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As is known, Alzheimer’s disease (AD) is associated with cognitive deficits due to significant 
neuronal loss. Reduced connectivity might be manifested as changes in the synchronization of 
electrical activity of collaborating parts of the brain. We used wavelet coherence to estimate 
linear/nonlinear synchronization between EEG samples recorded from different leads. Mutual 
information was applied to the complex wavelet coefficients in wavelet scales to estimate 
nonlinear synchronization. Synchronization rates for a group of 110 patients with moderate 
AD (MMSE score 10 to 19) and a group of 110 healthy control subjects were compared. The 
most significant decrease in mutual information in AD patients was observed on the third 
scale in the fronto-temporal area and for wavelet coherence within the same areas as for 
mutual information; these areas are preferentially affected by atrophy in AD. The new method 
used utilizes mutual information in wavelet scales and demonstrates larger discriminatory 
values in AD compared to wavelet coherence. 
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INTRODUCTION

The level of synchronization of neural activity is an 
important parameter that demonstrates the intensity 
of coordination of activities of different parts of the 
brain [1].
The theory of complex systems describes several 

types of synchronization. Identical oscillators must be 
sufficiently interlinked for complete synchronization 
to occur. In the electroencephalogram, this type of 
synchronization resembles the situation observed in 
epileptic seizures. Generalized synchronization [2] 
reflects specific functional relationships between the 
states of two systems. Phase synchronization, first 
described using coupled chaotic oscillators [3], might 
present noncorrelated amplitudes of the respective 
oscillations.
Alzheimer’s disease (AD) is associated with the 

loss of synchronization between EEGs recorded 
from different sites (channels), which, in addition to 
slowing down of background activity and decrease 
in its complexity, provides a promising target for 
analyses [4]. Currently, there are efforts to identify 
the most sensitive method for estimation of the 
synchronization loss in the diagnosis of early stages of 
AD. Different techniques have been used to estimate 
the extent of synchronization between two or more 
EEG processes. Linear relationships between signals 
might be estimated using cross-correlation functions. 
Moreover, the frequency range correlation might be 
estimated using the spectral coherence function, and 
correlations in wavelet scales might be estimated 
using wavelet coherence. Unlike other techniques, 
wavelet coherence exhibits an advantage related 
to the greater time and frequency resolution and is 
considered an effective tool for identification of the 
changes in brain activity during aging and in the early 
AD stages [1]. The usefulness of wavelet coherence in 
EEG analysis was first proposed by Lachaux in 2002 
[5]. In 2006, Klein showed that wavelet coherence is 
a more sensitive indicator of the EEG changes during 
sensory stimulation compared to traditional coherence 
[6]. In 2006, Sakkalis applied this method to study the 
disconnection syndrome in schizophrenia [7]. The first 
attempt to study changes in AD using EEG wavelet 
coherence was described by Sankari in 2012. Mutual 
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information derived from the theory of information 
was used to estimate the degree of nonlinear 
correlation between EEGs of different channels [8, 9]. 
This technique has been repeatedly used to estimate 
nonlinear EEG associations in patients with AD. 
However, this technique has never been used to assess 
EEGs in multiple frequency bands. A certain reduction 
in mutual information has been previously reported in 
the frontal and right anterior temporal areas and in the 
inter-hemispheric pathways in the respective cases 
[10]. Transfer entropy [11], Granger causality [12], 
and nonlinear interdependence [13] are other nonlinear 
measures of synchronization.
Because different brain subsystems produce 

oscillations of different frequencies, it is expedient 
to study interrelations between such oscillations for 
different frequency ranges. The spectral correlation 
function and wavelet coherence are linear measures 
of the similarity that provide a multiband perspective. 
Because EEG signals are, in principle, nonstationary, 
wavelet transformation-based coherence rather than 
Fourier transformation-based coherence is suitable 
for modeling the relationships between EEG channels. 
Thus, wavelet coherence was used to evaluate the 
degree of linear relationship in our study. Transfer 
entropy and Granger causality are asymmetric 
measures that determine the direction of information 
propagation and are difficult to be compared with 
wavelet coherence results.
The nonlinear interdependence method [13] relies 

