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Abstract. We survey the current status of universality limits for m-point correlation func-
tions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels
are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact
intervals, and fixed and varying exponential weights, as well as universality limits for a va-
riety of orthogonal systems. The scope of the survey is quite narrow: we do not consider β
ensembles for β 6= 2, nor general Hermitian matrices with independent entries, let alone
more general settings. We include some open problems.
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1 Introduction

The remarkable connections between random matrices and other topics are clearly exposited in
many texts, so we shall not discuss it in this brief review. Readers may consult [1, 2, 4, 7, 18,
20, 28, 70, 89]. The 2003 short historical survey of Forrester, Snaith and Verbaarschot [29] is
still very useful. We simply start with a probability distribution P (n) on the space of n by n
Hermitian matrices M = (tij)1≤i,j≤n:

P (n)(M) =
1

Zn
w(M)dM =

1

Zn
w(M)

 n∏
j=1

dtjj

∏
j<k

d (Re tjk) d (Im tjk)

 .

Here w is some non-negative function defined on Hermitian matrices, and Zn is a normalizing
constant, there to ensure that P (n) is indeed a probability distribution. The most important
case is

w(M) = exp(−2n trQ(M)),

for appropriate functions Q. In particular, the choice Q(M) = M2, leads to the Gaussian unitary
ensemble (apart from scaling) that was considered by Wigner. When expressed in spectral form,
that is, as a probability distribution on the eigenvalues x1 ≤ x2 ≤ · · · ≤ xn of M , it takes the
form

P (n)(x1, x2, . . . , xn)dx1 · · · dxn =
1

Zn

 ∏
1≤i<j<n

(xi − xj)2

 n∏
j=1

w(xj)dxj

 .
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See [18, p. 102 ff.]. Again, Zn is a normalizing constant, often called the partition function
(constant). Note that w now can be any non-negative measurable function. We could also
replace the absolutely continuous measure w(x)dx by dµ(x), where µ is a positive measure on
the real line, but for the moment focus on absolutely continuous measures.

In most applications, we want to let n → ∞, and obviously the n-fold density complicates
issues. So we often integrate out most variables, forming marginal distributions. One particularly
important quantity is the m-point correlation function [18, p. 112], which in the following form
includes a factor of w(x1)w(x2) · · ·w(xm):

Rm,n(w;x1, x2, . . . , xm)

=
n!

(n−m)!

1

Zn

∫
· · ·
∫  ∏

1≤i<j<n
(xi − xj)2

 n∏
j=1

w(xj)

 dxm+1dxm+2 · · · dxn.

Typically, we fix m, and study Rm,n as n → ∞. Rm,n is useful in examining spacing of eigen-
values, and counting the expected number of eigenvalues in some set. For example, if B is
a measurable subset of R,∫

B
· · ·
∫
B
Rm,n(w;x1, x2, . . . , xm)dx1dx2 · · · dxm

counts the expected number ofm-tuples (x1, x2, . . . , xm) of distinct eigenvalues with each xj ∈ B.
There are several types of universality limits involving the m-point correlation function Rm,n.

We shall examine those involving local or “microlocal” scaling about a point inside the interior
of the support of w (the “bulk”) or at the boundary of the support of w (the “edge”). When
we deal with a sequence of weights, the so-called “varying weights” case, the edge might be
a moving, or “soft edge”, or possibly a fixed, or “hard edge”.

Let us illustrate these through the examples of the Jacobi and Hermite weights. The Jacobi
weight is defined by

wα,β(x) = (1− x)α(1 + x)β, x ∈ (−1, 1),

where α, β > −1. Given x ∈ (−1, 1), m ≥ 1, and real numbers u1, u2, . . . , um, its universality
limit in the bulk takes the form (cf. [42, Theorem 1.1, p. 1577])

lim
n→∞

(
π
√

1− x2

n

)m
Rm,n

(
wα,β;x+

u1π
√

1− x2

n
, x+

u2π
√

1− x2

n
, . . . , x+

umπ
√

1− x2

n

)
= det(S(ui − uj))1≤i,j≤m.

Here

S(x) =
sinπx

πx

is the sinc kernel, and the factor π
√

1− x2 is the reciprocal of the equilibrium density for
(−1, 1), see Section 2. At the “hard edge” x = 1, we instead have for u1, u2, . . . , um > 0 (cf. [42,
Theorem 1.1, p. 1577])

lim
n→∞

(
1

2n2

)m
Rm,n

(
wα,β; 1− u1

2n2
, 1− u2

2n2
, . . . , 1− um

2n2

)
= det (Jα (ui, uj))1≤i,j≤m .

