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We used a network theory approach, based on the dynamic core hypothesis (DCH), to study
the thalamo-cortical loop (TCL) and its subsets regarding their role in consciousness. We
used the Collation of Connectivity Data on the Macaque Brain (CoCoMac) and calculated the
degree distributions, transmission coefficients, connection density, clustering coefficients,
path lengths, and modularity. Our results showed that the TCL and cortex exhibit exponential
degree distributions, and the ratio of efferent/afferent connections in the thalamus is smaller
than 1.0 This may support the notion that the connections received by the thalamus from
the cortex play a key role in improving information processing in the conscious states. The
average values of transmission coefficients for the cortex and TCL were found to be equal to
1.49 and 1.28, respectively. This indicates that: (i) the cortex is a system that mainly trans-
mits information outward rather than receives it; (ii) the TCL is a cooperative system that
performs this in a give-and-take manner; (iii) connections of the cortex are denser than those
in the TCL, showing that the cortex might be advantageous for processing of complicated
information during consciousness; (iv) both the TCL and cortex are small-world systems; (v)
the scaled value of the characteristic path length in the TCL is smaller than that in the cortex,
which implies a higher speed potential for information processing in the TCL than in the
cortex; (vi) the scaled value of the clustering coefficient is nearly the same in the cortex and
TCL, and (vii) the number of modules is 5 in the cortex and 6 in the TCL.

Keywords: clustering coefficient, characteristic path length, transmission coefficient,

modularity, small-world, brain networks.

INTRODUCTION

One of the main problems in neuroscience is to find the
neuronal correlate of consciousness (NCC). In order to
deal with this problem, deep researches were carried
out within the past two decades, and three main brain
systems having the potential to produce consciousness
have been proposed. (i) The thalamo-cortical loop
(TCL) as a network containing interconnected cortical
areas and thalamic nuclei (thalamo-cortico-thalamic
connections). The widespread recursive interactions
among neuronal populations in the TCL are suggested
to be crucial for consciousness [1]. (ii) The cortex. It
has been suggested that the actual NCC is exclusively
the cortex. In particular, Crick and Koch [2] speculated
that the actual NCC may be “only a small set of neurons,
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especially those projecting from the back of the cortex
to its frontal part”. (iii) Thalamus. Although most
previous studies debated on the first two possibilities,
Ward [3] proposed the ”thalamic dynamic core theory
of conscious experience,” which emphasized the role
of the thalamus in producing primary consciousness.
Moreover, one of the main hypotheses concerning
consciousness is the dynamic core hypothesis (DCH).

According to the DCH, since conscious experiences
are integrated and differentiated simultaneously, its
neuronal correlates should also have these features at
the structural level [4-6]. If a system is responsible
for consciousness, it should have these attributes
at the structural level in order to produce different
integrated contents over time. One way to study the
structural characteristics of complex networks is the
network theory approach. Using the network theory
provides an overview on the functions of networks
based on their structures. Recently, network studies
have been carried out on some brain systems. For
example, Modha and Singh [7] studied network
structural architecture of the macaque brain. Sporns
and Zwi [8] focused on the cortex and studied its
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small-worldness. Also, Hagmann et al. [4] studied the
human cerebral cortex and observed a correspondence
between structural and functional connectivities
based on the graph theory. Because of the suggested
role of the TCL in consciousness, network studies
would be advantageous. Scannell et al. [5] studied
experimentally the cortico-thalamic system
organization in the cat with a collation method and
then analyzed its global features that are not apparent
in the primary connection data.

In our research, we used the network theory approach
to study the TCL and its subsets, i.e., cortex and
thalamus, regarding their role in consciousness. For this
purpose, we used the data on the macaque cortex and
the TCL anatomical connections [7]. This information is
presented in the Collation of Connectivity Data on the
Macaque Brain (CoCoMac) database [6]. We calculated
the degree distributions, transmission coefficients,
connection density, small-worldness, and modularity in
the TCL, cortex, and thalamus. We finally discussed the
above-mentioned measures in order to uncover the role
of these areas in consciousness.

