integral
kernel (23) that transform functions f = {f(µ)}µ∈R ∈ L2(R) unitarily, are

fM ≡ CM : f = 2Dkf , fM(µ) ≡ (fM)(µ) =

∫ ∞
−∞

dµ′ 2Dk
µ,µ′(M)f(µ′).

Since Jγ1 and Jγ2 are related by similarity through C 1√
2

(
1
1
−1
1

)
(the square root of the Fourier

transform), we obtain an equivalent integral LCT,

1Dk
µ,µ′

(
a b

c d

)
= 2Dk

µ,µ′
1
2

(
a+b+c+d −a+b−c+d
−a−b+c+d a−b−c+d

)
. (24)

In this section we have thus shown three faces of LCTs: the summation kernel (13) for vectors
{fn}n∈Z+

0
, the ‘radial’ canonical transform integral kernel (18) for functions {f(r)}r∈R+ and its

Hankel transform (21), and the (apparently unknown) Dk-hyperbolic transforms (23) and (24)
for functions {f(µ)}µ∈R. These various functions are in fact the coordinates of the same abstract
vector f as fn = 0〈k, k+n|f〉, f(r) = −〈k, r|f〉, f(µ) = 1〈k, µ|f〉, etc. In this sense, all faces of
the Hilbert space vector f are related, and so are their LCTs.

4 The Cε
s canonical transforms

Let us now consider the range γ < −1
4 of the so(2,1) generators in (5), corresponding to cen-

tripetal potentials, which also stem from the separation of D = 2 coordinates in two disjoint
patches of hyperbolic coordinates. One patch (indicated by σ = +1) is x = ρ cosh ζ, y = ρ sinh ζ,
and the other (σ = −1) is x = ρ sinh ζ, y = ρ cosh ζ, for ρ, ζ ∈ R. Fourier expansion in ζ pro-

vides ∂2ζ 7→ −ζ
2
, ζ ∈ R that yields a centripetal term in the generators (5). In contrast to

radial coordinates, which follow the subgroup reduction Sp(4,R) ⊃ SO(2)⊗ Sp(2,R), hyperbolic
coordinates conform to the reduction Sp(4,R) ⊃ O(1, 1) ⊗ Sp(2,R), where O(1, 1) contains the

discrete reflections
(
0
1

1
0

)
that interchanges the two values of σ, and

(
1
0

0
−1

)
that allows the

reduction by even or odd functions in ρ, so the range of this hyperbolic radius is reduced to
r = |ρ| ∈ [0,∞) and σ = sign ρ. The Hilbert spaces of functions for the range of representations
γ < −1

4 consists of functions −〈r, σ|f〉 ≡ f(r, σ) ≡ fσ(r) whose inner product we can represent
with two-vector notation

f(r) ≡
(
f+1

f−1

)
(r) ∈ L22(R+), (f ,g) :=

∑
σ∈{+1,−1}

∫ ∞
0

dr fσ(r)∗gσ(r),

taking care to note that σ is an index of the basis functions |r, σ〉− stemming from the two
hyperbolic coordinate patches. When γ = −1

4 , the Bargmann index in (8) is k = 1
2 ; for γ < −1

4 ,
k becomes complex,

k = 1
2 + is, s ∈ R, κ = 1

4 + s2 ≥ 1
4
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and determines these representations to belong to the Bargmann continuous nonexceptional se-
ries Cεs , where ε ∈ {0, 12} distinguishes between vector and spinor (two-fold cover) representations
of SO(2, 1), and in the SO(2) reduction the index m ≡ ε mod 1 is unrestricted2.