Here, Jα denotes the Bessel kernel of order α, involving the usual Bessel function Jα of order α,

Jα(u, v) =
Jα (
√
u)
√
vJ ′α (

√
v)− Jα (

√
v)
√
uJ ′α (

√
u)

2(u− v)
.
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For the varying Hermite weight

w2n
H (x) = exp

(
−2nx2

)
, x ∈ (−∞,∞),

the “bulk” is not the whole real line, but the finite interval [−1, 1] – it is here where the relevant
equilibrium density is supported (more on this in Section 5). The universality limit in the bulk
takes the form (cf. [18, p. 253, Theorem 8.16], [21, p. 1348, Theorem 1.4], [28, p. 283])

lim
n→∞

(
π

2n
√

1− x2

)m
Rm,n

(
w2n
H ;x+

u1π

2n
√

1− x2
, x+

u2π

2n
√

1− x2
, . . . , x+

umπ

2n
√

1− x2

)
= det (S (ui − uj))1≤i,j≤m ,

and holds uniformly for x in compact subsets of (−1, 1) and u1, u2, . . . , um in compact subsets
of the real line. The function 2

π

√
1− x2 is the equilibrium density for the external field x2, see

Section 5. The universality at the soft edge 1 takes the form [50, equation (1.6), p. 4], [95,
p. 152]

lim
n→∞

(
1

2n2/3

)m
Rm,n

(
w2n
H ; 1 +

u1

2n2/3
, 1 +

u2

2n2/3
, . . . , 1 +

um

2n2/3

)
= det (Ai(ui, uj))1≤i,j≤m ,

where Ai(·, ·) is the Airy kernel, defined by

Ai(u, v) =


Ai(u) Ai′(v)−Ai′(u) Ai(v)

u− v
, u 6= v,

Ai′(u)2 − uAi(u)2, u = v,

and Ai is the Airy function, defined on the real line by [75, p. 53]

Ai(x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt.

The edge above is called “soft” because when we consider the non-scaled Hermite weight

wH(x) = e−x
2
, x ∈ (−∞,∞),

then the bulk becomes the growing sequence of intervals
(
−
√

2n,
√

2n
)

and
√

2n is soft in the
sense that it shifts – this terminology carries over to the point 1 after scaling. Now let us consider
this fixed Hermite weight wH . Let ε ∈ (0, 1). The universality limit in the bulk takes the form
[50, p. 4]

lim
n→∞

(
π√

2n− x2

)m
Rm,n

(
wH ;x+

u1π√
2n− x2

, x+
u2π√

2n− x2
, . . . , x+

umπ√
2n− x2

)
= det (S (ui − uj))1≤i,j≤m ,

uniformly for x in
(
−
√

2n (1− ε) ,
√

2n(1− ε)
)
, and u1, u2, . . . , um in compact subsets of the

real line. At the soft-edge, the limit takes the form [28, p. 286], [50, p. 4]

lim
n→∞

(
1√

2n1/6

)m
Rm,n

(
wH ;
√

2n
(

1 +
u1

2n2/3

)
,
√

2n
(

1 +
u2

2n2/3

)
, . . . ,

√
2n
(

1 +
um

2n2/3

))
= det(Ai(ui, uj))1≤i,j≤m.

Of course universality limits for Laguerre weights xαe−x on [0,∞), α > −1, are closely related to
those of Hermite weights. There is a new feature, however – 0 is a hard edge, the bulk becomes
(ε, 4n(1− ε)), and the soft edge is around 4n.
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Do these perhaps overly technical limits deter the reader? We gathered them in one place for
the reason that they are dispersed in the literature. The good news is that at least the limits in
the bulk can be put into a unifying form, and we shall do that shortly.

Who first discovered the identity, involving orthonormal polynomials, that played a crucial
role in establishing these limits? For a long time, I was under the impression that it was Gaudin
and Mehta, but I was informed that I was mistaken at Percy’s 70th birthday conference, and
that it was Freeman Dyson. If you read the 2003 survey of Forrester, Snaith and Verbaarschot,
they credit the orthogonal polynomial method to Mehta, citing a 1960 technical report [68].
McLaughlin and Miller [66] refer to a 1960 paper of Mehta and Gaudin [71]. I am grateful to
Thomas Bothner [9] for the following insight: the orthogonal polynomial method was almost
certainly born in those papers of Mehta and Gaudin from 1960 [69, 71]. However, Freeman
Dyson appears to be the first to use it in the computation of the m-point correlation function,
in a 1962 paper [25].

Given a positive measure µ on the real line, with all finite power moments
∫
xjdµ(x), j =

0, 1, 2, . . . ,

pn(µ, x) = γnx
n + · · · , γn > 0,

denotes its nth orthonormal polynomial, so that∫
pn(µ, x)pm(µ, x)dµ(x) = δmn.

They satisfy the three term recurrence relation

xpn(µ, x) = an+1pn+1(µ, x) + bnpn(µ, x) + anpn−1(µ, x), n ≥ 0, (1.1)

where an = γn−1

γn
> 0 and bn is real. Conversely any sequence of polynomials satisfying such

a three term recurrence is a sequence of orthogonal polynomials for some positive measure on
the real line. Define the nth reproducing kernel

Kn(µ, x, y) =
n−1∑
j=0

pj(µ, x)pj(µ, y)

and its normalized cousin

K̃n(µ, x, y) = µ′(x)1/2µ′(y)1/2Kn(µ, x, y).

Here µ′ denotes the Radon–Nikodym derivative of the absolutely continuous component of µ,
that exists a.e. It is taken as 0 elsewhere. When µ is absolutely continuous and

w = µ′,

we use the notation pn(w, x), Kn(w, x, y), K̃n(w, x, y). The remarkable identity referred to
above, asserts that the m-point correlation function for the weight w is given by [18, p. 112]

Rm,n(w;x1, x2, . . . , xm) = det(K̃n(w, xi, xj))1≤i,j≤m.