on the state of space reconstruction and is more 
suitable for the description of chaotic oscillators. 
As the presence of a deterministic chaos in EEG is 
a controversial topic, we used mutual information in 
wavelet scales to estimate nonlinear relationships. 
Among the avai lable wavelet  t ransformation 
techniques, we used complex wavelet transformation.
It is expected that brain dynamics are strongly 

affected by neuroanatomical connectivity. Alzheimer’s 
disease is a progressive neurodegenerative pathology 
clinically characterized by significantly impaired 
memory and other cognitive dysfunctions. Previous 
studies have shown that this disorder is associated 
not only with regional brain abnormalities but also 
with changes in the neuronal connectivity between 
anatomically distinct brain regions. Cortical areas 
of patients with AD show suboptimal topological 
organization [14]. A global connectivity deficit was 
found in AD [15]. 
Memory and cognitive impairments are associated 

with changes in the coordination of activities of 

functional neural networks. Using neurophysiological 
and imaging techniques, as well as computational 
approaches based on graph theory, Stem et al. [16] 
showed that AD patients demonstrate impaired 
neuronal integrity in the major structural and functional 
systems of the brain such as the associative cortex, 
hippocampus, prefrontal cortex, and cerebellum. In 
this case, it is expedient to observe changes in the 
functional organization of the brain in patients with 
AD under resting conditions (as the background 
pattern) [17].
The aim of our study was to compare the selected 

linear and nonlinear association estimates of EEG 
samples between patients suffering from AD and 
control subjects.

METHODS

Subjects. In our prospective study, the EEG data were 
obtained during examinations of 110 AD patients with 
moderate dementia (MMSE score 10 to 19). All these 
subjects underwent brain CT, as well as neurological 
and neuropsychological examinations. The control 
group consisted of 120 age-matched healthy subjects 
with no memory or other cognitive impairments. 
All of these patients had normal neuropsychological 
examinations and did not undergo brain CT. The mean 
MMSE of the AD group was 15.8 ± 1.7 (M ± s.d.). The 
mean age of the AD patients and control subjects was 
71.5 ± 6.8 and 69.1 ± 5.7 years, respectively. There 
were 52 men and 68 women in the AD group and  
54 men and 66 women in the control group. 

EEG Recording and Preprocessing. All recordings 
were performed under similar standard conditions. 
The subjects were placed in a comfortable position, 
on a bed, with their eyes closed. The electrodes 
were positioned according to the 10-20 electrode 
placement system; the recording was conducted using 
a 21-channel digital EEG setup (TruScan 32, Alien 
Technik Ltd., Czech Republic) with a 22-bit AD 
conversion and a sampling frequency of 128 sec–1. 
The filter settings were 0.5 and 60 Hz. The linked ear 
contacts were used as references. 
Stored digitized data were zero-phase digitally 

filtered using a bandpass FIR filter (100 coefficients, 
Hamming window) of 0.5–60 Hz and a bandstop 
filter of 49–51 Hz. The analysis began after manual 
removal of the artefacts. Five to six 60- to 80-sec-long 
segments were manually selected from each 20-min-
long record. All of the curves in these segments were 
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normalized using the median.
Mutual Information and Wavelet Coherence 

Estimation.  Both measures of similarity were 
estimated for all EEG channel pairs (171) in five 
wavelet scales. The mutual information was calculated 
for absolute values of the wavelet transformation 
coefficients in each scale.  Continual wavelet 
coherence values were averaged in each segment for 
each electrode pair, and calculations were performed 
using MATLAB.

Statistics. We estimated the presence of significant 
differences between the values for the AD and 
control groups using a two-sample t-test. The data 
met the criteria for the Shapiro–Wilk test for the 
normal distribution. In addition, records from  
171 electrode pairs were compared in five wavelet 
scales in both groups, and P values were adjusted using 
the Bonferroni approach for multiple comparisons  
(n = 855). 

