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The aim of our study was to recognize results of surface electromyography (sEMG) recorded 
under conditions of a maximum voluntary contraction ������������������������������������(�����������������������������������MV���������������������������������С) ������������������������������and fatigue states using wave­
let packet transform and energy analysis. The sEMG signals were recorded in 10 young men 
from the right upper limb with a handgrip. sEMG signals were decomposed by wavelet packet 
transform, and the corresponding energies of certain frequencies were normalized as feature 
vectors. A back-propagation neural network, a support vector machine (SVM), and a genetic 
algorithm-based SVM (GA-SVM) worked as classifiers to distinguish muscle states. The 
results showed that muscle fatigue and MVC could be identified by level-4 wavelet packet 
transform and GA-SVM more accurately than when using other approaches. The classifica­
tion correct rate reached 97.3% with sevenfold cross-validation. The proposed method can be 
used to adequately reflect the muscle activity.
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INTRODUCTION

Surface electromyography (sEMG) signals are the 
one-dimensional time-series signals obtained by 
bioelectrical changes on the skin surface induced by 
activity of the neuromuscular system. Surface EMG 
has significant advantages, such as non-invasive, 
real-time, and multitarget measurements. The sEMG 
signal can provide information about various aspects 
of muscle activity, including the number and fi ring 
rates of recruited motor units during voluntary 
isometric contraction. It reflects the functional status 
of the nerves and muscles and has been widely used 
in clinical medicine, sports medicine, and other fields 
[1]. Clinicians have used sEMG as a tool to diagnose 
certain motor disorders and to evaluate rehabilitation 
programs for patients. A vast literature regards the 
use of EMG to assess movement capabilities among 
patients suffered from stroke [2, 3]. Surface EMG 
from the patient’s forearm was recorded in parallel 
with the local field potentials to accurately determine 

occurrences of Parkinson’s disease-related tremor [4]. 
This approach was also applied to human-machine 
interfaces (HMIs) [5] and prosthetic control [6]. 
Force production involves the coordination of 

multiple muscles; the produced force levels can be 
attributed to electrical activities of the related muscles. 
Surface EMG displays distinct features with different 
exerted forces and fatigue states. Muscle fatigue is 
a reduction of the ability of the muscles to contract 
and develop force. Generally, localized muscle fatigue 
occurs after a prolonged and/or relatively strong 
muscle activity, when a muscle or a group of muscles 
are fatigued. The degree of muscle fatigue can be 
measured by assuming a relative maximal voluntary 
force lost during sustained contraction tasks as the 
equivalent [7, 8]. Some literature pointed out that 
muscle fatigue leads to recognizable degradation 
of the sEMG pattern. Many researchers emphasized 
that muscle fatigue is one of the risk factors for the 
musculoskeletal problem. Therefore, it is conceivable 
that through specific feature extraction and pattern 
recognition schemes, different types of muscle activity 
may be discernible via the sEMG signals. 
Accurate and computationally efficient means of 

classifying sEMG signal patterns have been pursued 
in recent years. The time-domain algorithms for 
extracting features were not suitable because the 
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absence of frequency resolution obscured the subtle 
presentation of complicated EMG signals. At the 
same time, the frequency-domain algorithms could 
not accurately represent the intrinsic property of 
biological signals due to the lack of time resolution 
[9]. Within recent years, a lot of studies utilized 
time-frequency methods to extract features, such 
as short-time Fourier transform (STFT), wavelet 
transform (WT), and wavelet packet transform (WPT) 
[6, 10, 11]. Short-time Fourier transform has the 
disadvantage of single resolution. Although WT can 
provide processing signals with multi-resolution, its 
frequency resolution decreases with wavelet scales 
increased; thus, this approach cannot provide enough 
information for pattern recognition. WPT can make up 
for the disadvantage of orthogonal wavelet transform. 
It not only improves the time resolution but also refines 
the gradually widened spectrum and demonstrated a 
favorable local quality [12].
Artificial neural networks (ANNs) and a support 

vector machines (SVMs) are feasible to classify 
sEMGs. ANN is formed of cells simulating the low-
level functions of biological neurons [13]. It includes 
numerous neurons with nonlinear mapping ability. 
Neurons are linked to each other through the weight 
coefficient to form the adaptive nonlinear dynamic 
systems. In the Subasi’s study, feedforward error 
back-propagation neural networks (BPNN)-based and 
wavelet neural networks (WNN)-based classifiers were 
developed and compared in relation to their accuracy 
in classification of EMG signals [13]. In a human–
robot interface, EMG signals were also classified by 
a neural network to predict motion [14]. In addition, 
SVMs have gained wide acceptance due to their high 
generalization ability for a wide range of applications 
and better performance than other traditional learning 

