DopmanvHi memoou npozpamyeants

UDC 519.681.3

C# PROGRAM VERIFICATION PROBLEMS:
SOLUTION BY A THREE-LEVEL METHOD

A.V. Promsky

Siberian Division of the Russian Academy of Science
A. P. Ershov Institute of Informatics Systems,
ac. Lavrentiev ave., 6, 630090 Novosibirsk, Russia.
Fax: 332 3494; phone: 330 8652.
E-mail: promsky@iis.nsk.su

The evolution of formal methods allowed us to ovene many obstacles in verification of proceduragpams. However, wide spreading
of object-oriented languages has brought new ahgdle, even in the case of sequential programs eTredblems were thoroughly exam-
ined by ESC/Java and Spec#, though in many casgguht state the presence of the challenge. Tdpeppresents an overview of some
problematic issues and a three-level approacheio sblution in the C#-light project.

PasButHe (oOpManbHEIX METOAOB IO3BONMIIO PEIINTh MHOTUE BOIPOCH BepHOHKAIMH INPOLEAYPHBIX IporpaMM. OIHAKO, IIHPOKOE
pacrpocTpaHeHHe OOBEKTHO-OPUECHTHPOBAHHBIX S3bIKOB BBIIBIJIO HOBBIC IIPOOJIEMBI Hake JUIS IIOCICAOBATEIBHBIX IMPOTpaMM. OTH
npobnemMbl ObITM IETaNbHO HCCienoBaHbl B mpoektax ESC/Javan Spec#,Ho pemieHne mpemiaraiock B peAKHX Ciydasx. B artoil cratee
PacCcMOTPEHBI HEKOTOPbIE U3 MPOOJIEM H HX PEIICHHE C MTOMOIIBIO TPEXypOoBHEBOro noaxona B npoekre C#-light.

I ntroduction

The fully automatic verification of programs iseartpting and hardly accessible goal. The activeofissbject-
oriented languages has raised the difficulty toea tevel. New formal methods and specification leames are re-
quired, because the classical Hoare approach estdeiel logics are no more adequate for the task.

This paper purposes two aims. First, it gives agraew of some well-known problems of OO programifica-
tion [1, 2] and, second, it presents a three-lapgroach to C#-light program verification in whitiese problems were
successfully solved.

The three-level approach is an attempt to recomaitecontroversial goals. First of all, a wide crage of C# is
a requirement of practical (and, of course, comiaBrinterest. That is why C#-light includes a dreart of C# [3],
except for threads and some realization-dependsrstiuicts. The formal definition of C#-light hag ttorm of a struc-
tured operational semantics. Secondly, regardiegs limitations, the axiomatic approach [4, 5kid| the best choice.
As a result, we chose a compact core of C#-lighthe-C#-kernel language and developed its Hoarellige. The
first level of our approach consists in translatfmm C#-light into C#-kernel. The formally definegt of translation
rules admits the proof of equivalence. At the sdcstage the lazy verification conditions are detiwe C#-kernel
axiomatic semantics. Laziness results from the tfaatt these conditions are not the final assertadrthe specification
language. Indeed, they can contain special tertateckto the issues of control transfer and dynamiding. Refine-
ment of these terms is beyond the capacity of tharéllogic and is performed at the third level.

In order to test our method, we verified most paogs from the well-known collection [1] illustratirige verifi-
cation challenges. Originally written in Java, theyt the C# syntax with minimal changes. We alsang@ned some
innovations of C#, such as delegates and events.

We also developed some strategies of verificatamdiion simplification. In the case of OO langusgne size
of verification conditions can overgrow all reasbleglimits, so it becomes an additional challenge.

This research has been partially supported by @44tt1-00114a from RFBR and by grant N 14 for yosaog
entists from SB RAS.

1. Preliminaries

Let us briefly describe the C#-light project anég@nt information required for further reading. ™eails can
be found in [6 — 9].

1.1. The C#-light language. As it was said, C#-light is a sequential langu&gsides the threads, the following
constructs are forbidden: attributes; destructbvsusi ng statement; thehecked andunchecked operators; unsafe
code; pre-processing directives.

Note that constructs listed above either requiecldlwv-level knowledge about a concrete implemeaitatif .Net
platform, or their contribution to C# expressivisynot significant. However, the C#-light languagsstill a representa-
tive subset of C#. In comparison with Java, ituiels properties, events, delegates and indexers.

© A.V. Promsky, 2008
ISSN 1727-4907. Ilpo6aemu nporpamyBanns. 2008. Ne 2-3. Cneuianvnuii sunyck 313

DopmanvHi memoou npozpamyeants

1.2. The assertion language. The choice of an assertion language, which is medre-/postconditions and in-
variants, plays a crucial role. Indeed, many priogerf the Hoare logic depend on the expressiwnéassertions.
The classical first-order language is not suffiti@ar modern programming languages and is a taigeteplace-
ment/extension [1, 10]. In our case, we added frscand some elementsietalculus.

Types of the assertion language include a univesstll, the set of C# identifierdl, the set of abstract type
namesT, functionsT — T' and Cartesian produc®xT', whereT, T' are types. Let us note thdtincludes, at least,
all C# literals, the set of memory sdllsnatural numberilat and undefined value.

