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Wavelet analysis of surface electromyogram (sEMG) signals has been investigated. Methods 
to remove noise before processing and further analysis are rather significant for these 
signals. The sEMG signals were estimated with the following steps, first, the obtained 
signal was decomposed using wavelet transform; then, decomposed coefficients were 
analyzed by threshold methods, and, finally, reconstruction was performed. Comparison of 
the Daubechies wavelet family for effective removing noise from the recorded sEMGs was 
executed preciously. As was found, wavelet transform db4 performs denoising best among 
the aforesaid wavelet family. Results inferred that Daubechies wavelet families (db4) were 
more suitable for the analysis of sEMG signals related to different upper limb motions, and 
a classification accuracy of 88.90% was achieved. Then, a statistical technique (one-way 
repeated factorial analysis) for the experimental coefficient was done to investigate the class 
separability among different motions. 
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INTRODUCTION

In order to use surface electromyogram (sEMG) signals 
as a diagnostic tool or control signals, their features are 
often extracted before proceeding to the classification 
stage. Attempts are being made to improve signal 
processing and to obtain more information about the 
examined muscles; various techniques have been 
applied in classification and processing of sEMGs 
[1-3]. In order to predict properties of sEMGs 
corresponding to voluntary muscle contractions, 
various models have been developed [4].

Wavelet transform was been rather extensively 
used in the analysis of EEG, but it began to be studied 
with respect to EMG only since last decade [5, 6], 
particularly in the engineering application such as 
the control of prosthetic devices. Our study was 
motivated by the fact that identification of a mother 
wavelet function is of the paramount significance 
since there is no universal mother wavelet applicable 
to all types of the signals [7]. We applied wavelet 
denoising technique to remove interference noise 
from the signals recorded from the biceps brachii and 

triceps brachii muscles of the subjects performing 
voluntary contractions. The general wavelet-based 
denoising procedures were composed of three steps, 
decomposition, determination of denoising wavelet’s 
detail coefficients, and reconstruction [8]. 

Different levels of mother wavelets (db2-db14) of 
the Daubechies family were extracted to obtain the 
useful resolution components from the sEMG signals. 
After removing the noise, time frequency domain 
analysis was introduced for analyzing the relation 
between voluntary contractions and sEMG signals. The 
most effective wavelet for sEMG denoising has been 
chosen by calculating the root mean square (RMS) and 
standard deviation (s.d.) values. The results showed that 
the wavelet function db4 works best among the used 
wavelets to remove noise from the sEMG signals. Our 
study presents the effects of mean frequency (MnF) 
and median frequency (MdF) in the EMG analysis, 
especially during voluntary contraction for analyzing 
the EMG-muscle force relationship. 

Further on, in order to analyze the effectiveness of 
sEMG signals for the muscles realizing independent 
motions, a statistical technique of analysis of the 
variance has been implemented, since it helps to 
identify the data pattern and to express these data 
in a way to highlight better their similarities and 
differences. 



NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4 357

WAVELET TRANSFORM-BASED CLASSIFICATION OF ELECTROMYOGRAM SIGNALS

METHODS

SEMG Signal Acquisition and Processing. Three 
adult volunteers were involved in the tests. Surface 
EMG signals were collected using a routine technique 
by noninvasive electrodes from the skin surface of 
the elbow joint-controlling arm muscles, mm. biceps 
brachii and triceps brachii. A differential amplifier 
was used. After amplification, signals were filtered 
using the corresponding software and hardware 
blocks. In both cases, a high-pass cutoff frequency was  
10 Hz, while a low-pass cutoff frequency of 500 Hz 
was kept [9-11]. Myograms were recorded from the 
above-mentioned muscles at low, medium and high 
voluntary contractions under isometric conditions. 
The block diagram for the system is shown in Fig. 1. 