machines [15]. Jianguo proposed a new recognition 
method of sEMG classification based on WT and 
SVM to classify the movement patterns, and the 
average recognition accuracy reached 98.75% [16]. 
Chattopadhyay presented a framework to measure the 
level of fatigue based on SVM in the wearable sensor 
technology [17]. 
In our investigation, we intended to distinguish 

sEMGs in maximum voluntary contraction (MVC) 
and the fatigue state with our self-developed system, 
which was available to study the cortico-muscular 
coherence. Such interaction was thought to mainly 
reflect the descending control from the primary motor 
cortex (M1) to the spinal motoneuronal pools [18]. 
EMG signals from three muscles of the forearm were 
collected while performing sustained MVCs until being 
fatigued. The features of sEMG signal were extracted 
by level-3 or level-4 wavelet packet transform, and 
sEMG energy in certain frequency band was calculated 
as well. After removing the abnormal data, BPNN and 
SVM classifiers were designed to discriminate sEMGs 
in MVC and the fatigue state. In addition, genetic 
algorithm (GA) was utilized to optimize parameters 
in the SVM. 

METHODS

sEMG and a Force-Measure System. The self-deve­
loped measure system included three-channel sEMG 
and one-channel handgrip force detection circuits, as 
shown in Fig. 1. Ag-AgCl electrodes were used for 
sEMG recording to minimize the polarized voltage 
between the detection surface of the electrode and the 
skin. The preamplifier was composed of a differential 
amplification circuit and an instrument amplifier 
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F i g. 1. EMG recording and handgrip force-measure 
system.

Р и с. 1. Система реєстрації ЕМГ та вимірювання 
сили стискання рукою.
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AD620. The gain of the preamplifier was designed 
to 1000~1500, and its CMRR was 93 dB. A low-pass 
filter with the upper bandwidth cut-off frequency of  
500 Hz could reduce the high-frequency disturbances. 
A photoelectric coupling circuit with TLP521 was 
designed to isolate the preceding and the following 
circuits from each other, so as to protect users. A reversed 
operation amplifier worked as the back-amplification 
unit with the gain 2 and the cut-off frequency 10 Hz. 
The ambient noise signal arising from the 50 Hz power 
sources may have amplitude that is one to three orders 
of magnitude greater than the sEMG signal; therefore, 
a dual-T network 50-Hz notch filter was used to 
remove the unwanted power line frequency. A force 
transducer (YJ-01, Anhui Zhongke Intelligent high-
tech Co., Chinese Academy of Sciences) was used to 
detect the handgrip force with an error ≤1% of the full 
scale and a measurement range 0-500 N (≈0 to 50 kg 
force). Then, sEMG and force signals were sampled at  
10–3 sec–1 with 12-bit of a PCI-6221 A/D acquisition 
card afforded by National Instruments (USA).

Examined Group and Mode of Recording. 
Ten healthy men aged from 20 to 24 years were 
recruited to participate in this experiment after giving 
their informed consents. The maximum voluntary 
contraction force of every subject was measured at 
the beginning of the experiment. The exerted force 
was displayed on a computer screen. Participants 
maintained MVC in a sitting position with the elbow 
joint at 100° until they felt exhausted and were no 
longer able to continue the contraction. The sustained 
contraction was terminated if the exerted force dropped 
by 10% or more for more than 3 sec. The maximal 
and sustained contraction forces were measured by a 
force transducer. sEMG signals were recorded from 
mm. extensor digitorum (ED), extensor carpi ulnaris 
(ECU), and extensor carpi radialis brevis (ECRB) with 
Ag-AgCl electrodes. A reference electrode was placed 
on the skin overlying the wrist joint to eliminate the 
common-mode interference on the body. Each subject 
was required to repeat the test three times. Fifty-six 
data sets having a stable force output lasting for more 
than 1 sec were selected for the subsequent analysis.

Feature Selection. Through analyzing the 
experimental data, it was noticed that the sEMG 
energy in fatigue increased in a low-frequency range 
and decreased in a high-frequency one compared with 
the non-fatigue state. Consequently, we created sEMG 
feature vectors with the energy of every frequency 
band of each muscle. 