METHODS

Dataset. The data used in our study are anatomical
connections of TCL and cortex of the macaque. These
data is a part of the network presented by Modha and
Singh [7]. They constructed a macaque brain network
from the CoCoMac neuro in formatic dataset [6, 9,
10]. Their network contained 383 regions of the cor-
tex, thalamus, and basal ganglia. They used the con-
nectivity information of the whole brain, while we fo-
cused on TCL and cortex connections in our study.
For this purpose, we selected connections between the
thalamus and cortex. This means that we selected the
edges whose sources and destination nodes are loca-
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lized in the thalamus or cortex. Based on the edge re-
lations presented [7], we constructed a 340x340 bina-
ry connection matrix (Fig. 1). The nodes with indices
from 1 to 73 represent thalamus regions, and nodes
with indices from 74 to 340 represent cortex regions.
In this figure, three sub-networks, i.e., thalamo-corti-
cal, cortico-thalamic, and cortico-cortical (cortex), are
shown.

Network Analysis. In this paper, we used Mat-
lab 7.8 for calculations of the degree distribution and
transmission coefficient. The remaining analyses were
done using Brain Connectivity Toolbox (BCT) [11].

Degree Distribution. The degree of a node K is the
number of its connections with other nodes:

kl':zjalj, (1)

when link (i,j) exists, @; = 1; otherwise, a; = 0.

The degree distribution is the probability distri-
bution of these degrees over the whole network. Cu-
mulative degree distribution is the fraction of nodes
with degrees greater than or equal to k. For a directed
network, in-degree and out-degree are defined as the
number of edges coming into/out of a vertex in a di-
rected graph.

Transmission Coefficient. In order to locally char-
acterize inputs and outputs of a specific brain area
(which is represented by a node in the brain graph),
we use a simple measure known as the “transmission
coefficient.” Based on the definition, it is the relative
number of efferents to afferents (in the graph theory
known as out-degree and in-degree) [12].

For a given area (node)i, the transmission index (7))
is
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Fig. 1. Connectivity matrix of the thalamo-
cortical loop (TCL). Sub-networks of the
TCL are shown.
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where

A, ;=1 when connection from area i to area j exists, and
AU = 0 when connection from area i to area  is absent,
e, and a, are efferent and afferent connections; ¢, and
a, are indices for information on efferents and affer-
ents, respectively; 7> (.5 means that the area i has
more efferents than afferents; for 7.< 0.5, the situation
is opposite [13].

Modularity.The modules in a network are its
divisions into non-overlapping groups of nodes so that
the number of within-group edges is maximized, and
at the same time the number of between-group edges
is minimized.

The modularity Q can be defined as a cost function:

Q = (fraction of the edges within communities) —
— (expected fraction of such edges) 3)

where a community is assumed to be groups of nodes
in a network that are more densely connected internally
than with the rest of the nodes. For a directed network,
the equivalent of Eq. (3) is

k%nk?ut

4)

m

:| 561',Cja

where m is the total number of edges in the network,
which will have an edge from vertex j to vertex i
with the probability (k;'”-kj‘”")/m ; k" and kj”“’ are the
in- and out-degrees of the vertices, respectively; 4,
represents the connectivity between i and j and will
be equal to 1 if there is an edge from i to j and equal
to zero otherwise, C. is the label of the community to
which vertex i is assigned, and ¢, is the Kronecker
delta symbol. Then, a search algorithm is needed in
order to find the optimum division of the network into
communities, {C}. The optimization process is based
on a Q cost function; the best division makes the Q
maximum.In our study, we used the Brain Connectivity
Toolbox (BCT) for calculation of modularity [11].
In this toolbox, determination of optimized module
structures is based on the Newman optimization
method [14].