Denoising Using Wavelet Analysis.  Wavelet 
transform is a capable transform with a flexible 
resolution in both time and frequency domains. The 
principle of wavelet denoising [12, 13] consists 
of decomposing the signal by performing wavelet, 
applying suitable thresholds to the detail coefficients, 
zeroing all coefficients below their associated 
thresholds, and, finally, reconstructing the denoised 
signal based on the modified detail coefficients. The 
underlying model for the surface EMG signal, f(n), is 
the superposition of the signal, s(n), and noise, e(n),

f(n) = s(n) + e(n)    (1)

Once the signal is passed through wavelet 
decomposition, a threshold needs to be selected for 
estimation of the signal of interest, s(n), from f(n) by 
discarding the corrupting noise e(n). 

Feature Extraction. As the sEMG signal is time- 
and force-dependent, and its amplitude varies randomly 
above and below zero values, the analysis becomes 
important in a way to define characteristic properties of 

the signal. A wide variety of features [14, 15] have been 
considered individually and in the group, representing 
both the sEMG amplitude and spectral content. So, 
feature extraction was done for interpretation of the 
recorded signal. All extracted features (s.d., variance, 
mean absolute value, etc.) have certain specific 
advantages, but the most commonly used technique for 
characterizing the power of the signal is the root mean 
square (RMS) value. This parameter gives the physical 
meaning of the signal, namely the real energy. Another 
frequency domain parameter, the median frequency 
(MdF), is described as the frequency that divides the 
power contained in the signal into two equal halves. The 
next parameter, mean frequency (MnF), is an average 
frequency that is calculated as the sum of products of 
the power spectrum and the frequency divided by the 
total sum of the power spectrum.

According to a few authors [16, 17], mathematical 
analysis has been done to investigate various 
parameters of the power spectral density, and the 
above-mentioned frequencies (MnF and MdF) were 
found to be most reliable. So, these techniques 
have been used in investigating the muscle force 
relationship.

RESULTS

Computer-Aided Analysis. In our study, the wavelet 
denoising-based analysis was performed by dividing 
the signal into two different types; low and high sEMG 
signals. The time and frequency domain analyses were 
done to analyze the relationship between myoelectric 
signals vs. different force levels developed by the 
human arm muscles. For this, an analytic study was 
initiated to investigate whether the relationship between 
the normalized sEMG signal vs. normalized force does 
exist, and whether it is dependent on the exercise level 
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F i g. 1 Block diagram for the procedure of wavelet analysis of surface electromyogram signals.

Р и с. 1. Діаграма процедури вейвлет-аналізу сигналів поверхневої електроміограми.
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and the rate of force production. First, the raw sEMG 
signals for different muscle voluntary contractions 
were acquired and processed using classical filters and 
the wavelet transform approach. The processing of the 
signal included the following steps: 

(i) Filtering the signal with band-pass filters (10 Hz 
and 500 Hz) updating the waveform graph cursors, to 
represent current values of the upper and lower cut-off 
frequencies.

(ii) Dual-channel spectral measurement on the 
prefiltered and filtered signals, to determine the 
frequency response of the filter.

(iii) Determination of different features (like 
RMS, s.d., energy of the signal, integrated EMG, and 

spectrogram). A front panel of the system is shown in 
Fig. 2.

Second, band-pass filtering and discrete wavelet 
transform (DWT) denoising of the sEMG signal were 
done. Different Daubechies wavelet functions (db2 
to db14) were utilized for the extraction of different 
decomposition coefficients and for reconstruction of 
the signal. Comparative data of raw sEMG signals 
for three subjects with extracted features for different 
muscular contraction forces are show in Table 1. To 
describe the results of these wavelet features, various 
representatives for denoised RMS are presented in 
Table 2.

The raw sEMG signals were used to calculate the 

F i g. 2. Labview-based code for feature extraction.

Р и с. 2. Labview-код для виділення ознак. 