Since the determinant has fixed size, and the entries all have similar form, we see that the
universality limits above reduce to the following asymptotics for the reproducing kernels. We
omit the restrictions on the parameters, they are similar to those above:

(I) The Jacobi weight wα,β(x) = (1− x)α(1 + x)β on (−1, 1).
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(a) In the bulk (−1, 1)

lim
n→∞

π
√

1− x2

n
K̃n

(
wα,β, x+

π
√

1− x2

n
u, x+

π
√

1− x2

n
v

)
= S(u− v).

(b) At the hard edge 1

lim
n→∞

1

2n2
K̃n

(
wα,β, 1−

u

2n2
, 1− v

2n2

)
= Jα(u, v).

(II) The fixed Hermite weight wH(x) = e−x
2

on (−∞,∞).

(a) In the bulk
(
−
√

2n,
√

2n
)

lim
n→∞

π√
2n− x2

K̃n

(
wH , x+

π√
2n− x2

u, x+
π√

2n− x2
v

)
= S(u− v).

(b) At the soft edge
√

2n

lim
n→∞

1√
2n1/6

K̃n

(
wH ,
√

2n
(

1 +
u

2n2/3

)
,
√

2n
(

1 +
v

2n2/3

))
= Ai(u, v).

(III) The varying Hermite weights w2n
H (x) = e−2nx2

on (−∞,∞).

(a) In the bulk (−1, 1)

lim
n→∞

π

2n
√

1− x2
K̃n

(
w2n
H , x+

π

2n
√

1− x2
u, x+

π

2n
√

1− x2
v

)
= S(u− v).

(b) At the soft edge 1

lim
n→∞

1

2n2/3
K̃n

(
w2n
H , 1 +

u

2n2/3
, 1 +

v

2n2/3

)
= Ai(u, v).

Fortunately, all the bulk limits in (I), (II), (III) may be recast in a unified form, which we
deliberately formulate vaguely:

(IV) General bulk universality. Let {µn} be a sequence of measures, and x lie in the bulk. Then

lim
n→∞

K̃n

(
µn, x+ u

K̃n(µn,x,x)
, x+ v

K̃n(µn,x,x)

)
K̃n(µn, x, x)

= S(u− v). (1.2)

Similarly, one can do this for soft and hard edges, though the general formulation is less
useful than in the bulk case, since soft and hard edge universality is inherently more special,
and not so widely established.

(V) General soft edge universality. If 1 is a soft edge for µn, n ≥ 1, then [50, p. 5]

lim
n→∞

K̃n

(
µn, 1 + Ai(0,0)

K̃n(µn,1,1)
u, x+ Ai(0,0)

K̃n(µn,1,1)
v
)

K̃n(µn, 1, 1)
=

Ai(u, v)

Ai(0, 0)
. (1.3)
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(VI) General hard edge universality. If 1 is a hard edge for µn, n ≥ 1, then [54, p. 5] for the
Bessel kernel of order α,

lim
n→∞

Kn

(
µn, 1−

(
J∗α(0,0)

Kn(µn,1,1)

)1/(α+1)
u2, 1−

(
J∗α(0,0)

Kn(µn,1,1)

)1/(α+1)
v2

)
Kn(µn, 1, 1)

=
J∗α
(
u2, v2

)
J∗α(0, 0)

, (1.4)

where

J∗α(u, v) = Jα(u.v)/
{
uα/2vα/2

}
.

The advantage of J∗α(u, v) over Jα(u.v) is that the former is an entire function in two
variables.

In subsequent sections, we discuss

How universal is universality?

That is, how general can the measures {µn} in (1.2)–(1.4), be?
We emphasize that we focus on a very narrow slice of universality limits for correlation

functions. We omit the case of general β (β 6= 2) ensembles, of matrices with independent
entries, double scaling limits, biorthogonal ensembles, . . . . Nor do we cover much the case of
kernels other than the Airy, Bessel, or Sine Kernels, such as arise when equilibrium densities
have zeros or infinities inside the support of the equilibrium measure. We omit other universal
features of eigenvalues, such as Gaussian behavior of local fluctuations of eigenvalues [98] or of
linear statistics [11], and mesoscopic fluctuations [12]. Recent overviews of the more general
case are given by L. Erdős in [26], A. Kuijlaars in [40], and T. Tao and V. Vu in [90].

The paper is structured as follows: in Section 2, we consider compactly supported measures.
In Section 3, we consider applications of universality to orthogonal polynomial quantities. In
Section 4, we consider universality for other orthogonal systems arising from a fixed measure. In
Section 5, we consider varying exponential weights, and in Section 6, fixed exponential weights.

2 Measures with compact support: universality

In this section, we consider a (fixed) measure µ with compact support, and first examine limits
in the bulk. Much of my own research has dealt with this case, though referees have sometimes
commented that this is not a case of physical interest. Nevertheless, as we shall see, it has
intrinsic interest, and applications in orthogonal and random polynomials, especially in questions
regarding zero distribution.

The most basic tool used is the Christoffel–Darboux formula,

Kn(µ, x, t) =
γn−1

γn

pn(µ, x)pn−1(µ, t)− pn−1(µ, x)pn(µ, t)

x− t
.