The (reduced) list of eigenfunctions of the generators JγX in (5) is now (cf. (9)),

0Φε,k
m (r) =

gε(k)

π
√
r

(
(−1)m−ε

√
2Γ(k−m)Γ(1−k−m)Wm,k−1/2(r

2)

2Γ(k+m)Γ(1−k+m)W−m,k−1/2(r
2)

)
,

m+ε ∈ Z, k = 1
2 + is, g0(k) = coshπs, g1/2(k) = sinhπs;

−Φε,k
ρ (r) =

(
δ(ρ−r)

0

)
for ρ ≥ 0, and

(
0

δ(|ρ|−r)

)
for ρ < 0; (25)

2Φε,k
τ,µ(r) =

1√
2π

(
1

τ

)
r−1/2+iµ, µ ∈ R, τ ∈ {+1,−1};

where Wλ,µ is a Whittaker function. The two components of the eigenfunction are distinguished

by the non-symplectic matrix
(
1
0

0
−1

)
∈ O(1, 1), which on the algebra generators (5) and (7)

can be interpreted as 2× 2 matrix operators Jγ0 =
(
Jγ0
0

0
−Jγ0

)
, Jγ1 =

(
Jγ1
0

0
−Jγ1

)
, Jγ2 =

(
Jγ2
0

0
Jγ2

)
,

Jγ± =
(
Jγ±
0

0
−Jγ±

)
.

4.1 Elliptic basis: discrete Cε
s-LCTs

The action of the LCT operator CM on the discrete eigenfunction basis of Jγ0 , 0Φε,k
m (r), for

m− ε ∈ Z will be that of an infinite matrix Cε,k
M = ‖Cε,k

M;m,m′‖. The transformation of this basis
under Sp(2,R) can be again factorized into the right-ordered product in (10), so that as in (11),
we now have

(
C
(
a
c
b
d

)
0Φε,k

m

)
σ

(r) =

(
a−ib

a+ib

)m exp
(

iσr2 ac+bd
2(a2+b2)

)
(a2 + b2)1/4

0Φε,k
m,σ

(
r√
a2+b2

)
, (26)

where the component sign σ only appears in the Gaussian exponent. This relation shows that,
in the same way as harmonic oscillator functions reproduce under the LCTs (3), and Bessel
functions under radial Dk LCTs (16), the Whittaker functions in (26) do likewise under the Cεs
continuous-series LCTs.

But the following step of finding the LCT matrix elements as in (12), results in a sum of
integrals of two Whittaker functions and an oscillating Gaussian, which the authors [6] could
not solve. As in (13) this result was obtained before with the traditional m-shift operators by
Bargmann [2],

0Cε,km,m′
(
a
c
b
d

)
:=
(
0Φε,k

m , C
(
a
c
b
d

)
0Φε,k

m′

)
=
∑
σ

∫ ∞
0

dr · · ·

for m≥m′
=

22m
′

m′!

√
Γ(k+m)Γ(1−k+m)

Γ(k+m)Γ(1−k+m)

[(a−d)+i(b+c)]m−m
′

[(a+d)+i(b−c)]m+m′

× 2F1

(
k−m′, 1−k−m′

1+m−m′
;−1

4(a2+b2+c2+d2−2)

)
,

for m≤m′
= (−1)m

′−m 22m

m!

√
Γ(k+m′)Γ(1−k+m′)

Γ(k+m)Γ(1−k+m)

[(a−d)−i(b+c)]m
′−m

[(a+d)+i(b−c)]m′+m

2I.M. Gel’fand and M.A. Năımark called this the principal representation series [8, 21].
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× 2F1

(
k−m, 1−k−m

1+m′−m
;−1

4(a2+b2+c2+d2−2)

)
.

As in (14), but now for infinite vectors of discrete components, f = {fm}m−ε∈Z, the LCT is

fM ≡ CM : f = 0Cε,k
M f , fM;m ≡ (fM)m =

∞∑
m′=−∞

0Cε,km,m′(M)fm′ ,

and is unitary in the Hilbert space of sequences `2(Z).