T a b l e 1. Feature sets for different movement intensities (low – high); dependence on the position on the biceps (S1 – S3) 

Т а б л и ц я 1. Набори ознак для рухових феноменів різної інтенсивності; залежність від положення на біцепсі

Indices
low medium high

S1 S2 S3 S1 S2 S3 S1 S2 S3
RMS 0.08 0.10 0.14 0.32 0.28 0.31 0.59 0.54 0.47
MAV 0.06 0.07 0.10 0.23 0.20 0.23 0.41 0.36 0.31
VAR 0.004 0.007 0.018 0.09 0.07 0.09 0.34 0.27 0.21
s.d. 0.06 0.08 0.13 0.31 0.27 0.30 0.58 0.52 0.46
PSUM 0.008 0.014 0.013 0.147 0.116 0.141 0.607 0.426 0.257



NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4 359

WAVELET TRANSFORM-BASED CLASSIFICATION OF ELECTROMYOGRAM SIGNALS

RMS value, denoised power, and s.d. values for all 
wavelet functions suitable for biomedical signal 
processing with four levels of decomposition. Table 
2 gives the results of collations of the average RMS 
value, while Table 3 gives the average MdF values 
of all chosen wavelet functions for three subjects at 
various muscle contraction force levels.

According to the results shown in Table 2, wavelet 
functions from the Daubechies family showed 
satisfactory performances; it should be noted that the 
wavelet function db4 showed a better performance 
value than other wavelet functions. This means that 
wavelet function db4 (from the average column in 
Table 2) is capable of denoising sEMG signals better 
than other wavelet functions of the same family.

Surface Myoelectric Signals. The RMS values 
were computed for each signal and all force data files, 
as this is the parameter that reflects more completely 
physiological correlates of the behavior of motor units 
during muscle contraction, and this has been termed 
as a “gold” standard for analyzing surface EMG 

signals. Since the wavelet function db4 shows the 
better performance for the results, it was considered 
the best for the EMG denoising process and further 
feature extractions. In order to make a reliable signal 
and muscle force determination, the knowledge on 
the effects of time-varying factors on the mean (MnF) 
and median (MdF) frequencies is very important. 
Two time-varying factors, muscular force and muscle 
geometry, are the major factors in the activities related 
to dynamic muscle contractions (muscle force and/or 
geometry are changing). The average values of the 
MnF and MdF of the signal-force data from three 
different subjects with different forces of muscle 
contraction are displayed in Tables 3 and 4 These data 
are an aggregate of all of the contractions performed 
by all subjects during the experiment.

Now, during a sustained constant-force contraction, 
the amplitude of the detected sEMG signal increases 
as a function of time. In fact, this phenomenon of 
myoelectric signal-force relationship approaches 
towards linearity with a considerable confidence for 

T a b l e 2. Average RMSs of the Db family for different force levels (three subjects)

Т а б л и ц я 2. Середні значення параметра RMS для сімейства Daubechies (дані трьох тестованих суб’єктів)

Indices low medium high average

Db2 0.0362 0.0674 0.0998 0.0678

Db3 0.0492 0.0659 0.1016 0.0722

Db4 0.0502 0.0664 0.1008 0.0725

Db5 0.0491 0.0664 0.1000 0.0418

Db6 0.0491 0.0665 0.0980 0.0715

Db7 0.0491 0.0660 0.0987 0.0712

Db8 0.0491 0.0.069 0.0999 0.0716

Db9 0.0498 0.0661 0.0997 0.0718

Db10 0.0492 0.0666 0.0985 0.0714

Db11 0.0491 0.0663 0.0982 0.0712

Db12 0.0490 0.0657 0.0991 0.0713

Db13 0.0491 0.0658 0.0996 0.0715

Db14 0.0492 0.0663 0.0991 0.0715

T a b l e 3. Average median frequencies (MdF)) for diferent force levels (three subjects)

Т а б л и ц я 3. Середні значення медіан частот (MdF) для різних рівнів зусиль (n = 3)
Values low medium high average

median frequency 
(raw) 328.3 346.9 358.2 344.46

median frequency
(denoised) 142 226.4 288.4 218.93
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the biceps brachii, i.e., increasing level in terms of the 
MnF and MdF.