Wavelet packet transform. As an extension of the 

standard wavelet, WPT represents a generalization 
of multiresolution analysis and utilizes the entire 
family of sub-band decomposition to generate an 
overcomplete representation of the signals [6]. It uses 
a narrow window in the high-frequency domain and a 
wide window in the low-frequency domain. Therefore, 
it can provide good frequency resolution at all 
frequencies, and the noise components in a signal can 
be isolated, while important high-frequency transients 
can also be preserved [19]. WPT allows the original 
signal to be represented with various combinations of 
low- and high-frequency components [20], e.g., 

S = AAA3+DAA3+ADA3+DDA3+AAD3+ 
      +DAD3+ADD3+DDD3.	 	 	       (1)

It also could be defined as

S = AAA3+DAA3+ADA3+DDA3+D1,  	       (2)

where S is the original signal, and numbers 1 and 3 are 
the depth of a binary tree. A and D, respectively, stand 
for the low-  and high-frequency components. S can 
also be expressed by a wavelet packet decomposition 
tree shown in Fig. 2.
Any node in the binary tree is labeled by its depth j 

and node number p. Each node (j, p) corresponds to a 
space p

jW . The two wavelet packet orthogonal bases 
at the children nodes are defined by the recursive 
relations
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F i g. 2. Wavelet packet decomposition tree.

Р и с. 2. Дерево вейвлет-пакетної декомпозиції.
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where g(n) = (–1)nh(1 – n), i.e., g(n) is orthogonal 
with h(n). This recursive splitting defines a binary tree 
of wavelet packet spaces where each parent node is 
divided into two orthogonal subspaces [6]. Hence, the 
wavelet packet transform of x(t) can be calculated by 
the following recursive algorithm:
1
0 ( ) ( )x k x t= , 2 1

1( ) ( )p p
j jx k Hx k-

-= ,  
2

1( ) ( )p p
j jx k Gx k-=

, 
2 1 2

1( ) ( ) ( )p p p
j j jx k x k x k-
- = + ,  (5)

where j is the depth of the binary tree, and p is the 
number of the node.

Energy analysis. In our study, the energy of the pth 
frequency band in the jth layer p

jE could be defined by 
the recursive relations:
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where ,
k
j pd  is the coefficient of the k-th discrete 

point of the decomposition signal )(tx p
j , and M is the 

number of )(tx p
j . The energy of the p band in the jth 

layer was normalized to obtain the relative value p
je  

according to formula 
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In order to further eliminate the individual 
discrepancy and reduce the number of feature vectors 
to optimize computation, the feature vector of one 
muscle Sj was constructed as formula

1 , [2, 2 ]
p
j j

j
j

e
S p

e
  = ∈ 
  

.	 	 	       (8)

As is known, the activity of several muscles is 
coordinated to perform certain movements. The feature 
vector of each muscle can be combined together to 
characterize sEMG in a state. 

Classification. Due to small sizes of the samples 
and the nonlinear feature vector, BPNN, SVM, and 
GA-SVM were designed in our study to compare the 
classification results. 

Removal of the abnormal samples. Considering the 
existence of abnormal samples among the training 
data, e.g., noises with different variances, a method 
of detecting abnormal data based on support vector 
regression (SVR) was used [21]. SVR does not 

intend to eliminate an individual major error, while it 
considers the smooth of the regression curve entirety 
on the whole and distinguishes the abnormal data by 
comparing the regression value with the operational 
data [22]. All the samples could be distinguished 
into support vectors and non-support vectors, and 
the support vectors could be divided into boundary 
support vectors and non-boundary support vectors. 
Because the non-boundary support vectors or the 
abnormal samples were not from the same model with 
the boundary support vectors or the normal samples, 
therefore, they were located outside the normal scope.
In our study, the normal scope was set to [–0.82, 

0.82]. Each component of the sample vectors was 
predicated with SVR, and a sample was regarded as 
abnormal when two components of the sample were 
outside the normal scope. The flowchart of abnormal 
data detection is shown in Fig. 3. 

Original feature vectors and system initialization 
(n = 0)

Train each dimension of feature vectors to  
gain model with SVR

Calculate the error (ε) between testing data  
and predictive data

All dimensions have 
been tested

This sample is abnormal

n +1  

n ≥ 2  

Y

Y N

Y

N N
ε > ±8 

This sample is normal

F i g. 3. Flowchart of abnormal data detection.