Expressions include constants, variables, teffi(s,...,s,) andi-terms A(x,s) with a standard interpretation.

Assertions are boolean expressions built by stahdaes. We also fix the functionpd(f,c,v) which updates the
functionf at the argument with the valuev. For convenience we will use the usual infix niotain our examples.

1.3. The C#-kernel language. Strictly speaking, C#-kernel is not a syntactibsat of C# as long as it contains a
new class of constructions — meta-instructions. ey, semantically we are still in the scope oflight. Let us
briefly list the main features of C#-kernel:

« fully qualified names are used instead of namespandusi ng-directives;

« the set of statements includes an expression-statean f statement, got o statement and a block;

« the operators§| , &&, ?: , newand all assignments are forbidden;

« the sets of labels, local variable names, locakton names and type names are disjoint and doamain
duplicates within a program;

« a method and delegate invocation has a normal@edX. y(z,, ..., z,) ory(z,, ..., z,),wherex,y
are names ang, ...,z, are names or literals;

« instead of C# assignments, the metainstructian= e is used;

 objects are created by a low-level metainstruation i nst ance() ;

* types are explicitly initialized by metainstructioni t (C) ;

» exceptions are handled by metainstructiosisch(T, x) andcat ch(x);

« declarations of fields and constants of classesstmdts do not contain initializers. Instead, twethodsSFI
andl FI are reserved for each class declaration to perfpatic and instance field initialization, respeely.

Those low-level metainstructions should not confireereader. C#-kernel is the intermediate languagkits
use is hidden from the user.

1.4. The C#-light abstract machine. In the classical approach [4], suitable for Paszaiate of an abstract ma-
chine is a mapping from variable names into val@igsis, variable names are treated as unique labetemory cells,
and the state takes the label as an argument &mnhgdts contents. The presence of references sridli® approach
inconsistent in C# since every change of the shmtigh a label must track all possible aliases.

To overcome this obstacle, we use such a notioneasory management. Remember that access by nage onl
exists in the input code. The executable code Bspiccess by address. We introduce this two-leaghé - address
- value" access into our states. We do not idetiiéyaddresses with any concrete type. The unimtgrsymbolic
constants are sufficient. We only require that gwsldress be unique.

Besides the two-level access, we also need to nemmg@bject types, the internal structure of contpasbjects
and thrown exceptions. Thus, a state is a mapparg the following abstract machine metavariablés their values:

Name Type Description

L N - L Program variable addresses
\% L - U Program variable values

T NOU T Program variable types

L2 U x(N O Nat) - L | Composite object structure
VO U Last evaluated value

E U Last caught exception

We will often use the abbreviationvsinstead of the tupld.[V, T, L2, VO, E

1.5. Trandation from C#-light into C#-kernel. The basis for this translation was developed inveark on C
program verification [11]. Complex C-light consttsiavere translated into the sequences of simplgiZ-tonstructs.
The features of C# require translation of some Erpnstructs as well. The idea is as followshé interpretation of a
construct in the operational semantics leads teri@s of changes of metavariables, we can repleE®iiginal con-
struct by an explicit sequence of these changeat iShwhere the connection between metavariabldshaatainstruc-
tions is established. Indeed, for every metaintisnof the formx : = e, x is one of metavariables.

For example, the declaratienx; is replaced by
new_i nst ance() ;
L := upd(L, x, VO);
T := upd(T, L(x), Loc(9));

314

DopmanvHi memoou npozpamyeants

The first line results in allocation of a new memoell, and the new address is store/th In the second line,
this new address is associated with the nandéhe third line signals that the new cell contansobject of type.

1.6. Axiomatic semantics of C#-kernel. The classical Hoare logic is a calculus of trip]l® S {Q}, whereP
andQ are assertions arflis a program. A triple is valid if the truth ofelpreconditiorP and termination o8 implies
the truth of the postconditio. The principal factor is that programs and assesti'share" the variables. The truth of
assertions is expressed by the sets of statesighwablsertions are valid. For example, the forrmuta3 corresponds to
all states where the memory celtontains the value 3. The classical Hoare tripteah assignment looks like

{P(x « e} x:=¢{P}, or equivalently {P}x:=e{[X.(P(Xx « X)Ox=¢e(x « X))}, 1)

where “~ " denotes the substitution.

At the first sight, the use of metavariables degtrthis concept. However, not only the variablasied into
metavariables. The assertion and programming lagegiehanged as well. As a result, we have a cissise: a rather
simple programming language, and every programoimds six variables (now called metavariables); #ssertions
over these metavariables are written in the smatifin language. This leads to a decisive ideacan adapt the clas-
sical Hoarelogic for C#-kernel.

However, the simplicity of the logic structure ibtained by the price of complex assertions. Fomgte, the
formulax = 3 is now expressed ¥$L(x)) = 3.

We defined the logic of C#-kernel as a forward Holagic, when the leftmost construct is interprefEle dis-
advantage consists in the complex quantified fdpfdr an assignment. On the other hand, suchtarsyallows us to
discard the wittingly true triples. The proof eroriment, which signals about the current functioitjalized classes
and exceptions, also greatly reduces the proof.cbhgplete axiomatic semantics for C#-kernel cafobed in [7].