Linear Discrimination Analysis. A purpose of 
discriminant function analysis is understanding 
of the dataset resulting from the procedure; this 
can give insight into the relationship between the 
group membership and the variables used to predict 
such membership. This approach has been used to 
investigate independent variable mean differences 
between the groups formed by the dependent variable 
and also to determine the percent of variance in the 
dependent variable explained by the independents 
over and above the variance accounted for by control 
variables, using sequential discriminant analysis.

Discriminant function analysis is broken into a 
two-step process: (i) testing significance of a set of 
discriminant functions, and (ii) classification. 

First, the Wilks’ lambda is used to test if the 
discriminant model as a whole is significant or not. 
It is the ratio of within-group sums of squares to the 
total sums of squares. This is the proportion of the 
total variance in the discriminant scores not explained 
by the differences among groups. Second, if the F test 
shows the significance, the individual independent 
variable is assessed to see if it differs significantly 
from the group mean, and these are used to classify 
the dependent variable. The lambda varies from 0 to 
1, with 0 meaning that the group means differ from 
each other, and 1 meaning that all group means are 
the same. The associated significance value indicates 
whether the difference is significant. In our case, 
the Wilks’ lambda of 0.376 had a significant value  

(P = 0.012); thus, the group means appear to differ 
from each other. The associated χ2 statistic (6.354) 
tests the hypothesis that the means of the functions 
listed are equal across groups. The relatively small 
significance value (P  value) indicates that the 
discriminant function does better than chance at 
separating the groups. Since the value of P < 0.05, it 
can be concluded that the model is a good fit for the 
data significance.

Now, as we are interested in the relationship 
between a group of the independent variables and one 
categorical variable, it would be beneficial to know 
how many dimensions we would need to express this 
relationship. Using such relationship, we can predict 
a classification based on the independent variables or 
assess how well the independent variables separate 
the classification categories. The larger the Eigen 
value (0.376 in our study), the more the variance in 
the dependent variable is explained by this function. 
The canonical correlation (0.790) is the measure of 
association between the discriminant function and 
the dependent variable. The square of the canonical 
correlation coefficient is the percentage of the 
variance explained in the dependent variable. Finally, 
the classification table (also called a prediction 
matrix or table) used to assess the performance of 
the model is shown in Table 5. It helps to describe a 
simple summary of the number and percent of subjects 
classified correctly and incorrectly. 

Table 5 gives information about the actual group 
membership. So, it is concluded that the overall 
percentage of correct classification is 88.90%

T a b l e 4. Average mean frequencies(MnF) for different force levels

Т а б л и ц я 4. Усереднені значення середніх частот (MnF) для різних рівнів зусиль

Values low medium high average
mean frequency
(raw) 337.8 355.4 364.4 352.53

mean frequency
(denoised) 151.4 231.8 296.4 226.53

T a b l e 5. Linear discrimination analysis: classification results 

Т а б л и ц я 5. Результати класифікації за допомогою лінійного дискримінантного аналізу 

Values output
predicted group membership

total
0 1

Original

Count
0 6 0 6

1 1 2 3

%
0 100.0 0.0 100.0

1 33.3 66.7 100.0
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Looking at the columns in Table 5 instead of the 
rows, one can also calculate the  positive probability 
value:

(i) Positive probability value gives the confidence in 
the predicted results. A higher probability means that 
there is a high enough chance that a predicted model 
will actually be significant (85.71%).

(ii) The specificity is the percentage of correct 
classification predicted in the model (100.0%).

(iii) The sensitivity is the percentage of the model 
correctly predicted (66.70%).

Finally, the best average classification result 
calculated for the db4 wavelet family after applying 
linear discrimination analysis is 88.90%, whereas 
the worst classification result calculated for db5 is 
77.80%.