Р и с. 3. Схема виявлення аномальних даних.
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Back-propagation neural network. Neural network 
can be applied in recognition and analysis of sEMG 
because of its parallel computing and adaptive 
learning abilities. Back-propagation neural network 
(BPNN) is a forward multilayer network, which uses 
the error back-propagation algorithm to train the 
network [23]. 
The BPNN structure was determined as m-N-1, in 

which there were m input nodes, and m was decided by 
the dimension of input vectors, one hidden layer with 
N nodes, and one output node. It was crucial to set 
the hidden-layer nodes because their number affects 
the neural network efficiency [20, 24]. N was usually 
decided by experience and trials in the study. If the 
input vectors were 3-dimensional, N could be 7 to 12; 
if the input vectors were 7-dimensional, N could be  
6 to 20. The output was 1 for MVC and –1 for fatigue. 
The logsig and tansig sigmoid transfer functions 
were used in the hidden layer and the output layer, 
respectively, and the Levenberg–Marquardt (LM) 
learning algorithm was applied to training the network 
[25]. 

Support vector machine (SVM) and genetic 
algorithm (GA). SVM has been designed to minimize 
the structural risk; therefore, it has better performance 
than other techniques based on minimization of the 
empirical risk [9]. Applying the kernel function 
technology, a nonlinear problem in the input space 
is mapped to a high-dimensional space, and then 
a linear discriminant function is constructed in 
this high-dimensional space. The most commonly 
used kernel functions are linear, radial basis (rbf), 
polynomial (poly) and cubic spline (spline) data 
interpolation. Different forms of kernel functions can 
generate different SVMs. All the four kinds of kernel 
functions were tried in our SVM. 
It is important to optimize the error penalty 

parameter (C) and kernel parameters (g) in the SVM. 
The genetic algorithm (GA) is a randomized search 
and optimization algorithm that it makes use of the 
population search method, fitting large-scale parallel 
process and possessing a global search function [26, 
27]. The GA was utilized to search model parameters 
C and g in our study.
The flowchart of the recognition system showing 

feature selection, classification, and then conclusion 
is shown in Fig. 4.

RESULTS 

Feature Selection. As was reported by Qi et al. [28], 
the muscle was supposed to be fatigued when the ex­
erted force dropped by 10% or more for more than  
3 sec during sustained contracting. Therefore, the grip 
force was taken into consideration to label the fatigue 
and MVC states. Figure 5 shows sEMGs and their 
power spectrum densities in MVC and fatigue; it can 
be seen that the sEMG energy was mainly distributed 
within the range of 5 to 150 Hz.
According to the frequency distribution, sEMG 

signals were decomposed with level-3 and level-4 

Subject

Measurement of  
EMG signals

Feature selection using 
WPT and energy analysis

Classification using  
BPNN, SVM, and  

GA-SVM

Removing of abnormal data

Results: MVC and fatigue

Stored data

F i g. 4. Flowchart of the recognition system.

Р и с. 4. Схема системи розпізнавання.
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wavelet packet transforms, and the packets of {(3,1), 
(3,2), (3,3), (3,4)} and {(4,1), (4,2), (4,3), (4,4), 
(4,5), (4,6), (4,7), and (4,8)} were selected. The 
reconstructed signals of {(4,1), (4,2), (4,3), (4,4), 
(4,5), (4,6), (4,7), and (4,8)} are shown in Fig. 6. Two 
kinds of the feature vectors (3-dimension vector from 
level-3 WPT and 7-dimension vector from level-4 
WPT) were composed of the normalized energies of 
the wavelet decomposition.

Removal of Abnormal Samples. As is shown in 
Fig. 7, each component of the sample vectors was 
used to construct a model with SVR. In the regression 
estimation, the residual of each component was 
obtained by calculating the difference between the 
model output and the sample. If the residuals of two 
components were out of the normal scope (tube), the 

sample was regarded as abnormal and eliminated. 
According to this model, 7 samples were removed and 
21 samples were reserved from totally 42 samples for 
MVC and fatigue.