Small-Worldness. When studying complex networks,
one of the most interesting phenomena is “small-
worldness”, introduced by Watts and Strogatz [15].
Small-world networks have two main key features, a
high “clustering coefficient” (similar to that in regular
networks) and a low “characteristic path length” (similar
to that in random networks). These two attributes provide
small-world networks with some benefits in processing
and transmission of information [16].

Q=23ya,-
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Based on the definition, the node clustering
coefficient y (v) is the ratio of existing connections
among the f neighbors and the maximal possible
number of such connections (f ?>-f ). The clustering
coefficient y of the graph is the average of all node
clustering coefficients [17].

An ordered sequence of distinct edges, which links
a source vertex j to a target vertex i, is called a “path.”
The number of distinct directed edges in the path is
defined as the “path length.” The average length of
the shortest paths is defined as the “characteristic path
length” (4) of a graph.

In a spectrum of networks, ranging from totally
disordered to totally regular, random and lattice
networks are the two extreme topologies. For
evaluating the randomness or regularity of a given
network, it is more informative to compare 4 and y
of that network with their corresponding values in
the two extreme topologies, i.e., random and lattice
networks. Hence, scaled values of 4 and y for a given
network of unknown topology are calculated as

Asr:i = (ﬂﬂetwo’rk - ﬂfandm)f’("liattice - )lfando:rn)a(s)

YSCI = (Ynetwerk o Yrandm)z(yiattice o Yrandm)’ (6)

where A, and y_, will be between 0 and 1 in
networks that are neither entirely random nor lattice.

We used the BCT for calculating of the clustering
coefficient and path length [11].

RESULTS

The above-mentioned network measures and statistics
were calculated for the macaque TCL data. Figure 2
shows the cumulative degree distribution in the TCL
and cortex. During calculation of this measure, we did
not take into consideration the direction of the edges.
It is apparent from the Fig. 2 that the patterns of the
degree distribution are nearly the same for the TCL
and cortex. In order to consider the edge directions,
in-degree and out-degree distributions of the TCL
were calculated and are shown in Fig. 3. As mentioned
before, nodes with indices 1 to 73 correspond to the
thalamus regions, and the remainder ones correspond
to the cortex regions. It can be observed that the out-
degrees for the thalamus regions are lower than the
average value over the whole TCL. Figure 4 shows
distribution of transmission coefficient, which is the
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Fig. 2. Cumulative degree distributions for the TCL and cortex (A and B, respectively).
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Fig. 3. In-degree and out-degree distributions for the TCL and cortex (A and B, respectively).
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ratio of out-degree to in-degree links. From this figure,
it can be seen that transmission coefficients for most
thalamic regions are smaller than 1. Figure 5 shows
results of comparison among the connection densities
in the TCL, cortex, and thalamus. It is obvious from
this figure that the connections in the cortex are denser
than those in both TCL and thalamus.

In Table 1, results of small-worldness analysis are
presented for TCL and cortex networks, as well as their
corresponding random and lattice networks. Random
and lattice networks have the same nodes and edges
with the original networks. The normalized difference
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(difference of two variables divided by the larger one)
is 0.01. As is seen, the difference between clustering
coefficients in the TCL and cortex is smaller. The
scaled characteristic path lengths measure is lower
for the TCL than for the cortex (their normalized
difference is 0.28).

Results of modularity analysis are presented in
Table 2. The number of modules is 6 for TCL and 5
for the cortex. The normalization difference between
modularity indices of these two is 0.061.
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F i g. 4. Distribution of the transmission coefficients in the TCL.
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DISCUSSION

The majority of works showed that higher brain
functions rely on the activity of large populations
of neurons in TCL distributed networks [18, 19]. In
our study, we used graph theory methods to study the
TCL, cortex, and thalamus in order to investigate their
roles in consciousness in the sense of DCH.