1.7. The lazy verification condition refinement. In practice, the axiomatic semantics is used infohe of a
verification condition generator (VCG). In our appch, VCG can produce inconclusive or lazy verifaraconditions.
It results from the problems of dynamic binding dmab invariants displacement.

1) When the user declares a virtual function iness; he defines the interface to the whole seivefriding
functions in the derived classes. The informatidmiciv function is actually invoked cannot be resdlggatically. Thus,
the polymorph function invocation in the generaeaequires quantification over the set of ovengdiunctions [10].
The resolution of such a quantifier, though firide every finite program, complicates its verifiicat.

Nevertheless, the forward Hoare logic proposesréiapaolution. Indeed, in this case the informatabout ob-
jects is accumulated in the precondition. When dbegrecondition "know" the object's dynamic tyéat, when the
object creation operation precedes the invocatmintpn one linear fragment. Second, when a usasalf provided
this information. In this case the invocation rad: use the specification of an appropriate functio

We do not include the algorithms, which extract dyeamic type from the precondition, into axiomatéman-
tics. Instead, we use the lazy te@ALL() which results in a very simple axiomatic rule:

EnvH{CALL(f,z,Jargs],mvs \mvs,P))} A{Q}
Env—H{P}z f(args); A{Q}

The formal refining algorithm fo€ALL is described in [7]. If is a simple function dfris a virtual function and
preconditionP "knows" the dynamic type of, thenCALL turns into a conjunction d? and of appropriate function
specifications with some substitutes over metabteta Otherwise, the quantifier over virtual funas will be added.

We use the analogous teELCALLto handle delegates [7].

2) Loop invariants. The problem is that we rewtfte loopswhi | e, do, f or andf or each with the help of the
got o statement. The treatment gdt o in the Hoare logic is also based on the notiomwériant. But in the general
case we cannot use the original loop invariant asva label invariant. In addition, during transbativarious "forward
gotos" can appear and they do not form loops at all

And again, the lazy terms can help us. Every tilre axiomatic semantics meets the statergent L or a
statement labeled hy; it introduces the symbolic formul&dlV(mvs L). The idea of its refinement is as follows. Among
the verification conditions we look for formulas thfe form A= INV(mvsL), and we take the disjunction of &l

Obviously, this formula is true every time when tbentrol reaches the labél And then every occurrence of
INV(e,L) is replaced by that disjunction with substitut@mne instead ofmvs

2. Verification condition simplification

The two-level access model resolves the probleneswiposite objects and aliasing but leads to eigids the
size of verification conditions (VC). Let us considhe following simple example:

C#-light program C#-kernel program

{ int x, vy, z; | { Init(int);
x = 1; new_i nst ance();
y = 2; L := upd(L, x, VO);

315

DopmanvHi memoou npozpamyeants

z = 3 T := upd(T, L(x), Loc(int));
z = 4,
} new_i nstance();
L := upd(L, y, VO);
T := upd(T, L(y), Loc(int));
new_i nstance();
L := upd(L, z, VO);
T := upd(T, L(z), Loc(int));
V := upd(V, L(x), 1);
Vor=upd(V, L(y), 2);
V = upd(V, L(z), 3);
V = upd(V, L(z), 4);
}

Indeed, the original C#-light program is so simibiat it could be verified in the classical Hoargito[8]. How-
ever, in our approach we verify the source progttaough the implicit verification of an equivale@-kernel program
in the right column. Let us compare the VCs obtaiimeeach approach.

In each case we can usee as a precondition.

The postcondition for the classical logicxs=1Cy =2Cz =4. Applying the rule (1) 4 times, we obtain the
true assertion:

true=>x =1Ly =2Cz=4. (2)

Our C#-kernel logic requires the following postciimth: V(L(x)) =10V (L(y)) =20V (L(z)) =4.

Besides the more complex precondition, the numb&QGs doubles because of the metainstructiont . If a
type is not yet initialized, this metainstructioiggers the process of static initialization, othise it is ignored. Let us
consider the VC without initialization. For simptic we omit the existential quantifiers binding timelexed variables.
The predicatéSI(i nt, ...) signals that the typent was actually initialized. The proof environmentaiso discarded
because such a simple program does not depend on it

I newpldy, Ls, Vi, L2) Anewplds, Ls, Vi, L2) Aonewp(d;, L, Vi, L2)

| |E=wASIing, Ly, Vi, T L2) AVD = dy AVDy =da AVD =ds| A |

Lo = upd(Ly.x. V) A Ly = upd{La, 7, V02) A L = upd{ Ls, z, V1) ViLix))=1 A
| Ty = upd(Ty, La{x), Loc{int)) A V(L{y))=2 A (3)
| | T3 = upd{Ty, Laly), Loc(int)) A T = uwpd(T3, Liz), .’.mrlin‘t||| | V(L{z)) =4 |1

Vo = upd(V], L(x), 1) A V3 = upd(V5, L{¥y), 2)

Vi = upd(Vs, Liz),3) A V = upd(Vy, L(z),4)

The size of VC surprises. Obviously, verificatidir@al programs can lead to immense assertionshwd@n eas-
ily overcome the capacity of theorem provers. Titdhe price of the detailed memory model of C#igernel. Thus,
we need some simplification strategies which mustg@de the proof stage.