Results

The number of electrode pairs with a statistically 
significant increase in mutual information decreased 
from the first to the fifth wavelet scale, i.e., decreased 
with decreasing frequency (Table 1). An inverse trend 
was evident for a reduction in mutual information.
There was no statistically significant reduction for 

any pair of electrodes on the first or second scale. 
In AD patients, the centroparietal area showed the 
most significant increase in mutual information in 
all wavelet scales, which was mainly believed to be 
related to short connections between neighboring 
sites. In contrast, the frontolateral and temporal areas 
showed maximum reductions of this value in the 
third to fifth wavelet scales (Fig. 1). Furthermore, 
the wavelet coherence decreased in the same area, 
predominantly for the right hemisphere, in all of the 
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F i g. 1. Location of the most statistically significant electrode pairs for wavelet coherence and mutual information in the second and third 
scales. Reduction is depicted in gray, and increase is shown in black. A and B) Mutual information scales; C and D) wavelet coherence 
scales.

Р и с. 1. Локалізація найбільш статистично вірогідних локусів відведення ЕЕГ при визначенні індексів вейвлет-когерентності та 
взаємної інформації за другою та третьою шкалами.
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scales, but with the most significant values in the 
second and first wavelet scales (Table 2, Fig. 1).
Distribution of the significant values for the 

increase in wavelet coherence differed from the 
mutual information and was the most significant for 
long frontoparietal and frontooccipital pathways.  

TABLE 2: Four pairs of channels with the most significant differences in wavelet coherence and mutual information in the wavelet 
scale values for patients with Alzheimer’s disease (AD) and control-group (CG) subjects. All differences were significant at P < 0.01 
(after Bonferroni correction, 1.2∙10–5)

Т а б л и ц я 2.  Чотири пари локусів, для яких спостерігалися найістотніші відмінності значень вейвлет-когерентності та 
взаємної інформації у пацієнтів із хворобою Альцгеймера та осіб групи контролю

Wavelet  scale  

Wavelet coherence 

Reduction Increase

Localization CG AD Localization CG AD

1

F7-Fz 0.71±0.07 0.61±0.09 Fz-O1 0.54±0.05 0.61±0.08
F4-F8 0.82±0.07 0.72±0.10 F3-O1 0.54±0.05 0.59±0.08
Fz-F8 0.71±0.08 0.60±0.09 Fp2-O1 0.54±0.05 0.59±0.08
Fp2-F8 0.80±0.08 0.68±0.12 F4-O1 0.55±0.06 0.60±0.08

2

Fz-F8 0.82±0.04 0.76±0.05 Fp2-Pz 0.72±0.04 0.76±0.06
F7-Fz 0.82±0.04 0.75±0.05 F7-P4 0.73±0.03 0.76±0.04
F4-F8 0.89±0.04 0.82±0.05 F7-Pz 0.72±0.03 0.76±0.05
F4-T4 0.81±0.05 0.74±0.04 Fz-O1 0.72±0.03 0.76±0.04

3

F8-T4 0.89±0.04 0.85±0.03 F7-P4 0.79±0.02 0.84±0.03
T4-T6 0.87±0.03 0.83±0.03 F7-Pz 0.79±0.02 0.84±0.04
F4-C4 0.89±0.03 0.85±0.05 Fz-O1 0.79±0.02 0.84±0.03
F4-F8 0.91±0.03 0.87±0.04 Fp2-Pz 0.79±0.03 0.84±0.04

4

F8-T4 0.91±0.02 0.89±0.03 F7-P4 0.85±0.02 0.89±0.03
Fp2-F8 0.94±0.03 0.90±0.04 F7-Pz 0.85±0.02 0.89±0.03
F4-C4 0.92±0.02 0.90±0.04 T3-Pz 0.85±0.01 0.88±0.02
T4-T6 0.90±0.02 0.88±0.03 F8-P3 0.84±0.02 0.89±0.03