If we have asymptotics for pn(µ, x) as n→∞, such as

µ′(x)1/2pn(µ, x)
(
1− x2

)1/4
=

√
2

π
cos(nθ + g(θ)) + o(1), (2.1)

where g is some continuous function, and x = cos θ, which is “often” true when µ is supported
on [−1, 1], then substituting this into the Christoffel–Darboux formula with appropriate choices
of x, t yields a bulk limit, moduli some other minor factors.
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One way to establish much more powerful asymptotics than (2.1) is the Riemann–Hilbert
steepest descent method, pioneered by Deift and Zhou in the 1990’s [23, 24]. It has revolutionized
our understanding of asymptotics of orthogonal polynomials, as well as many other types of
asymptotics. For generalized Jacobi type weights, it has been used by Arno Kuijlaars and his
collaborators and students in a series of papers such as [41, 42]. Here [42, Theorem 1.1, p. 1577]
is one of their results:

Theorem 2.1. Let h : [−1, 1] → (0,∞) be the restriction to [−1, 1] of a function analytic in
a neighborhood of [−1, 1]. Let α, β > −1 and

w(x) = h(x)(1− x)α(1 + x)β, x ∈ (−1, 1).

Then uniformly for x in compact subsets of (−1, 1) and u, v in compact subsets of R, we have

π
√

1− x2

n
K̃n

(
w, x+

uπ
√

1− x2

n
, x+

vπ
√

1− x2

n

)
= S(u− v) +O

(
1

n

)
.

Moreover, uniformly for u, v in compact subsets of (0,∞),

1

2n2
K̃n

(
w, 1− u

2n2
, 1− v

2n2

)
= Jα(u, v) +O

(
uα/2vα/2

n

)
.

As far as I know, these are still the best convergence rates for universality limits for Ja-
cobi weights. The Riemann–Hilbert method actually yields these directly without having to
substitute asymptotics into the Christoffel–Darboux formula.

Since pointwise asymptotics for pn(µ, x) of the form (2.1) typically require smoothness restric-
tions on µ, one needs new ideas to establish universality for more general weights or measures.
Inspired by Percy’s 60th birthday conference, the author came up with a comparison method:
if µ and ν are positive measures with µ ≤ ν, then for all real x, y, [56, p. 919]

∣∣Kn(µ, x, y)−Kn(ν, x, y)
∣∣/Kn(µ, x, x) ≤

(
Kn(µ, y, y)

Kn(µ, x, x)

)1/2 [
1− Kn(ν, x, x)

Kn(µ, x, x)

]1/2

. (2.2)

In particular, if x and y vary with n, and as n→∞, Kn(ν,x,x)
Kn(µ,x,x) has limit 1, while Kn(µ,y,y)

Kn(µ,x,x) remains

bounded, then Kn(µ, x, y) and Kn(ν, x, y) have the same asymptotic. This inequality enables
us to use universality limits for a larger “nice” measure ν to obtain the same for a “not so nice”
measure µ, which is locally the same as ν.

We also need the concept of regularity of a measure in the sense of Stahl, Totik, and Ullmann
(not to be confused with Borel regular measures). We say µ is regular on [−1, 1] if

lim
n→∞

(
sup

deg(P )≤n

‖P‖L∞[−1,1](∫
|P |2dµ

)1/2
)1/n

= 1.

Thus sup norms of sequences of polynomials have the same nth root behavior as their L2(µ)
norms. This is known to be true if µ′ > 0 a.e. in [−1, 1], though much less is required [86].
An equivalent formulation involves the leading coefficients {γn} of the orthonormal polynomials
for µ:

lim
n→∞

γ1/n
n =

1

2
.

Using (2.2), we proved [56, Theorem 1.1, pp. 916–917]:
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Theorem 2.2. Let µ have support [−1, 1] and be regular. Let x ∈ (−1, 1) and assume µ is
absolutely continuous in an open set containing x. Assume moreover, that µ′ is positive and
continuous at x. Then uniformly for u, v in compact subsets of the real line, we have

lim
n→∞

K̃n

(
µ, x+ uπ

√
1−x2

n , x+ vπ
√

1−x2

n

)
K̃n(µ, x, x)

= S(u− v).

If the hypotheses hold in a compact set J , then the conclusion holds uniformly for x ∈ J .

At the hard edge, the comparison technique yielded [53, p. 283]

Theorem 2.3. Let µ be a finite positive Borel measure on (−1, 1) that is regular. Assume that
for some ρ > 0, µ is absolutely continuous in J = [1− ρ, 1], and in J , its absolutely continuous
component has the form w(x) = h(x)(1 − x)α(1 + x)β, where α, β > −1 and h is a measurable
function defined in [1 − ρ, 1]. Assume that h(1) > 0 and h is continuous at 1. Then uniformly
for u, v in compact subsets of (0,∞), we have

lim
n→∞

1

2n2
K̃n

(
1− u

2n2
, 1− v

2n2

)
= Jα(u, v).

If α ≥ 0, we may allow u, v to lie in compact subsets of [0,∞).

The real potential of the inequality (2.2) was soon explored by Findley, Simon and Totik
[27, 82, 93]. It was Findley who replaced continuity of µ′ by the Szegő condition on [−1, 1].
Totik used the method of “polynomial pullbacks”, which is based on the observation that if P is
a polynomial, then P [−1][−1, 1] consists of finitely many intervals. This allows one to pass from
asymptotics for [−1, 1] to finitely many intervals. In turn, one can use the latter to approximate
arbitrary compact sets. Barry Simon used instead Jost functions and dealt with the case of
measures supported on several intervals.