Strategy 1. Let us have a close look at the boxed conjundte formula E =« signals that the value of the
metavariableéE is undefined. In other words, no exception waewhmr during the execution. In this example the caitt
environment also states the absence of exceptionthis formula is true indeed. Analogously, hamgllof Init(i nt)
adds the typént to the set of initialized types in environmentushthe formul&i(i nt , Ly, V3, Ty, L2) is odd.

Further, the equalities of the fonariable, = variable, are just renamings. We can prolong one of theabées.

Finally, all we need is to proof that the valuesxp§ andz are 1, 2 and 3, respectively. This proof requihes
information about metavariablésandV, and the types are irrelevant. Moreover, the opusiet does not contain any
occurrence of the metavariable Thus, we can omit the conjuncts i, T; andT. To justify such a discard, we have
to show that the formula

T, =upd(T;, L2(x), Loc(i nt)) OT; =upd(T,, L, (y), Loc(i nt)) OT =upd(T;, L(z), Loc(i nt))

is valid. This can be easily done.

Strategy 2. In the consequent of VC, the variables are matauzinst the constants. So, we can split VC into
three formulas in accordance with the number ofwmrts in the consequent. Let us consider oneedemew formu-
las (strategy 1 is supposed to be already applied):

newp(ds, Ls, Vy, L2) Onewp(d,, L,, V;, L2) Onewp(d,, Ly, V;, L2) O

L, = upd(Ly, x, d;) OLs = upd(L,,y,d,) 0L = upd(Ls, z,d3) O

V, = upd(Vy, L(x),1) OV5 = upd(V,, L(y), 2) OV, = upd(Vs, L(z), 3) O
V = upd(Vy, L), 4)

=V(LE) = 4.

316

DopmanvHi memoou npozpamyeants

Strategy 3. The typei nt is not a reference type, and C#-light does nopstipointers. This guarantees that the
objectz does not have aliases, i.e. the assignmentsaataly affectz only if the expressions overandy are assigned
to z. Let us begin to unfold the antecedent from tigatrnost conjunct. If a termpd bindsz with a value which is in-
dependent from andy, then thisupd can be substituted into the consequent. Otherttiseipdis ignored.

[newp(d,, Ls, V,, L2) C newp(d,, L,, V,, L2) C newp(d,, L,, V,, L2)]
=X 4
upd(v4! upd(LS! Z! ds)(z)l 4)(upd(L3! Z! dS)(Z)) = 4

The standard semantics wbd (Section 2.2) provides the truth of this assertibimough (4) is still bigger than
(2), it is significantly simpler than the origindC (3). Moreover, the proof does not depend orfaélsethatd, , d, and
d; are new addresses (expressed by predieatg), so the whole antecedent can be discarded.

In the next Section we will demonstrate the VCesraifie application of simplification strategies.

3. Some verification challenges and their solution

The majority of examples are borrowed from [1].gdvally written in Java, they were translated i@#%. Both
languages are syntactically (and semantically)ecles the translation is trivial. The volume of fager does not allow
us to represent here all of them. Let us conslueimost interesting. The remaining cases can belfou[9].

3.1. Aliasing. Aliasing can make the classical Hoare logic fitigonsistent. For examplefandy point to the
same memory object, then the following Hoare tripgeomes incorrect:

{x=1}y:=2{x=1}.

The explicit memory modeling allows us to find dusimn. Consider the following program:

class C {
C a;
int i;
CH){f a=null; i =1; }
class Alias {
int nm(){
Cc = new ();
c.a = c;
c.i = 2;

return c.i + c.a.i;

}

Here, the field is accessed via the objectas well as via an aliased reference tisself in the fielda. The
specifications for program methods are as follows:
PreC. O . true,

PostC. C) : V(L(&) =null OV(L(3)) =1,
Pre@ias.m : true,
Post@lias.m : V0=4.

Verification of the constructo€() is not of great interest, so let us consider trghaodAl i as. n(). In our
axiomatic semantics, treatment of the method intfocahere,C()) doubles the proof tree. In combination with the
explicit exception propagation [9] this leads tomgetion of 16 verification conditions. However, ¥&s are tautolo-
gies as long as they have fofise = ® . Two remaining must be proved. Let us considerafrtbem (after simplifi-
cations):

V"= upd (V' L'(0),V'(L'(x) OV™ = upd (V" L2(v"(L'(c)),),V "(L'(c))) [
V =upd(V",L2(V"(L'(c)),i),2) O

L" = upd (L', yL, L2(v (L'(c), 1)) DL = upd (L", y2, L2(V (L2(V (L"(c)), a)), 1)) O|
VO =V(L(yD) +V(L(y2)

V0=4.

The standard semanticsugid guarantees its truth. The second VC is similar@rdbe checked by analogy.

3.2. Breaking out of a loop. The exit from a loop without a loop condition ckéas usually performed via a
br eak statement (rarely, vigot 0). This complicates the underlying control flow sertics.

In our approach the break statements are replacgdtbs. This results in appearance of new lalbelSection
2.7 we discussed how to tame these labels anditivairiants.