Data Statistical Method. We were interested in 
refining the experiment to increase its sensitivity for 
detecting differences in the dependent variables. An 
effective step to achieve better performance for the 
classification of signals recorded at different voluntary 
contractions is extraction of a feature from the raw data 
before performing the analysis of multiple activities. 
The analysis of extracted features further helps to 
identify the significance of the sEMG-muscular force 
relationship existing between these phenomena in 
voluntary contractions. 

To further  extend the study of  relat ional 

interpretations of selected operations of the arm, 
a statistic technique of analysis of variance of both 
experimental and reconstructed data was implemented 
for interpretation of the signal class separability in 
order to identify the best sEMG signal amplitude 
for different voluntary contractions optimum with 
respect to establish the best myoelectric signal-
force relationship. So, to appreciate the classification 
of the arm motions for multiple samples, one-way 
analysis of variance with prior comparison has been 
implemented. The analysis of variance (ANOVA) with 
three independent groups related to the biceps and 
presenting the raw, detailed, and approximated wavelet 
coefficients is shown in Tables 6 and 7.

The basic procedure in this case is to derive two 
different estimates of the variance from the data; then, 
the ratio of these two estimates is calculated. One of 
these estimates (SSB) is a measure of the effect of the 
independent variable combined with the error variance, 
while another estimate (SSW) characterizes the error 
variance itself. Then, a significant F ratio among 
two estimates is calculated. The significant F ratio 
indicates that the population means are, probably, not 
all equal to each other. Since the estimate of data for 
the sum of squares between the groups (SSB, 0.2736, 
0.2688) is large compared to the data for within the 
group (SSW, 0.01, 0.0046). It is concluded that the 
test statistic is significant at this level. The mean 

T a b l e 6. Analysis of the variance results for biceps voluntary contractions (raw)

Т а б л и ц я 6. Результати аналізу варіанси для довільних скорочень біцепса (первинні дані)

Source of variation Sum of squares (dof) mean square Fisher ҆ s  ratio (F) P critical value (fc)

Sum of between-group squares 0.273 2 0.212 82.08 0.0001 5.14

Sum of within-group squares 0.01 6 0.006

Total sum of squares 0.283 8

T a b l e 7. Analysis of the variance results for triceps voluntary contractions (raw)

Т а б л и ц я 7. Результати аналізу варіанси для довільних скорочень трицепса (первинні дані)

Source of variation Sum of squares (dof) mean square Fisher ҆ s  ratio (F) P critical value (fc)

Sum of between-group squares 0.268 2 0.134 175.31 0.0001 5.14

Sum of within-group squares 0.004 6 0.0007

Total sum of squares 0.273 8
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square error of sEMG signals helps to evaluate the 
quality of the robustness function. The performance of 
algorithms is the best when the mean square error has 
the smallest value. Here, the mean square error (MSE) 
values within the group are 0.0060 and 0.0007 for the 
biceps and triceps muscles, respectively, which means 
that the sEMG signal contains useful information, and 
undesirable parts of the signals are removed.  

The F ratio [18] is the statistic used to test the 
hypothesis that the effects are real; in other words, 
that the means significantly differ from each other. 
There is a significant difference in the amplitude 
gain across different motions, F (2, 6) = 82.086,  
P < 0.05, F (2, 6) = 175.3 with the raw data for the 
biceps and triceps muscles for three independent 
voluntary contractions, respectively. From the Tables, 
we can see that the F ratio is greater than the critical 
value (fc) in all cases; so the means are significantly 
different, and it is concluded that there is a more 
significant difference between the groups (SSB) than 
that within the groups (SSW). For both samplings of 
the experimental data, analysis of variance revealed 
the continuous significant differences over time, 
which means that this technique is useful for revealing 
differences in the shape and magnitude of sEMG signals 
for independent motions. Thus, analysis of the variance 
found statistical differences between electrode positions 
(P < 0.05), between surface electrode conditions, and 
for interaction between all groups.