4.2 Parabolic basis: radial Cε
s-LCTs

The action of the canonical transform operators CM on functions −〈σ, r|f〉 = fσ(r) ∈ L22(R+) will
be represented in the continuous series Cεs by a 2× 2 matrix of integral kernels

fM(r) ≡
(
CM :

(
f+1

f−1

))
(r) =

∫ ∞
0

dr′ −Cε,k
M (r, r′)f(r′),

−Cε,k
M (r, r′) =

(
−Cε,k

M;+1,+1(r, r
′) −Cε,k

M;+1,−1(r, r
′)

−Cε,k
M;−1,+1(r, r

′) −Cε,k
M;−1,−1(r, r

′)

)
. (27)

Here we resort to the reduction Sp(4,R) ⊃ O(1, 1) ⊗ Sp(2,R) as presented in [27], with the
precisions made in [6, equations (2.15)] regarding ranges and phases. For the non-exceptional
continuous series of representations Cεs , where κ = k(1−k) ≥ 1

4 and

ε = 0 : hε = 1, k−1
2 = is, s ≥ 0,

ε = 1
2 : hε = −1, k−1

2 = is, s > 0, (28)

where gε(k) is given in (25).

The integral kernel elements of Cε,k
M are then expressed as

(−Cε,k
M )σ,σ′(r, r

′) = GM;σ,σ′(r, r
′)Hε,k

σ,σ′(−rr
′/b), (29)

GM;σ,σ′(r, r
′) :=

√
rr′

2π |b|
exp

(
i
dσr2 + aσ′r′ 2

2b

)
, (30)

Hε,k
+1,+1(ζ) := iπ

(
e−πsH

(1)
2is (ζ+i0+)− hεeπsH(2)

2is (ζ−i0+)
)

= hεH
ε,k
−1,−1(ζ) = hεH

ε,k
+1,+1(−ζ) = Hε,1−k

+1,+1(ζ), (31)

Hε,k
+1,−1(ζ) := 4(−sign ζ)gε(k)K2is(|ζ|)

= hεH
ε,k
−1,+1(ζ) = hεH

ε,k
+1,−1(−ζ) = hεH

ε,1−k
+1,−1(ζ), (32)

where H
(1)
ν and H

(2)
ν are the Hankel functions of the first and second kind valued above and

below the branch cut, Kν is the Macdonald function, while gε(k) and hε(k) are given in (28).

The 2 × 2 kernel LCT in (27), Cε,k
M;σ,σ′(r, r

′), r, r′ ∈ R+, can be written also as Cε,kM (ρ, ρ′),
with ρ := σr ∈ R. In that case, the kernel Cεs has been expressed [6] in terms of confluent
hypergeometric functions,

Cε,kM (ρ, ρ′) =
(sign b)2εh

(1+sign ρ′)/2
ε gε(k)

π|b|
exp

(
i
dσρ2 − 2ηρρ′ + aσ′ρ′ 2

2b

)√
ρρ′

×

{[
Γ(1−2k)

∣∣∣∣ρρ′2b

∣∣∣∣2k−1 1F1

(
2k−1

2

4k−1
;

2iρρ′

ηb

)]
+ [k ↔ 1−k]

}
, (33)
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where σ = sign ρ, σ′ = sign ρ′; η = 1 for σ = σ′ and η = −i for σ 6= σ′. In particular, for b = 0,

lim
b→0

−Cε,kM (ρ, ρ′) =
(sign a)2k√
|a|

exp

(
i sign ρ

cρ2

2a

)
δ(ρ′ − ρ/|a|).

We are not addressing the Bargmann exceptional representation series, for which in (28) one
has k = 1

2 + s, with 0 < s < 1
2 overlapping the exceptional interval, and for which (29)–(32)

appears to be a valid integral transform. Treatment of the exceptional continuous series can be
seen in [5].