317

DopmanvHi memoou npozpamyeants

The input C#-light program looks like this:

class C{
int[] ia;
voi d NegateFirst(){
for (int i =0; i <ia.Length; i++){
if (ia[i] <0){ ia[i] = -ia[i]; break; }}

When the first negative element is reached, its siganges and the loop aborts.
The unconditional exit from a loop in combinatioittwa potential array update leads to complicatibepecifi-
cations:

Pre(NF()) : Jold ;dintll. V(LA V(Lithiz)). ia)) <& null A V{LXV(L{thiz)),ia)) = old
Post{NF(})} : Wi (0 <i< V(L2(V{L(this}},ia)).Length —>
((oldji] = DA (V5. 0< < i= oldlj] = 0)) == V(L2(V(L{thia)), 1a)}]i — el |d])
old|i| = 0 = V{L2[V{L{this)}, ia)}|i] = old|i])
Invifor} @ 0< V(L(i))< V(L2{V(L({this}},ia)).Lengthh
(W7 0<j = V{L(i)) = (V(LYV(L{zhig)), ia))[7] = 0 A V{L2(V([L{this)}), ia}) = old|}))

The original array content is stored in an auxjlieariableold.
Let us consider one of verification conditions. dbrresponds to execution from the beginning of
C. Negat eFi rst () up to the loop entry point.

[CALL(<,i nt,[i ,x0],[L,V",T,L2,V0,E], A(mvs ®)) OV =upd(V", L(b0),V0)| = Inv(f or)
where

CALL(get _Lengt h,x1,[],[L,V",T,L2VO,E],
A(mvsINV([L,V',T,L2VO0,E],L1) O OV =upd(V", L(x0),V0).
VO=V'(L2(V'(L(t hi s)),i a)) OV =upd(V',L(x1),V0))))

©
I]

To unify the semantics, the standard operationsuaegl in the syntax of the method invocation. Tikatvhy
there are the ternBALL for the relatiorc and array propertiyengt h. They assert that the value of the counter less
than the array length. This length is stored inea program variable0 which appears during translation into C#-
kernel. Also, note the presence of a lazy invarfane new labeL1. Its refined value is the conjunction of two asser
tions. The first one is the precondition INE()), where the program variabileis associated with the value 0. The sec-
ond one is the loop invariant Iriv{r) propagated (as a proof precondition) throughldlo@ body. Note that if the end
point of the loop body is reached, then for therenirvalue of the elementsa[0], ...,i a[i - 1] are not negative, i.e.
the loop was not aborted vim eak. Thus, the VC antecedent states that either we hazero-length array or the loop
invariant is not affected by the counter increm@&ytinduction, this implies the consequent frw().

3.3. Staticinitialization. A static field/method of the class belongs to tlsg itself. In particular, it can be used
even if there is no instance of the class. In G#wall as in Java) static initialization is lazyrFexample, in Java a
class is initialized at its first active use. Thifgnitialization causes some nontrivial processesa program, then the
user must precisely know where it will take place.

C# makes the situation even worse as long as a daaitialized immediately at the first activeeusnly if a
static constructor exists. Otherwise, initializatimkes place at an implementation-dependent tmoe f the first ac-
tive use [3, §17.4.5.1]. This results in nondetaiigm of the class initialization order.

Let us consider the following example:

class C{
static bool rl1, r2, r3, r4;

static void m(){

rl = Cl. bi;
r2 = C2.b2
r3 = Cl.d1
r4 = C2.d2;
}
}
class Cl {
public static bool bl = C2.d2;
public static bool dl = true;

318

DopmanvHi memoou npozpamyeants

}
class C2 {
public static bool d2 = true;
public static bool b2 = Cl.d1;
}

In Java the situation is deterministic though i b& a surprise for a user. The first assignmetitarbody of the
methodny() triggers initialization of the clasdl, which in turn triggers initialization of the c&62. During initializa-
tion of C2, initialization of C1 suspends and the default field values are used Asult, static field2. b2 is set to
false and all other fields are setticue. If the first two strings in the method bodymf) are switched, the clag® will
be initialized before the clagd, resulting in all fields getting the valtieue.

In C# the order of initialization is unknown evémitigh the compilation in Visual Studio provides fawa's re-
sult. So, in the general case, this program isddde challenge, but we can use the static construdtet us add the
declarationsstatic C1(){} andstatic C2(){} to classe<l andC2 respectively. It will guarantee the needed
behavior.

The program specifications are as follows:

PreC. m : true
PostC. m) D V(L(r 1) O=V(L(r 2)) OV(L(r 3)) OV(L(r 4))

According to the definition of C#-kernel (see SentP.3), the field declarations do not containiafiters. Dur-
ing translation from C#-light, the static field tializers move into the special metha®d which are created for each
class automatically. Because these methods caergpdrified a priori, their semantics consistmbhé body substitu-
tion. As a result, the VCs can grow significantly:

[—SI{C1, L, Vi, Ta, L2) A =S (C2, La . Va, T, L2)
wpd{ Ly, Cl.dy} A Ly = uped{ Lo field Bl da) A
5 .'JJ'H.'II' |r._1 G2, |i'4: i Jr.rl '.'r'nlll'J'.; 3 f"_E-'_l:'._li'.-!.rf--: | K
(2 = wpd(L2, (V5{C1).01), Ly(field B1)) A L2,
L2y = upd{L25, (Vs

1 = upnd(Vi, diea) A Ve = upd(Vz, L2a(CL, bt), fabse) A Vi = wypwd(Va, L2a{C1, d1), False) A | = Post{C.m).