In general, our results show that: (i) The TCL and
cortex exhibit exponential-degree distributions (see
Fig. 2). The patterns of degree distribution for the TCL
and cortex are the same. This result is in accordance
with the data of Modha and Singh [7]; in their work,
they studied whole brain networks. Hagmann et al. [4]
calculated the degree distribution of the human cortex,
which exhibited a normal-like distribution. It seems
that the type of data, the method of data acquisition,
and the resolution of the data may affect the results

Table 1. Small-world properties of the macaque TCL and cortex
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Fig. 5. Connection densities in the cortex, TCL and thalamus.

P u c. 5. lllinpHOCTI 3B’S3KIB y KOpi TaJlaMO-KOPTHUKANIBHIH meTi
Ta TaJaMmyci.

and cause such differences. It should be noted that the
Modha and Singh matrix used in our study is redundant
(i.e., it includes overlapping regions that are difficult
to interpret correctly within the framework of a single
connectivity matrix). Moreover, it was extracted from
the CoCoMac using an oversimplified technique that
ignored contradictory statements in the database [20,
21].

(i1) The out-degrees of thalamus regions are smaller
than the out-degree average over the TCL. This
shows that the thalamus sends a smaller number of
connections compared with other parts of the network
(see Fig.3). On the other hand, Fig. 4 shows that
the ratio of efferent to afferent connections in the
thalamus (thalamo-thalamic network) is less than
1(with average 0.72), which indicates that afferent
connections are more numerous than efferent ones. It
seems that the reciprocal connections received by the
thalamus from the cortex play a key role in improving
information processing in the dynamic core, which
will produce conscious states. The average values of
transmission coefficients for the cortex and TCL are
1.49 and 1.28, respectively. This explains the cortex

T a6 a1 un s l. Baactupocti moaycy ,,1aii-Ta-0epu” B TaJaM0-KOPTHKAJbHIl neT1i Ta Kopi Makaka

Region Characteristic path length (L) Clustering coefficient (y)
Cortex:
Original network 2.53 0.34
Lattice 11.51 0.71
Random 23 0.06
TCL:
Original network 2.57 0.33
Lattice 13.87 0.71
Random 2.37 0.049
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Table 2. Modularity analysis of the TCL and cortex

Ta6uauuysda2. AHajIi3 MOAYIbHOCTI TAJIAMO-KOPTHKAJIbHOI IIET/Ii Ta KOPH

Region Number of modules Modularity (Q)
Macaque cortex 5 0.363
Macaque TCL 6 0.341

as a system which, on average, transmits information
outward rather than receives it and interprets the TCL
as a cooperative system that functions in a give-and-
take manner.

(ii1) Connections in the cortex are denser than
those in the TCL.This suggests that the cortex might
be advantageous for processing of complicated
information in the state of consciousness (see Fig.5).
Both the TCL and cortex are small-world (see Table 1).
Previous studies in humans, macaques, and cats have
demonstrated the small-worldness of the cortex, but
no study has evaluated this property in the TCL [5].
Since cortical and TCL networks have different sizes,
we computed the scaled values of these two measures
according to the corresponding random and regular
networks for comparing their clustering coefficients
and path lengths. The scaled clustering coefficients
are nearly the same in the cortex and TCL (see Table
1).We found that scaled value of the characteristic path
length in the TCL is smaller than that in the cortex
(see Table 1), which may result from a higher speed of
information processing in the TCL than in the cortex.
The number of modules is 5 in the cortex and 6 in the
TCL. This supports the notion of specialization of the
TCL for performing particular information processing
in consciousness according to the DCH.