Classification. All samples were randomly parti­
tioned into seven subsamples with k samples each  
(k = 8 or 6 before or after removal of the abnormal). 
Among the seven subsamples, one subsample was 
used as validation data for testing the model, and the 
other six subsamples were used as training data. The 
training data and testing data were then applied to 
the designed classifier. The cross-validation process 
was then repeated seven times, with each of the seven 
subsamples used only once as the validation data. 
The seven results from the folds then were averaged 
to produce a single estimate. The advantage of this 

F i g. 5. Surface EMGs (sEMGs) and their power spectrum densities (PSDs) in different states. A and B) sEMGs in the state of 
maximum voluntary contraction (MVC) and fatigue, respectively. C and D) PSDs of sEMGs at MVC and in fatigue, respectively. In 
A and B: abscissa) time, msec; ordinate) sEMG amlitude, V. In C and D: abscissa) frequency, Hz; ordinate) PSD, mV2/Hz.

Р и с. 5. “Поверхневі” електроміограми та їх спектральна щільність потужності в різних станах.
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method over repeated random subsampling is that all 
observations are used for both training and validation, 
and each observation is used for validation exactly 
once.
The BPNN recognition rate before and after removal 

of the abnormal samples is shown in Fig. 8, while the 
SVM classification accuracy before and after these 
procedure is shown in Table 1.

Figure 8A shows that BPNN could acquire a higher 
correct rate with the 7-dimensional vector (produced 
by level-4 WPT) than with the 3-dimensional vector 
(produced by level-3 WPT), and the best result was 
87.5% with 15 hidden nodes. After removing of the 
abnormal samples, the accuracy was further improved 
with the 7-dimensional vector produced by level-4 
WPT (compare Fig. 8A and B).

TABLE 1. Recognition Result of SVM with Two Kinds of Feature Vectors

SVM-результат розпізнавання з двома типами векторів особливостей

SVM classification accuracy
Kernel functions

linear polynomial radial basis cubic spline
Before removal of the abnormal samples

Level-3 WPT and SVM (%) 57.14 64.29 64.29 53.57
Level-4 WPT and SVM (%) 66.07 66.07 64.29 64.29

After removal of the abnormal samples
Level-4 WPT and GA-SVM (%) 78.57 83.33 97.62 28.57

F i g. 6. Original sEMG (A) and eight low-frequency bands (B). In B, stands for sEMG of different frequency bands (Hz): 0-31.25 (1), 
31.25-62.5 (2), 62.5-93.75 (3), 93.75-125 (4), 125-156.25 (5), 156.25-187.5 (6), 187.5-218.75 (7), and 218.75-250 (8). The bandwidth of 
each signal was 31.25 Hz. Abscissa) Time, msec; ordinate) amplitude of sEMG, V.

Р и с. 6. Oригінальна „поверхнева” електроміограма (А) та вісім низькочастотних смуг (Б).
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F i g. 7. Check feature vectors of samples in MVC. A–G) Regression comparisons of the first to the seventh dimension of the feature vectors. 
Dotted lines are regression results, solid lines are edges of the normal scope, and circles mean actual samples. Abscissa) Number of samples; 
ordinate) amplitude of the testing data and predictive data. H) Abnormal dimension number of the feature vectors. Abscissa) Number of the 
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Р и с. 7. Вектори особливостей зразків у стані максимального довільного скорочення. 

F i g. 8. Recognition result of BPNN with different hidden nodes. A) Before removal of the abnormal samples; B) after this procedure. 
Level-3 WPT produced 3-dimensional input vectors (1); hidden layer node was 7 to 12. Level-4 WPT produced 7-dimensional input 
vectors (2); hidden layer node was 6 to 20. Abscissa) Number of hidden layer nodes; ordinate) recognition rate, %.

Р и с. 8. BPNN-результат розпізнавання з різними прихованими вузлами.
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Table 1 shows that, with SVM, the 7-dimensional 
vector produced by level-4 WPT also had better 
classification than the 3-dimensional vector produced 
by level-3 WPT. After removal of the abnormal 
samples, the accuracy was greatly improved, and the 
best result was 97.62% with GA-SVM using the rbf 
kernel function.