] 5. Fie1d_d1,dy)

L

L

I

[

Ve = upad(Vy. dy, 60) 4 Vi = upd({ Vs, L2(C2, 42), false) A Vo = upd{Vy, L2{C2,02), false)
v

1

1

i

field.bZ.dy)
(L2, (Va[C1), A1}, Ly(field dl})
1).d2), Le(field d2)) A L2 = upd({LZs, {Va(C1).b2), L{field b2})

= upd(V5. L2(C2, 42) true) A Vg = upd({Ve, L2(C2. B2}, Vu(L2{C1.41}))

"o upd(V., .Ir.-'.]E_Cl.':l'.l;.l'-'_.!Jr.-':'"':'l.'ﬂ'l:. T wpd{ Vyo, L2(C1,d1), trus)

1 upd(Vyy, L2(C, resultl), Vi (L2(C1, B1))) A Via = upd(Vye, L2(C, Tesultl), Vis(L2({C2, b2)))
"1a= upd{Vig, L2{C, resultd), Viy{L2(C1 411)) & V = upd(V,4, L2(C, resul t4), V[L2(C2.42)))

However, t-he proof is straightforward.

3.4. Overriding and dynamic types. Consider the following program:
class C{ virtual void m() { m(); } }

class D: C{
override void m() { throw new System Exception(); }

void test() { base.m); }

}
At first sight, it looks like the methodest () will loop forever. In reality it is not the caséte method est ()

calls the method() from the clas<, which calls the methonl() from the clas®, since the referenaehi s has the
runtime-typeD. It should be noted that in Java the program hiehaan be clearer for a reader, because exceptions
thrown from the methods can be expressed expliditlparticular, in [9] all three methods are acpamied by the note
throws Exception.
The specifications are as follows:

Pre©. m : true,
Postp. m : T(E) = SE,
Pre. test) © T(V(t hi s)) =D,
PostD. test) : T(E) =SE.

predC. mmvg OT (V(t hi s)) =TOT(a) Omvs=mvg(a) O
PreC. m(mvs a) : (TOT(a) # C= Of Om\s'((invoker(f,m,t hi s,[],mvg O

substmvs, mvs f,t hi s,[]) = pre(f)(ms,rest(a)))) O

(TOT(a) =C=true)
POStC. m(mvs a) [(TOT(a) # C= [Of (invokel f,mt hi s,[], mvg(a)) = pos(f)(mvsrest(a)))) O .
(TOT(a) =C=false)

Here a stands for the tuple of specification patamseforC. n() andTOT(a) denotes the type afhi s. Also
mvg(a) stores the initial values of metavariables framvs For brevity, we use the nan®E instead ofSys-
t em Excepti on. The postcondition ob. Test () states thaE stores the uncaught exception of ty§e The specifi-

319

DopmanvHi memoou npozpamyeants

cation ofC. m() represents the case analysis. If the type ofishis then the invocation() leads to the endless loop
(TOT(a) =C=false) . Otherwise, the invocatiom() is the invocation of a proper implementation@fr() from

some derived class. The collection of all thosel@mentations is quantified by the variablhich satisfies the predi-
cateinvoker. This predicate is a logical representation ofléte binding algorithm.

The classes C and D do not contain the fields. Asresequence, the intermediate C#-kernel prograveris
short and can be represented as follows:

class C{ virtual void m) { this.m(); } }

class D: C{
public void IFI_D() {
Init(Q;
this.IFl_C();
}

override void m() {

Init(System Exception);

new_i nstance() ;
L := upd(L, x, VO);
T := upd(T, L(x), Loc(System Exception));
new_i nst ance() ;
V = upd(V, L(x), V0);
T := upd(T, V(x), System Exception);
x. | FI _System Exception();
X. Syst em Exception();
E := V(x);

}
void test() { base.m)); }

}

Note that the initializing methodFl appears i (the corresponding method @turns to be empty). The name
spaces are eliminated during translation, so tHenfume Syst em Excepti on is replaced by the global level name
Syst em Excepti on.

Two VCs are generated fort est () depending on the fact that the exception is/(t3 reased during the invo-
cationbase. n() . The VC without exception is tautology, since déshthe formfalse= ®. The VC with exception

looks like this:
CALL(mbase,[], mvsA(mvs predD. t est, mv§ OT(V(t hi s))=D)) HE# w=T(E) =SE .

The formulapreq) is automatically added by the generator for gwveethod to represent some standard assump-
tions about the class and this. However, it dogésfiect the truth of this VC and we can omit iefidition.
The details of refinement of this VC can be foumdai].