5

F8- T4 0.94±0.02 0.91±0.03 Pz-P4 0.90±0.04 0.94±0.03
Fp2- F8 0.96±0.02 0.93±0.03 P3-Pz 0.90±0.03 0.92±0.03
Fp2- T4 0.93±0.02 0.90±0.03 Pz-O2 0.90±0.03 0.93±0.03
T4- T6 0.93±0.02 0.91±0.03 F7-Pz 0.90±0.02 0.92±0.03

TABLE 1: Number of channel pairs with significantly reduced and increased wavelet coherence and mutual information scales in the 
wavelet scale at P < 0.01 (after Bonferroni correction; 1.2∙10–5)

Т а б л и ц я 1. Кількість пар локусів відведення ЕЕГ з істотними зменшеннями або збільшеннями індексів вейвлет-
когерентності та взаємної інформації за вейвлет-шкалою з P < 0.01

Wavelet scale  
Wavelet coherence Mutual information

Decrease Increase Decrease Increase

1 72 39 0 171

2 79 41 0 166

3 47 67 16 100

4 19 104 21 85

5 72 37 125 17
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A good discriminatory ability of mutual information 
was apparent on the representative histograms plotted 
from the ROC curves and accuracy values; examples 
are presented in Fig. 2. The accuracy of the ROC curve 
separation was 92.5% (Fig. 2).

Discussion

Linear and nonlinear estimates of EEG channel 
synchronization suggest that two processes are 
involved, where one process results in reduced 
high-frequency values in patients with AD in the 
frontolateral and parietal areas. Another process results 
in increases in the frontoparietal and frontooccipital 
values in the lowest-frequency wavelet scales. The 
increase exhibits an even higher discriminatory 
value when compared with the other two groups 
than the reduction. A previous comparative study [1] 
showed reductions in the wavelet coherence for the 
temporolateral, temporoparietal and temporooccipital 
areas in the delta range and for the majority of the 
electrode pairs in the alpha, theta, and beta bands. 
In contrast to our results, Sankari et al. [1] found 
no statistically significant predominant increases in 
the wavelet coherence in the frontal and frontopolar 
electrodes, most likely due to a considerably smaller 
patient sampling.
The lack of a significant reduction in the first and 

second wavelet scales when estimating nonlinear 
relationships between the channels using mutual 

information indicated the importance of using this 
synchronization measure in multiple frequency bands. 
When comparing the wavelet coherence and mutual 
information in wavelet scales, the most significant 
increase in mutual information was observed at the 
lowest frequencies, and the most significant reduction 
was observed at the highest frequencies. We did not 
observe this frequency-dependent pattern for wavelet 
coherence.
The differences between both methods suggested 

that the interrelationship between the EEGs recorded 
from different channels was nonlinear. This newly 
proposed method utilizes mutual information on 
absolute values of the complex wavelet coefficient 
in the wavelet scales, and it displayed a greater 
discriminatory value compared to wavelet coherence 
(Table 2).
Most strikingly, AD patients, compared to the 

control group, demonstrated increased synchro- 
nization with the maximum in the third wavelet 
scale in the centroparietal area for both linear and 
nonlinear synchronization rates. Similar changes were 
observed when the subjects were presented with fear-
inducing stimuli. We assumed that our patients with 
AD developed some stress responses and increase in 
the anxiety level caused by an unknown environment 
of the EEG laboratory. This was potentiated by the 
presence of medical instruments and machinery in the 
room. However, the decrease in the values for both 
methods in the frontolateral area was an expected 
consequence of atrophy-dependent disorders of 
neuroanatomical connectivity in the frontal and 
temporal lobes in patients suffering from AD [4, 18].
Both techniques are based on wavelet transformation, 

which is more suitable for multiresolution analysis of 
nonlinear and nonstationary signals such as EEGs, 
compared to Fourier transformation that requires 
linearity. Mutual information that estimates linear 
as well as nonlinear relationships has a higher 
discriminatory potency for the comparison of the 
two groups, which supports the presence of nonlinear 
relationships between EEG channels.
Continuous wavelet coherence also enables monitoring 

of temporal changes between channels in different 
wavelet scales. However, this advantageous feature was 
lost in our study because the evaluated sections were 
averaged. The differences in the relationship timeline 
may provide additional information and enhance the 
usefulness of this method. Because the calculated 
value for mutual information is dependent on the signal 
amplitude, there is a methodological question of whether 
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F i g. 2. Example of accuracy of calculation for an increase in mutual 
information in Alzheimer’s disease for the P3-Pz electrode pair.