To state Totik’s result, we need a little more potential theory. Let J be a compact subset of
the real line, which we assume (for simplicity), has non-empty interior. We minimize the energy

I[ν] =

∫∫
log

1

|x− y|
dν(x)dν(y),

over all probability measures ν on J . The logarithmic capacity of J is

cap(J) = exp

(
− inf

supp[ν]⊂J,ν(J)=1
I[ν]

)
.

There is a unique minimizing measure, called the equilibrium measure of J . It need not be
absolutely continuous, over all of J , but will be in the interior of J [79, p. 216]. In the sequel,
we represent it as ω(x)dx in the interior of J , and call ω the equilibrium density of J . In the
special case that J = [a, b], then its capacity is b−a

4 , and its equilibrium density is 1

π
√

(x−a)(b−x)
.

In particular, for [−1, 1], the equilibrium density is 1
π
√

1−x2
, which is the underlying reason for

this factor in the universality limits above.
We have already defined the notion of regularity of a measure supported on [−1, 1]. For µ

with general compact support J , regularity means that

lim
n→∞

γ1/n
n =

1

cap(J)
.

An equivalent formulation is [86, p. 66]

lim sup
n→∞

(
sup

deg(P )≤n

|P (z)|2∫
|P |2dµ

)1/n

≤ 1
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for q.e. z in supp[µ], that is except possibly on a set of capacity 0. In particular, if J consists of
finitely many intervals, it suffices that µ′ > 0 a.e. on J . Totik [93, 94] proved:

Theorem 2.4. Let µ have compact support J and be regular. Let I be a subinterval of J
satisfying the local Szegő condition∫

I

∣∣ logµ′(t)
∣∣dt <∞.

Then for a.e. x ∈ I, and all real u, v,

lim
n→∞

K̃n

(
µ, x+ u

nω(x) , x+ v
nω(x)

)
K̃n(µ, x, x)

= S(u− v).

Here as above, ω is the equilibrium density of J .

Totik actually showed that the asymptotic holds at any given x which is a Lebesgue point
of both the measure µ, and its local Szegő function. This remains the most general result on
explicit criteria for pointwise universality for compactly supported measures.

One question is whether a global condition such as regularity is needed, even if it is a weak
one. Moreover, is there another way to treat general supports without using the polynomial
pullback method of Totik? In [55], a method was introduced that avoids this. It uses basic tools
of complex analysis and complex approximation, such as normal families, together with some of
the theory of entire functions, and reproducing kernels.

Perhaps the most fundamental idea in this approach is the notion that since Kn is a repro-
ducing kernel for polynomials of degree ≤ n− 1, any scaled asymptotic limit of it must also be
a reproducing kernel for a suitable space. It turns out that when doing scaling in the bulk, the
correct limit setting is Paley–Wiener space. This is the Hilbert space of entire functions g of
exponential type at most π whose restriction to the real line is in L2(R). Here the sinc kernel is
the reproducing kernel [87, p. 95]:

g(x) =

∫ ∞
−∞

g(t)S(x− t)dt, x ∈ R.

This is the deeper reason for the appearance of the sinc kernel above. By using this idea, and
complex analytic techniques, the author proved [55]:

Theorem 2.5. Let µ have compact support J . Let I be compact, and µ be absolutely continuous
in an open set containing I. Assume that µ′ is positive and continuous at each point of I. The
following are equivalent:

(I) Uniformly for x ∈ I and u in compact subsets of the real line,

lim
n→∞

Kn

(
µ, x+ u

n , x+ u
n

)
Kn(µ, x, x)

= 1. (2.3)

(II) Uniformly for x ∈ I and u, v in compact subsets of the complex plane, we have

lim
n→∞

Kn

(
µ, x+ u

K̃n(µ,x,x)
, x+ v

K̃n(µ,x,x)

)
Kn(µ, x, x)

= S(u− v).
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One can weaken the condition of continuity of µ′ to upper and lower bounds and then require x
to be a Lebesgue point of µ, that is, we assume only

lim
h,k→0+

µ([x− h, x+ k])

k + h
= µ′(x).

The clear advantage of the theorem is that there is no global restriction on µ. The downside is
that we still have to establish the ratio asymptotic (2.3) for the Christoffel functions/ reproducing
kernels, and to date, these have only been established in the stronger form of asymptotics for
Kn(µ, x, x) itself. In the course of other work, Avila, Last and Simon [3, 83] showed how to
weaken the hypotheses on bounds of entire functions in [55].

With much more effort, and in particular a new uniqueness theorem for the sinc kernel, this
set of methods also yields [59]: this is the only result that handles arbitrary measures with
compact support.

Theorem 2.6. Let µ have compact support, and let J = {x : µ′(x) > 0}. Let ε > 0 and r > 0.
Then as n→∞,

meas

x ∈ J : sup
|u|,|v|≤r

∣∣∣∣∣∣
Kn

(
µ, x+ u

K̃n(µ,x,x)
, x+ v

K̃n(µ,x,x)

)
Kn(µ, x, x)

− S(u− v)

∣∣∣∣∣∣ ≥ ε
→ 0.

Here meas denotes linear Lebesgue measure, and in the supremum, u, v are complex variables.
Because convergence in measure implies convergence a.e. of subsequences, one obtains pointwise
a.e. universality for subsequences, without any local or global assumptions on µ.