DISCUSSION

Wavelet denoising was applied to ensure the 
effectiveness of sEMG signals at various static 
voluntary contractions of the elbow-controlling 
muscles, since it provides better time and frequency 
resolution simultaneously for the analysis of 
nonstationary signals. During our study, five basic 
parameters were extracted by analyzing the signal 
amplitude corresponding to different voluntary 
contractions, but the appropriate wavelet has been 
chosen on the basis of the RMS and s.d. values. The 
raw sEMG signals were used to calculate the RMS 
and s.d. values for all wavelets suitable for signal 
processing with four levels of decomposition.

Further analysis of variance (ANOVA) as a novel 
approach for revealing differences in the shape and 
magnitude of EMG signals for multiple motions is 
implemented. The P values for biceps and triceps  
F (2, 6) is 0.0001 that is much smaller than 0.05. So, 

the null hypotheses of equal means is rejected, and, 
finally, the test statistic is significant. The assessment 
of the muscle force relation with sEMG signals can 
be applied to a wide class of daily used applications. 
Although the behavior of MnF and MdF is similar, the 
value of the time domain mean frequency is slightly 
greater than the time domain median frequency 
because of the skewed shape of the sEMG power 
spectrum. In addition, both mean and median features 
can be considered universal indices to identify all 
factors, including muscle geometry, muscular force, 
and voluntary contraction. To summarize: 

(i) The surface myoelectric signal-force relationship 
is primarily determined by different muscle geometries 
including electrode configuration, fibre diameter, 
subcutaneous tissue thickness, etc.; 

(ii) The electrode locations (interelectrode distance 
of about 1 cm) over the muscle were changed during 
the experiment; 

(iii) The mean (MnF) and median (MdF) frequency 
parameters are linear for the biceps and triceps brachii 
muscles, with the amplitude of the myoelectric signal 
increasing linearly with the force exhibited; 

(iv) The one-way analysis of variance (ANOVA) 
approach for comparing the ability of variations in 
sEMG signals for maximum class separability has 
been identified; 

(v) The classification accuracy of 88.90% has been 
achieved for upper limb class separability movements.
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Р е з ю м е

Досліджували можливість застосування вейвлет-аналізу 
щодо сигналів поверхневої електроміограми (пЕМГ). Вико-
ристання видалення шумів із записів пЕМГ перед оброб-
кою таких сигналів для подальшого аналізу є дуже істотним. 
Сигнали пЕМГ оцінювалися в наступній послідовності: 
спочатку отриманий сигнал підлягав декомпозиції з ви-
користанням вейвлет-перетворення, потім декомпозовані 
коефіцієнти аналізувались із застосуванням порогових ме-
тодик, і, нарешті, виконувалася реконструкція. Поперед-
ньо порівнювали ефективність видалення шумів у межах 
вейвлет-сімейства Daubechies. Було встановлено, що вейв-
лет-перетворення db4 із цього сімейства виконує знешум-
лення найкращим чином. Отримані результати вказують на 
те, що вейвлет-сімейства Daubechies є більш придатними 
для аналізу пЕМГ сигналів, отриманих в умовах реєстрації 
різних моторних реакцій м’язів верхніх кінцівок; досяга-
лася точність класифікації 88.9 %. Потім статистична ме-
тодика (однобічний повторний факторіальний аналіз) за-
стосовувалася щодо експериментальних коефіцієнтів для 
встановлення якості розділення даних при різних рухах. 

REFERENCES

1. J. Kilby and H. G. Hosseini, “Extracting effective features of 
SEMG using continuous wavelet transform,” Conf. Proc. IEEE 
Eng. Med. Biol. Sci., 1, 1704-1707 (2006).

2. H. S. Ryait, A. S. Arora, and R. Agarwal, “Interpretations 
of wrist operations from surface-EMG signals at different 
locations on arm along with acupressure points,” IEEE 
Transact. Biomed. Circ. Syst., 4, No. 2, 101-111 (2010).