Р и с. 2. Приклад розрахунку точності щодо збільшення 
значень взаємної інформації при хворобі Альцгеймера для пари 
відведень P3-Pz.
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it is expedient to normalize the EEG signals and how 
to do so. The absolute value of normalization that is 
sensitive to high-amplitude artifacts can be applied 
for normalization using the median of the absolute 
signal values; this was employed in our study. The 
median normalization of the absolute values of signal 
samples can also be considered a robust method. 
Furthermore, normalization of the absolute values of 
wavelet coefficients or histograms can also be used. To 
obtain optimum results, the discriminatory value for 
different parent wavelets should be compared. Higher-
frequency resolution and information regarding the phase 
relationships of signals between channels represents an 
advantage of continuous wavelet coherence over mutual 
information in the wavelet scales. Thus, we did not 
realize calculations within conventional EEG frequency 
bands, as would be allowed by conventional wavelet 
coherence, but made this within wavelet scales. Smaller 
values were observed in AD patients compared to healthy 
controls in the left temporocentral and temporoparietal 
areas, as well as in the right temporocentral and 
temporooccipital areas.
Patients with AD exhibited a moderate disability, 

and this circumstance somewhat reduces the clinical 
use of these parameters. This parameter set could be 
of some diagnostic importance during the early stages 
of AD and in the case of a minimum cognitive deficit, 
if combined with biomarkers and MRI markers, which 
would require a further study related to MCI and mild 
AD.
Thus, we have applied a new technique of mutual 

information between the absolute values of complex 
wavelet coefficients as a sensitive technique that 
may help to detect disorders in the neuroanatomical 
connectivity in patients suffering from AD. The ability 
of this technique to monitor nonlinear relationships 
between EEG channel records is probably the most 
important factor responsible for more statistically 
significant results in the detection of moderate 
AD compared to using wavelet coherence. The 
dependences on the frequency using this approach by 
wavelet scales and on the localization of evaluated 
electrode pairs suggest that there is a need to evaluate 
various frequency bands and various locations.
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Р е з ю м е

Як відомо, хвороба Альцгеймера (ХА) пов’язана з прогресу-
ючим когнітивним дефіцитом у результаті істотної загибелі 
нейронів. Зменшення міжнейронних зв’язків може проявля-
тись як зміни ступеню синхронізації електричної активнос-
ті взаємодіючих мозкових структур. Ми використовували 
методику оцінки вейвлет-когерентності для оцінки лінійної 
або нелінійної синхронізації зразків ЕЕГ, відведених від різ-
них локусів кори. Визначення індексів взаємної інформації 
використовувалося для оцінки нелінійної синхронізації згід-
но з комплексними вейвлет-коефіцієнтами за вейвлет-шка-
лами.  Було порівняно ступені синхронізації ЕЕГ-активнос-
ті в групі пацієнтів, що страждали на ХА помірної тяжкості 
(оцінки за MMSE від 10 до 19 балів), та в групі із 110 конт- 
рольних здорових суб’єктів. Найістотніші зменшення індек-
сів взаємної інформації у пацієнтів із ХА спостерігалися 
по третій шкалі для фронто-темпоральної зони; зменшення 
вейвлет-когерентності відзначались у тих самих зонах, що й 
зміни взаємної інформації. Саме ці зони зазнають переваж-
ної атрофії при ХА. Використаний новий метод базується на 
оцінках взаємної інформації за вейвлет-шкалами та демон-
струє більшу дискримінаційну здатність в умовах ХА, аніж 
визначення вейвлет-когерентності. 
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