Based on the results of our study, we suggest that
TCL is the most appropriate candidate in studying the
neural correlates of consciousness. While it has the
capability of high-speed information processing, its
sub-networks have interesting attributes. Intracortical
(cortico-cortical) connections transmit information
out more readily than receive it; the thalamus
receives reciprocal cortical connections that extend
the information processing in the dynamic core of
consciousness. As a future prospect, it might be
emphasized that using the network theory approach
may be the key to uncover the functional role of the
brain during cognitive behaviors, like consciousness
[22].
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3ACTOCYBAHHS TEOPIT MEPEX ITPU AHAJII3I
TAJIAMO-KOPTUKAJILHOIT TMETJII

! JTaGopartopisi HEpBOBHX i KOTHITHBHUX MPOLECiB
TexHnonoriyHoro yHiBepcuteTy Amipkabip, Terepan (Ipan).

2 JlabBoparopis kKiOepHETHKH i MOACTIOBAHHS Oi0JOTiIYHUX CH-
creM TexHonoridHoro yHiBepcutety Amipkabip, Terepan

(Ipan).
Peszwome

Mu npoananizyBaJn OpraHi3amiio TalxaMo-KOPTHKAIbHOI MMeTii
(TKII) i i1 KOMIIOHEHTIB, Bpax0OBYIOUH ii poib y 3a0e3meueHHi
CBiTOMOCTI, 3 BUKOPHUCTAHHSAM IIiXOAY, 3aCHOBAHOTO Ha TEO-
pii Mepex i rimore3i TMHAMIYHOTO sSApa. M1 BUKOpHUCTAIH 6a3y
JaHUX TIPO 3B’sA3KH B M03Ky Makaka (CoCoMac), po3paxysann
po3Ioainy piBHIB i 3HAUeHHS Koe(]ilieHTIB IMepenadi, MiJbHOC-
Ti 3B’sI3KiB, KOe(ili€HTIB KIacTepusamii, JOBXHHU 3B’ SI3KiB 1
MonanbHOCTi. OTpUMaHi pe3yIbTaTH MMOKa3alH, MO0 PO3IOIITH
piBaiB 1 TKII i kxopu € eKCIOHEHIIAIbHUMU, a BiTHOIICH-
HS KIIBKOCTEH edepeHTHHX Ta adepeHTHUX 3B A3KIB y Taia-
Myci € MeHIIUM oauHHLI. [{e miaTBepKy€e MOTOXKEHHS PO Te,
o 3B’SI3KHU, OJEp>KaHl KOPOIO BiJ Tamamyca, BiIirparoTh KO-
4YOBy pob B onTuMizamii o6poOku iHpopmanii B cTaHax Ha-
ABHOCTI cBimoMocTi. CepenHi 3HaUeHHS Koe]illieHTIB mepenadi
st kopu 1 TKIT nopiatoBanm 1.49 1 1.28 BiamoBinHO. 3rigHO
3 UM, TIO-IIepIe, Kopa € CHCTEMOI0, KOTpa B OLIbmIiN Mipi me-
penae iHpopmamito, Hixk oTpuMye ii; mo-npyre, TKII € xoome-
PaTHBHOIO CHCTEMOIO, sIKa BUKOHYE€ IIe B MOJyCi ,,Haif-Ta-0epu’;
MO-TPeTe, 3B A3KH B Kopi € minpHimumu, Hix y TKII, mo cBig-
YUTH NIPO NPOBIAHY POIb KOpH B 00podui ckimagHoi indopmamii
B CTaHi cBigoMmocTi; mo-ueTBepre, 1 TKII, i kopa e small-world-
CHUCTEMaMH; IO-I1’ATe, CKaJIsIpHEe 3HAUCHHS JOBKHUHHU 3B A3KIB y
TKII € meHmuM, Hi’K y KOpi, IO BKa3y€e Ha MOTCHI[IHHO OilbII
BHCOKY IIBHJKICTh 00po6ky indopmanii B TKII, Hixk y KOpi; TO-
mocTe, CKasIpHi 3HaueHHs KoedimienTta kimactepusanii B TKIT i
KOpi € MPUOIU3HO OJTHAKOBUMH, 1, IIO-CHOME, KITBKOCTI MOJYJiB
y xopi i TKII BigmoBigatoTs I’ATH i meECTH.
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