3.5. Delegates. A delegate is a class that encapsulates a funstgnature. In comparison with the C function
pointers, the higher level of safety is providedthe general case, a delegate points at a lfstnations, though this
feature is rarely used. Let us consider the foltmpprogram:

class M ni mum {
public del egate bool Oder(int el, int e2);

static public int Find(int[] arr, Oder ord) {
int mn=arr[0];
int xx = 0;

whil e(xx < arr.Length){
if(ord(arr[xx], mn)) mn = arr[xx];

XX++;
} _
return mn;
}
}
class C{

static bool LessThan(int el, int e2) { return el < e2; }
static void Main(string[] args) {

M ni mum Order order = new M ni mum O der (LessThan);
int[] arr = newint[] {3, 5 1, 7, 4};

320

DopmanvHi memoou npozpamyeants

M ni mum Fi nd(arr, order);

}

The classv ni mumdeclares the methdd nd() , which should find the minimal element in an arcdiyntegers.
The method which defines the ordering relationassed to the method Find through the delegate péearfcompare
with the C standard library functiarsor t). Here we use the usual " <" relation.

The program specifications are as follows:

Pre(Find) 0 =< V{L2{V(L{arT}), Length)) A J(somef : Ordar). Aejep. V{L{ord)) = Aeye; somef
Post{Find) 37 (0 < j < V(L2(V(L{arr)), Length]}A
VO = VI{L2(V [LiarT)), 7)) A Y (i 3£ 7 = somef (VO VL2V L{arT)), i)1)))
Inviwhile) : V(L{xx))< V{L2(V(L{arr)), Langth)}A
Yh({ k< V(L)) = (somef(V(L{nin)), V{L2{V(L{arT)), NV
ViL{min)) = V(L2(V{L{arxT)), k))))
Pre{LT) T true
Post(LT) > ViL{ey)) < ViL{es)) = VO = true
Pre(Main) : true
Post(Main) : V=1

When we specify the methad ni mum Fi nd(), we come across the same problem as for virtusthads. To
avoid the limited applicability afl ni rum Fi nd() , we should not specify the relation™as the only possible parame-
ter. Thus, the parameter is specified by the aftsibgical functionrsomefwithout any assumptions about its nature.

Among the dozens of VCs we can consider the folhgwafter simplifications):
CALL(++,i nt,[xx],[L,V,4,T,L2 V0, E], A(mvs ®)) OV = upd(V, , L(xx),V0) = INV(L) (5)
where

_ DELCALLY,(L(or d)),[x0, m n],mvsA(mvs®,) O
- V; =upd(V,, L(b),V0) OV;(L(b)) =true 0V, = upd(Vs, L(mi n),V2(ar r ,xx)) '

newgd,, L,,V;,L2) Onewgd,, Ly, Vy, L2) OV, (L (xx)) < Vi (L2(Vi(Ly(ar r)),Lengt h)) O
Ok (k < V(L (xx)) = somefVy (Ly(mi), Vy(L2(V; (Ly(ar), k) O

®, = Vi(Ly(m n)) =V (L2(Vi (L (ar 1)), k))
) O
L, =upd(Ly, b,d;) OL =upd(L,,x0,d,) OV, =upd(V;, L(x0),V2(ar r ,xx))

It corresponds to the body of thai | e loop and contains all variants of lazy ter@#LL, DELCALL andINV.
The proof sketch is as follows. The enclosCWLL corresponds to the fragment++. The assertioW0 =V(L(arg)) +
1 can be taken as a postcondition of incremente Ntwit the side effect of increment is expressetthénsecond con-
junct in (5). During the refinement @ALL, the nameV is replaced by, and ® filters outwards. Here, the delegate
points at the single function, so the refinemenDBL. CALL resembles the refinement GALL Thus the adapted dele-
gate specifications are addeddy, . Finally, it is easy to establish thH&V(L) = Inv(ahi | e)(VO « V(L(m n))). As a

result (5) asserts that the loop invariant is pressh when the counteix increases. The proof is by induction.
4. Related work

Interesting results on semantics formalizationJava and C# are described in [10, 12, 13]. As @ these pa-
pers either propose a detailed low-level semariticenvenient for verification, or verification ike initial goal but the
language coverage is poor.

The LOOP project [14] was started in 1997 at thévehsity of Nijmegen. Apart from threads and ineasses,
the majority of Java features are covered. The L@gPis effectively a compiler, which takes a Javagram and its
JML specifications as input. As output, it genesageveral lemmas in the syntax of the theorem piBV&S. Semantics
of objects and classes is based on the algebrpimagh. Most of the case studies are so-called Gavd programs
designed to run on smart cards. The main shortapmithat the tool works effectively only for smptograms.

Another well-known example is the ESC/Java projgbt which supports a wide Java subset. A subsdiviif
is used for specifications. A wp-calculus is usedte semantics description, and a theorem praaschkes for poten-
tial bugs. However, the full functional correctnesss not the aim, and the developers have deldlgrahosen an un-
sound and incomplete approach to maximize the nuofiitgpical bugs that the tool can spot fully aunttically.

The Spec# system [16] looks promising. It integgatdo Visual Studio and .NET Framework, so the plate
infrastructure, including libraries, designing asiting tools, is provided. The Spec# language ssigerset of C#. It

321

DopmanvHi memoou npozpamyeants

provides user specifications, non-null types andesoneans for high-level data abstraction. The fipatibns become
a part of a program and can be checked dynamictilg.static check in the theorem prover Boogidsis aupported.

The problem of verification condition complicati@ffects the practicability of a verification system [17]
Luckham and Suzuki considered the issue of the cuatdrial size explosion, when the update functipd is used for
arrays and pointers. Some algorithms for redudieg€cursiveaipdinvocations were proposed.