Another development involves pointwise universality in the mean [60], under some local con-
ditions. Like Theorem 2.6, the essential feature is the lack of global regularity assumptions:

Theorem 2.7. Let µ have compact support. Assume that I is an open interval in which for
some C > 0, µ′ ≥ C a.e. in I. Let x ∈ I be a Lebesgue point of µ. Then for each r > 0,

lim
m→∞

1

m

m∑
n=1

sup
|u|,|v|≤r

∣∣∣∣∣∣
Kn

(
µ, x+ u

K̃n(µ,x,x)
, x+ v

K̃n(µ,x,x)

)
Kn(µ, x, x)

− S(u− v)

∣∣∣∣∣∣ = 0.

In particular, this holds for a.e. x ∈ I.

An obvious and important question is whether one can replace the convergence in measure
in Theorem 2.6 with convergence a.e. or equivalently if one really needs to take means as in
Theorem 2.7. Accordingly, we pose:

Problem 2.8. Let µ have compact support. Assume that the support contains a non-empty
interval I, in which µ′ > 0 a.e. Is it true that for a.e. x ∈ I, and u, v ∈ R, we have

lim
n→∞

Kn

(
µ, x+ u

K̃n(µ,x,x)
, x+ v

K̃n(µ,x,x)

)
Kn(µ, x, x)

= S(u− v)?

My guess is that the answer is no. Vili Totik noted that the problem is open even for two
basic situations:

(i) The restriction of µ to I is Lebesgue measure, but there is no global assumption on µ.

(ii) The support of µ is [−1, 1], and for example, µ is regular, but we do not assume a local
Szegő condition in I.
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Pointwise universality at a given point x seems to usually require at least something like µ′

being continuous at x, or x being a Lebesgue point of µ. So it is quite a surprise that a purely sin-
gularly continuous measure can exhibit this type of universality. This was shown by Jonathan
Breuer [10], by starting with the Chebyshev weight of the second kind, w(x) =

√
1− x2 on

[−1, 1], and creating a new measure by sparsely perturbing the three term recurrence rela-
tion (1.1) satisfied by {pn(w, x)}. This special even weight has the recurrence relation

xpn(w, x) =
1

2
pn+1(w, x) +

1

2
pn−1(w, x).

For the perturbed measure µ, we keep all an = 1
2 , and most bn = 0, but for a very sparse set of

integers {Nj}, set bNj = vj , where {vj} has limit 0:

Theorem 2.9. There exists a measure µ that is purely singularly continuous in [−1, 1], and has
only mass points outside [−1, 1], such that for every x ∈ (−1, 1), and u, v ∈ R,

lim
n→∞

π
√

1− x2

n
Kn

(
µ, x+

uπ
√

1− x2

n
, x+

vπ
√

1− x2

n

)
= S(u− v).

Another (and older) surprise is that universality can hold for measures supported on a Cantor
set. This is a consequence of a result of Avila, Last and Simon on ergodic Jacobi matrices [3].
Let Ω be a compact metric space, dη be a probability measure on Ω, and S : Ω → Ω be an
ergodic invertible map of Ω to itself. Let A, B be continuous real valued functions on Ω with
infΩA > 0. For each τ ∈ Ω, define a Jacobi matrix

Jτ =


b1(τ) a1(τ) 0 · · ·
a1(τ) b2(τ) a2(τ) · · ·

0 a2(τ) b3(τ) · · ·
...

...
...

. . .


by

an(τ) = A
(
Sn−1τ

)
, bn(τ) = B

(
Sn−1τ

)
, n ≥ 1.

Let µτ be the spectral measure of Jτ .

Theorem 2.10. Let {Jτ}τ∈S be an ergodic Jacobi family as described above. Let Σac denote
the common essential support of the a.c. spectrum of Jτ , of positive Lebesgue measure. Then for
a.e. τ ∈ S and for a.e. x0 ∈

∑
ac, there is the universality limit

lim
n→∞

Kn

(
µτ , x0 + u

n , x0 + v
n

)
n

=
ρ(x0)

wτ (x0)
S(ρ(x0)(u− v)),

with appropriate ρ(x0) and wτ (x0).

One example is the almost Matthieu equation: let α be a fixed irrational number, and

an = 1, bn = 2λ cos(παn+ θ),

λ ∈ (−1, 1)\{0}, Ω be the unit circle, τ = eiθ, S(τ) = S(eiθ) = eiθeiπα and dη(θ) = dθ
2π . The

spectrum is purely absolutely continuous and a Cantor set. As far as the author is aware, this is
the only known example where universality has been established for measures whose absolutely
continuous spectrum is a Cantor set.
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Another interesting phenomenon occurs at a jump discontinuity of a weight, where the uni-
versality is quite different from the sinc kernel. The precise form was obtained by Foulquié
Moreno, Mart́ınez-Finkelshtein, and Sousa [30], using Riemann–Hilbert techniques. Let

wc(x) = h(x)(1− x)α(1 + x)βΞc(x), x ∈ (−1, 1),

where h is positive on [−1, 1] and the restriction to [−1, 1] of a function analytic in a neighborhood
of [−1, 1], while

Ξc(x) =

{
1, x ∈ [−1, 0),

c2, x ∈ [0, 1].