4.3 Hyperbolic basis and their Cε
s-LCTs

The eigenfunctions 2Φε,k
τ,µ(r) of Jγ2 in the continuous series representations form a generalized

basis for a Hilbert space L22(R), and are given in (25) with τ ∈ {+1,−1}, µ ∈ R and r ∈ R+.
They can provide an LCT form with a 2 × 2 matrix of integral kernels that are the double
Mellin transforms of the LCT kernel in the position basis given by (29)–(32) or (33). Using the
technique of Basu and Majumdar on the latter, [6] reports

2Cε,kτ,µ;τ ′,µ′
(
a
c
b
d

)
:=
(
2Φε,k
τ,µ, C

(
a
c
b
d

)
2Φε,k
τ ′,µ′

)
=

(−sign b)2εgε(k)

2π

[(
αk +

ττ ′hε
αk

+ τ ′βk +
τhε
βk

)
Tk

+

(
hεα1−k +

ττ ′

α1−k
+ τ ′β1−k +

τhε
β1−k

)
T1−k

]
,

where

Tk :=
Γ(1− 2k) Γ(k − iµ) Γ(k + iµ′)

|a|k−iµ′ |b|i(µ−µ′)|d|k−iµ 2F1

(
k−iµ, k+iµ′

2k
;

1

ad

)
,

αk := exp
(
i12π[(k + iµ′) sign ab+ (k − iµ) sign bd]

)
,

βk := exp
(
i12π[−(k + iµ′) sign ab+ (k − iµ) sign bd]

)
,

and where gε(k) and hε are given in (28).
Note that the two components of this L22(R) are distinct from the two components of the

Hilbert space L22(R+) in the parabolic case of the previous subsection. In this hyperbolic Cεs
representation, LCTs are maps of two-component functions by the integral

fM ≡ CM : f = 2Cε,kf ,

fM;τ (µ) ≡ (fM)τ (µ) =
∑

τ ′∈{−1,1}

∫ ∞
−∞

dµ′ 2Cε,kτ,µ;τ ′µ′(M)fτ ′(µ
′)

and is unitary in that Hilbert space.

5 Concluding remarks

The recompilation of the six forms that LCTs have in the elliptic, parabolic and hyperbolic
subgroup bases of Sp(2,R) in the Dk and Cεs representation series, has been made for the purpose
of placing the better-known LCT forms, i.e., the ‘linear’ (3), the ‘radial’ (17), and the (lesser
known) ‘hyperbolic’ (29)–(32), in the general context of group representation theory. We still
have to justify the appellative of canonical though, because it is a term associated with the
preservation of area elements in classical phase space, the conservation of energy in paraxial
wave optics, and of uncertainty in quantum mechanics.
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Classically, the 2×2 symplectic matrix M =
(
a
c
b
d

)
in (1) acts on the phase-space coordinates,

written (r, p)> as if they were a 2-vector. The correspondence (2) carries its action as a (2+1)-
Lorentz transformation of the 3-vector of phase space functions

(ξ0, ξ1, ξ2)
> :=

(
1
4(p2+γ/r2+r2), 14(p2+γ/r2−r2), 12rp

)>
, (34)

which close under Poisson brackets into the same algebra, with i[·, ·] 7→ {·, ·}, as the operators
{Jγi }2i=0 in (6),

{ξ1, ξ2} = −ξ0, {ξ2, ξ0} = ξ1, {ξ0, ξ1} = ξ2.

We may consider these relations as the Berezin brackets defining the Lorentz algebra. The
square length of the vector (34) is ξ21 + ξ22 − ξ20 = −1

4γ [instead of −1
4γ + 3

16 in the operator
case (8)], and this surface is conserved under Lorentz transformations. For centrifugal γ > 0 or
centripetal γ < 0 these surfaces are respectively a two-sheeted or one-sheeted hyperboloid, and
a cone for γ = 0; these surfaces are also symplectic manifolds. Since classically r = ±

√
2(ξ0−ξ1)

and p = 2ξ2/r, a linear transformation in the ξ’s is nonlinear in (r, p)>, Moshinsky termed these
nonlinear canonical transformations [14, 18].