DISCUSSION

This study proposed the sEMG feature extraction 
method based on WPT and energy analysis according 
to the distinct frequency characteristics of sEMGs 
from the ED, ECU, and ECRB muscles in the MVC 
and fatigue states. Then, the classification accuracy 
of BPNN, SVM, and GA-SVM were compared; it 
has been demonstrated that GA-SVM had higher 
recognition ability than the other two methods in 
distinguishing the MVC and fatigue states of sEMG. 
GA-SVM is more intelligent and time-saving because 
GA has characteristics of self-organization, self-
learning, and self-adaptation, and it can discover the 
environment feature to search those based on changes 
of the environment automatically. This algorithm 
might be used to solve complicated and unstructured 
problems [26].
Compared with our previous research, this paper 

introduced energy analysis in different frequencies 
based on WPT. As is shown in Fig. 5, it was found 
that the sEMG energy increased in the low-frequency 
and decreased in the high-frequency ranges when 
muscles were fatigued compared with MVC, which is 
consistent with the other study [29]. It occurs possibly 
because the firing rates of motor units decreased 
and caused the power spectrum of sEMG signal to 
compress toward a lower-frequency range during the 
fatigue state. Therefore, the energies within certain 
frequency ranges were selected and normalized to act 
as feature vectors. In this paper, 3-dimensional and 
7-dimensional feature vectors of sEMG were acquired 
with level-3 WPT and level-4 WPT. According 
to the classification results, it suggested that the 
7-dimensional feature vectors from level-4 WPT were 
more suitable for classification than the 3-dimensional 
ones. Although the feature vectors from higher-level 
WPT had more detailed information, they reduced the 
classification accuracy, possibly because a part of the 
information was useless for classification. 

In this study, we found that the BPNN output was 
sensitive to initial weights and thresholds due to 
the small sample size. To some extent, increasing 
the sample size can improve the recognition rate. 
However, excessive samples might cause BPNN over-
fitting. Consequently, BPNN was trained in our study 
more than 20 times by the same training set, and then 
the results were analyzed by statistics. The BPNN was 
determined by the output appearing to the greatest 
extent. For the node selection in the hidden layer, our 
experiments showed that the hidden-layer nodes had 
a significant impact on the performance of the neural 
network [23]. If too few nodes exist, each category 
could not be separated by the network, and if too many 
nodes exist, the operation was too big (there may be 
“over-learning”); therefore, the system performance 
and efficiency must be taken into full consideration 
to determine the hidden-layer nodes. The correct rate 
of BPNN was related to both the feature vectors and 
neurons in the hidden layer.
Removal of the abnormal samples is a key event 

to provide effective classification [21, 22, 30]. 
According to our results, the recognition rate of BPNN 
was greatly improved after removal of the anomalies, 
and the influence of the hidden-node number was 
reduced (Fig. 8B). The highest rate was 90.73%, and 
the lowest rate was 83.33% with BPNN. For SVM, 
the best result was 97.62% with GA-SVM (Table 1), 
which indicated that, after removing the abnormal 
parameters, optimization with GA greatly improved 
the SVM performance. 
In summary, the feature vectors based on wavelet 

packet transform and energy analysis are able to 
reflect the major characteristics of sEMG and can be 
used to distinguish sEMG in MVC and fatigue states. 
The SVM was suitable for classification of small-sized 
and nonlinear samples. Furthermore, GA applied to 
SVM can optimize the parameters. Therefore, higher 
classification accuracy was achieved by combining the 
appropriate feature extraction and the classifier design. 
At present, however, the proposed methods were only 
used to classify two sEMG patterns. EMGs with 25, 
50, and 75% MVC were collected in our experiments 
besides the MVC and fatigue states. Multi-pattern 
sEMGs will be recognized in the further study.

Acknowledgments. This work was supported by the 
National Natural Science Foundation of China, No. 81071231 
and No. 30670543.



NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 1 53
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Р е з ю м е

Ціллю нашого дослідження була розробка прийомів розпі­
знавання результатів електроміографічних відведень за 
допомогою поверхневих електродів (пЕМГ) в умовах 
розвитку максимального довільного скорочення та станів 
втоми; використовували пакетне вейвлет-перетворення та 
аналіз енергії. Сигнали пЕМГ піддавалися декомпозиції із 
застосуванням пакетного вейвлет-перетворення, і відповідні 
оцінки енергії певних частот нормувались як вектор ознак. 
Нейронна мережа із зворотним проведенням, машина 
опорних векторів (SVM) та SVM, базована на генетичному 
алгоритмі (GA-SVM), працювали як класифікатори, що 
розпізнавали стани м’язів. Отримані результати показали, 
що стани м’язової втоми та максимального довільного 
скорочення можуть бути ідентифіковані за допомогою 
пакетного вейвлет-перетворення 4-го рівня точніше, ніж 
у разі застосування інших підходів. Рівень коректності 
класифікації при семиразовій кросвалідизації сягав 97.3 %.  
Запропонований метод може бути використаний для 
адекватного відображення м’язової активності. 
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