Define

G(a; z) = e−z/2
∞∑
k=0

(a)k
(k!)2

zk,

where (a)k = a(a + 1) · · · (a + k − 1) is the usual Pochhammer symbol. Define λ = i
π log c and

if x 6= y, the kernel

K(x, y) =
1

iπh(0)

log c

c2 − 1

G(1 + λ; 2πix)G(λ; 2πiy)−G(λ; 2πix)G(1 + λ; 2πiy)

x− y
,

while

K(x, x) =
2

h(0)

log c

c2 − 1

[
G′(1 + λ; 2πix)G(λ; 2πix)−G′(λ; 2πix)G(1 + λ; 2πix)

]
.

Foulquié Moreno, Mart́ınez-Finkelshtein, and Sousa established detailed asymptotics for ortho-
gonal polynomials for the weight wc, and hence deduced:

Theorem 2.11. Let c > 0, c 6= 1, and δ ∈ (0, 1). Then uniformly for u, v ∈ (−δ, δ),

lim
n→∞

π

n
Kn

(
wc,

πu

n
,
πv

n

)
= K(u, v).

Note that when we let c → 1, we recover the sine kernel. In [57], the author attempted to
classify possible limiting kernels arising from universality limits for a broad class of compactly
supported weights. If µ has compact support, and O is some open set inside the support in
which µ is absolutely continuous, while µ′ is bounded above and below by positive constants
there, then I proved that every function F (u, v) that is a scaled limit of some subsequence

of

{
Kn
(
µ,x+ u

K̃n(µ,x,x)
,x+ v

K̃n(µ,x,x)

)
Kn(µ,x,x)

}
is the reproducing kernel of some de Branges space that is

equivalent to a Paley–Wiener space. Yes this is technical, see [57] for details. There is numerical
evidence that the new kernel obtained by Foulquié Moreno, Mart́ınez-Finkelshtein, and Sousa
fits this mold. There is a also a natural connection between their results and those on Toeplitz
determinants for weights with more general Fisher–Hartwig type singularities.

The result of Breuer on singularly continuous measures suggests that universality limits can
be preserved when we perturb measures. In [13], Breuer, Last, and Simon showed that when we
start with a base measure µ for which we have bulk universality, and moderately perturb the
recurrence coefficients of µ to obtain a new measure µ̃, then universality persists, and moreover,
for random perturbations, universality persists under weaker conditions. Here is one of their
deterministic results:
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Theorem 2.12. Let µ be a compactly supported measure with recurrence coefficients {an}, {bn}.
Let w = µ′ denote its Radon–Nikodym derivative. Assume that A ⊂ R and that for a.e. x0 ∈ A,
there exists a number ρ(x0) such that

lim
n→∞

Kn

(
µ, x0 + u

n , x0 + v
n

)
n

=
ρ(x0)

w(x0)
S(ρ(x0)(u− v)), (2.4)

uniformly for u, v in compact subsets of C. Let {βk} ⊂ R satisfy

∞∑
k=1

|βk| <∞.

Let µ̃ be the measure with recurrence coefficients {an}, {bn + βn}. Then (2.4) is also true for
the measure µ̃, for a.e. x0 ∈ A, and u, v in compact subsets of C, but with ρ(x0) and w(x0)
replaced by appropriately modified ρ̃(x0) and w̃(x0).

In many of the proofs, asymptotics of Christoffel functions 1/Kn(µ, x, x) play a key role.
Those asymptotics are often established with the aid of the variational principle

Kn(µ, x, x) = sup
deg(P )≤n−1

P (x)2∫
P (t)2dµ(t)

,

which immediately implies that Kn(µ, x, x) is monotone decreasing in µ. In [61, Theorem 1.1,
p. 111], the author established a similar variational principle for the general m-point correlation
function Rm,n. Its formulation involves ALmn , the alternating polynomials of degree at most n
in m variables. We say that P ∈ ALmn if

P (x1, x2, . . . , xm) =
∑

0≤j1,j2,...,jm≤n
cj1j2···jmx

j1
1 x

j2
2 · · ·x

jm
m ,

so that P is a polynomial of degree ≤ n in each of its m variables, and in addition is alternating,
so that for every pair (i, j) with 1 ≤ i < j ≤ m,

P (x1, . . . , xi, . . . , xj , . . . , xm) = −P (x1, . . . , xj , . . . , xi, . . . , xm).

Thus swapping variables changes the sign.

Theorem 2.13.

det[Kn(µ, xi, xj)]1≤i,j≤m = m! sup
P∈ALmn−1

(P (x1, x2, . . . , xm))2∫
(P (t1, t2, . . . , tm))2dµ(t1)dµ(t2) · · · dµ(tm)

.

An immediate consequence is monotonicity of the unweighted m-point correlation function
for measures:

Corollary 2.14.

R̂m,n(µ;x1, x2, . . . , xm)

:=
n!

(n−m)!

1

Zn

∫
· · ·
∫  ∏

1≤i<j<n
(xi − xj)2

 dµ(xm+1)dµ(xm+2) · · · dµ(xn)

= det[Kn(µ, xi, xj)]1≤i,j≤m

is a monotone decreasing function of µ.
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Note that when µ is absolutely continuous and dµ(x) = w(x)dx, then

Rm,n (w;x1, x2, . . . , xm) = R̂m,n (µ;x1, x2, . . . , xm)w (x1)w (x2) · · ·w (xm) .