The two-stage VC generation algorithm has beenamphted as a part of ESC/Java [18]. The first Stiages-
lates a source fragment into an assignment-frepassive, form. The second stage uses a VC gemetatthnique that
is optimized to exploit the assignment-free nawir¢he passive form. This two-stage algorithm esa VC, whose
size in worst-case quadratic in the size of theamfragment, and in practice appears to be ctotiedar.

Another approach consists in simplification of Vi@=fore their proof. Gribomont [19] proposed a stggt for
the propositional case, corresponding to digitedudts and concurrent synchronization algorithmfficiently comput-
able criteria allow one to detect and discard pbbvarelevant parts of boolean VCs.

Conclusion

In this paper we have described some C# prograification challenges and proposed the solution nepkes
in the framework of the C#-light project. Thesehigiques form the tree-level approach which extemastwo-level
approach to C program verification [11]. The adeges of C#-light and of the approach are as follows

» The C#-light language supports the major part qtisatial C#.

» The verification process is based on a simple Hbkeelogic. The simplicity results from translatiof se-
mantically difficult C#-light constructs into C#-keel and postponement of handling some dynamiccaspmtil the
refinement stage.

« Unambiguous inference of lazy verification condigaby means of forward proof rules considerablyiced
the number of generated lemmas.

The complexity of verification conditions is notuadly proclaimed as a challenge. However, our tedainem-
ory model can lead to the combinatorial explosiothie length of terms. Therefore we proposed sdrategies which
considerably simplify the verification conditions.

The three-level approach is promising for applmagi We are developing an experimental tool foligi#- pro-
gram verification including C#-light to C#-kernehnslator, verification condition generator as veslllazy verification
condition refiner. It is supposed to use a stat@yrer to check applicability of simplificatiorrategies.

Our list of challenges is not complete. The prolsdesuch as termination, class invariance, low-levithmetic,
as well as some advanced features mentioned ieg8]form the framework of future research.

1. Jacobs B., Kiniry J.L., Warnier Mlava Program Verification Challenges // Lect. Nd@@mput. Sci. — 2003. — Vol. 2852. — P. 202-219.

2. Leavens G.T., Leino K.R.M., Muller 8pecification and verification challenges for seufial object—oriented programs // TR#06—14a, Deipt.
Computer Science, lowa State University, 2006.

3. C# Language Specification. Standard ECMA-334, 2001.

4. AptK.R., Olderog E.R/erification of sequential and concurrent programBerlin etc.: Springer, 1991. — 450 p.

5. Hoare C.A.RAn axiomatic basis for computer programming // @mm ACM. — 1969. — Vol. 12, N 1. — P. 576-580.

6. Dubranovsky I.VC# program verification: the translation from Aght into C#—kernel. — Novosibirsk, 2006. — 56 p(Rrep. IS SB RAS;

N 140).

7. Nepomniaschy V.A., Anureev |.S., Dubranovsky PMmsky A.VTowards C# program verification: A three—level eggzh // J. "Programmi-
rovanie" Russian. — 2007. — N 4. — P. 1-16.

8. Nepomniaschy V.A., Anureev |.S., Promsky Aowards C# program verification: C#—kernel andaitiomatic semantics // Proc. CS&P'2006. —
Humboldt University, Berlin. — Specification. — 06- Vol. 2: — P. 195-206.

9. Promsky A.VApplication of three—level approach to C#—lighbgram verification. — Novosibirsk, 2006. — (PrepitS SB RAS; N 139).

10. Oheimb D.VHoare Logic for Java in Isabelle/HOL // Concurgaod Computation. — 2001. — Vol. 13. — P. 23 — 36.

11. Nepomniaschy V.A., Anureev |.S., Mihailov I.N.,mRsky A.V Verification—Oriented Language C-light // Systemformatics. — Novosibirsk,
2004. - Vol. 9. - P. 51-134.

12. Borger E., Fruja N.G., Gervasi V., Stark R.High—Level Modular Definition of Semantics of G#Theoretical Computer Sci. — 2004. —
N 336(2/3).

13. Poetzsch—Heffter A., Muller A Programming Logic for Sequential Java // Leabtéé Comput. Sci. — 1999. — Vol. 1576. — P. 162-176

14. Jacobs B., Poll EJava Program Verification at Nijmegen: Developtremd Perspective // Lect. Notes Comput. Sci. —-4260Vol. 3233. —
P. 134-153.

15. Leino K.R.M.Extended Static Checking: a Ten—Year Perspedtivect. Notes Comput. Sci. — 2001. — Vol. 2000. 2%7-175.

16. Barnett M., Leino K.R.M., Schulte Whe Spec# programming system: An overview // Léldtes Comput. Sci. — 2004. — Vol. 3362. —
P. 49-69.

17. Luckham D.C., Suzuki Nerification of array, record and pointer operaion Pascal // ACM Trans. Progr. Lang., and Systeni979. — Vol.
1,N2. - P.226-244.

18. Flanagan C., Saxe J.BAvoiding Exponential Explosion: Generating Comparification Conditions // ACM Press, January 2061
P. 193-205.

19. Gribomont P.ESimplification of Boolean verification conditiosTheoretical Computer Sci. — 2000. — Vol. 2391.N- P. 165-185.

322