3. Q.  Zhang and Zh.  Luo,  “Wavele t  de-nois ing  of 
electromyography,” in: Proc. IEEE Internat. Conf. Mechatron. 
Automat. (June 25 - 28, 2006), China (2006), pp. 1553-1558.

4. K. A. Wheeler, H. Shimada, D. K. Kumar, and S. P. Arjunan, 
“A sEMG model with experimentally based simulation 
parameters,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 4258-
4261 (2010). 

5. N. M. Sobahi, “Denoising of EMG signals based on wavelet 
transform,” Asian Transact. Eng., 1, No. 5, 17-23 (2011).

6. A. Phinyomark, A. Nuidod, P. Phukpattaranont,  and  
C.  Limsakul, “Feature extraction and reduction of wavelet 

transform coefficients for EMG pattern classification,” 
Electron. Electr. Eng. Signal Technol., 6, 27-32 (2012).

7. A. Phinyomark, C. Llimsakul, and P. Phukpattaranont, 
“Optimal wavelet functions in wavelet denoising for 
multifunction myoelectric control,” ECTI Transact. Electr. 
Eng. Electron. Commun., 8, 43-52 (2010).

8. A. Phinyomark, C. Llimsakul, and P. Phukpattaranont, 
“Application of wavelet analysis in EMG feature extraction 
for pattern classification,” Measur. Sci. Rev., 11, 45-52 (2011).

9. K. Englehart, B. Hudgins, and P. A. Parker, “A wavelet-based 
continuous classification scheme for multifunction myoelectric 
control,” IEEE Transact. Biomed. Eng., 48, No. 3, 302-311 
(2001).

10. M. Lascu and D. Lascu, “Graphical programming based 
biomedical signal acquisition and processing,” Int. J. Circ. 
Syst. Sign. Proc., 1, No. 4, 317-326 (2007).

11. R. L. Ortolan, R. N. Mori, R. R. Pereira, et al., “Evaluation 
of adaptive/nonadaptive filtering and wavelet transform 
techniques for noise reduction in EMG mobile acquisition 
equipment,” IEEE Transact. Neural Syst. Rehabil. Eng., 11, 
No. 1, 60-69 (2010).

12. C. F. Jiang and S. L. Kuo, “A comparative study of wavelet 
denoising of surface electromyographic signals,” Conf. Proc. 
IEEE Eng. Med. Biol. Sci., 1868-1871 (2007). 

13. X. Zhang, Y. Wang, and R. P. S. Han, “Wavelet transform 
theory and its application in EMG signal processing,” 7th Int. 
Conf. Fuzzy Syst. Knowl. Discov. (Aug 23-26, 2010), 6 (2010).

14. S. Micera, “Control of hand prostheses using peripheral 
information,” IEEE Rev. Biomed. Eng., 3, 48-68 (2010).

15. K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, 
“Classification of the myoelectric signal using time-frequency 
based representations,” Med. Eng. Phys., 21, Nos. 6/7, 431-438 
(1999).

16. A. Phinyomark, P. Phukpattaranont,  C. Limsakul, et 
al., “The usefulness of mean and median frequencies in 
electromyography analysis,” in: Computational Intelligence 
in Electromyography Analysis – A Perspective on Current 
Applications and Future Challenges, G. R. Naik (ed.),  InTech, 
Chap. 8 (2012).

17. C. J. De Luca, M. A. Sabbahi, and S. H. Roy, “Median 
frequency of the myoelectric signal: Effect of hand 
dominance,” Eur. J. Appl. Physiol. Occup. Physiol., 55, No. 5, 
457-464 (1986).

18. Sh. J. Coakers, SPSS Version 12.0 for Windows, Analysis 
Without Anguish, John Wiley Sons Publ., Australia (2005),  
p. 88.