We count the Sp(2,R) canonical transforms collected here as different faces of LCTs acting on
different function Hilbert spaces: `2(Z+

0 ) and `2(Z) in the elliptic basis of D+
k and Cεs representa-

tions respectively; similarly, L2(R+) and L22(R+) in the parabolic basis, and L2(R) and L22(R) in
the hyperbolic basis. Of course, the best known ones are those in the eigenbasis of Jγ− = 1

2r
2 un-

derstood as the position observable, which include the ‘radial’ LCTs in the D+
k , particularly the

‘linear’ transform kernels written by Collins [7] and Moshinsky et al. [17], which are genuinely fit
to describe the signals or wavefunctions that traverse a paraxial optical or quantum mechanical
system. For the same parabolic subgroup, the ‘hyperbolic’ LCTs in the Cεs representations have
found no proper application, save their use in [6] to find all SL(2,R) group representations in all
subgroup and mixed bases reported there. Widely used in other contexts, the Bargmann results
of 1947 [2] that provide the matrix representations of the Lorentz group, uses the elliptic sub-
group to provide the row indices. This has been used in [1] to propose a covariant discretization
for axis-symmetric D = 2 systems, where the limit of the discrete to the continuous radial model
is pointedly addressed. Among the six LCT forms presented above, similar limits from elliptic
or hyperbolic to parabolic subgroup bases should occur in all representations. Representations
referred to the hyperbolic subgroup were investigated by Mukunda and Radhakrishnan [20] but
have also failed to be associated with some model of physical system.

Uncertainty relations are preserved under all LCTs, but they stem from so(2, 1) – not from the
Heisenberg–Weyl algebra – and involve the coordinate 1

2r
2 > 0. Recall that the mean of a self-

adjoint operator J in a wavefield ψ is ψ := (ψ, Jψ), with the inner product appropriate to its
Hilbert space; its dispersion is then ∆ψ(J) := ‖(J−ψ)ψ‖2. Note also that from the commutator

between J− = 1
2r

2 and its (Fourier) C
(
0
1
−1
0

)
transform operator J+, is [J−, J+] = 2iJ2, and it

follows that

∆ψ(J−)∆ψ(J+) = ∆ψ(J−)∆
ψ̃

(J−) ≥ 1
4 |(ψ, J2ψ)|2,

where ψ̃ = C
(
0
1
−1
0

)
ψ. In the special case of the original LCT (3) identified by (20), this can

be written in the form of a Robertson uncertainty relation 〈r2〉ψ〈p2〉ψ ≥ 1
4〈(rp+pr)〉

2
ψ [24].

We have not addressed in any depth the exceptional interval 0 < k < 1, i.e., −1
4 ≤ γ < 3

4
characterizing weak centripetal and centrifugal potentials, which Bargmann treated with a non-
local measure [2, 5]. Also there, the discrete and exceptional series overlap, and its generators JγX
have one-parameter families of self-adjoint extensions [30], with the result that their spectra are
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generally not equally spaced, save for the Friedricks extension in the Dk representation series.
The various limits to the point k = 1

2 are particularly troublesome [6].

Perhaps most important is the computer use of LCTs to model physical systems, pursued
since the 1990s, in a quest that is running into hundreds of references [3, 12, 13, 22] where
finite data sets or pixellated images are subject to LCT matrices of N ×N . Of course, we know
that noncompact groups such as Sp(2,R) cannot have finite-dimensional unitary representations.
So, approximations have to be made, either through sampling functions and kernels, or using
the finite-dimensional k < 0 representations of the Dk series mentioned in Section 2; in both
strategies the matrices will not be unitary, but only in the second will they faithfully represent
the LCT group Sp(2,R). Perhaps the best approximation strategy is to use a truncated elliptic
basis {0Φk

m(r)}k+N−1m=k of functions that are radial oscillator modes; the matrices would by neither
unitary nor would faithfully represent the group; but if the signal contains mostly low energy
modes it could be fairly approximated by the first N modes, and with an inherent N →∞ limit
to a representation that is both unitary and faithful.
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Académico of the Coordinación de la Investigación Cient́ıfica, Universidad Nacional Autónoma
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and SEP-CONACyT 79899.

References

[1] Atakishiyev N.M., Nagiyev S.M., Vicent L.E., Wolf K.B., Covariant discretization of axis-symmetric linear
optical systems, J. Opt. Soc. Amer. A 17 (2000), 2301–2314.

[2] Bargmann V., Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568–
640.
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