The proof of Theorem 2.13 is based on multivariate alternating orthogonal polynomials built
from µ. As the author found out after writing [61], these polynomials were known before [34], [84,
p. 182, Theorem 3.8.6], though it seems that the monotonicity property is new. One consequence
is one-sided universality without any restrictions on the measure [61, Theorem 2.2, p. 116]:

Theorem 2.15. Let µ have compact support K, and let ω denote the density of the equilibrium
measure for K in the interior Ko of K. Let J = {x : µ′(x) > 0}. Let m ≥ 1. For a.e. x ∈ J ∩Ko,
and for all real u1, u2, . . . , um,

lim inf
n→∞

(
µ′(x)

nω(x)

)m
Rm,n

(
µ, x+

u1

nω(x)
, . . . , x+

um
nω(x)

)
≥ det(S(ui − uj))1≤i,j≤m.

We note that an analogous upper bound for limsup’s is also proved in [61], with ω replaced
by a density formed from taking inf’s of equilibrium densities of compact subsets L ⊂ J such
that µ|L is regular.

A very recent and exciting development is the treatment of endpoint and interior power
singularities for quite general measures (cf. [14, 15, 16]). Tivadar Danka, a student of Vili Totik,
has developed this theory using a mix of techniques, including Riemann–Hilbert, and reproducing
kernel ideas. The kernels are modified Bessel kernels. (In the case of general varying weights
that include a factor of |x|α, Kuijlaars and Vanlessen [43] earlier obtained universality results,
extending several earlier works.) Let

Lα(u, v) =

√
uv

2

Jα+1
2

(u)Jα−1
2

(v)− Jα+1
2

(v)Jα−1
2

(u)

u− v
if u, v ≥ 0, u 6= v

and

Lα(u, v) = Lα(|u|, |v|) if min{u, v} < 0, u 6= v.

Also, along the diagonal, let

Lα(u, u) =
|u|
2

(
J ′α+1

2

(u)Jα−1
2

(u)− Jα+1
2

(u)J ′α−1
2

(u)
)
.

Since these kernels can include non-integer powers of z, define also their entire cousins

L∗α(u, v) =
Lα(u, v)

uα/2vα/2
.

Following is Danka’s result for interior power singularities [14, Theorem 1.3]:

Theorem 2.16. Let µ have compact support J and be regular. Let x0 be an interior point of J ,
δ > 0, α > −1, and suppose that in (x0 − δ, x0 + δ), µ is absolutely continuous, with

µ′(x) = w(x)|x− x0|α, x ∈ (x0 − δ, x0 + δ),

where w is strictly positive and continuous at x0. Let ω denote the equilibrium density of J .
Then

lim
n→∞

Kn

(
µ, x0 + u

n , x0 + v
n

)
Kn(x0, x0)

=
L∗α(πω(x0)u, πω(x0)v)

L∗α(0, 0)
.
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For endpoint singularities, Danka proved [14, Theorem 1.4]

Theorem 2.17. Let µ have compact support J and be regular. Let x0 be a right endpoint of J ,
in the sense that J ∩ (x0, x0 + ε) = ∅ for some ε > 0. Assume that δ > 0, α > −1, and suppose
that in (x0 − δ, x0], µ is absolutely continuous, with

µ′(x) = w(x)|x− x0|α, x ∈ (x0 − δ, x0],

where w is strictly positive and left-continuous at x0. Let ω denote the equilibrium density of J .
Then

lim
n→∞

Kn

(
µ, x0 − u

2n2 , x0 − v
2n2

)
Kn(x0, x0)

=
J∗α
(
L2u, L2v

)
J∗α(0, 0)

,

where

L = lim
x→x0−

√
2π|x− x0|1/2ω(x).

We began this section with one powerful illustration of the Deift–Zhou Riemann–Hilbert
method, for Jacobi weights. We close this section with another, this time by Shuai-Xia Xu,
Yu-Qiu Zhao, and Jian-Rong Zhou [97], for the weights

w(x) = exp
(
−
(
1− x2

)−∆)
, x ∈ (−1, 1). (2.5)

For these weights, universality in the bulk follows from, for example, Theorem 2.2. However,
the authors obtained rates, but the really interesting features occur near ±1. Because w decays
rapidly near ±1, we need to use the Mhaskar–Rakhmanov–Saff interval [−βn, βn], where βn is
the root of∫ βn

0

x2

(1− x2)∆+1
√
β2
n − x2

dx =
nπ

2∆
.

(See Section 6 for more on Mhaskar–Rakhmanov–Saff intervals.) There is a complete asymptotic
expansion for βn, the first terms of which are

βn = 1−

1

2

(
Γ
(
∆ + 1

2

)
√
πΓ(∆)

) 1

∆+ 1
2

n− 1

∆+ 1
2 (1 + o(1)).

Theorem 2.18. Let ∆ > 0 and w be given by (2.5). If ∆ 6= 1
2 , let

εn = n
−min

{
1, 1

∆+ 1
2

}

while if ∆ = 1
2 , let εn = n−1 log n.

(a) For x ∈ (−1, 1), and uniformly for u, v in compact subsets of R,

π
√

1− x2

n
Kn

(
w, x+

uπ
√

1− x2

n
, x+

vπ
√

1− x2

n

)
= S(u− v) +O(εn).

(b) There is a number B0 such that uniformly for u, v in compact subsets of R,

B0n
− 4∆+6

6∆+3Kn

(
w, βn + uB0n

− 4∆+6
6∆+3 , βn + vB0n

− 4∆+6
6∆+3

)
= A(u, v) +O

(
n−

4∆
6∆+3

)
.
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We note that B0 is explicitly given. The interesting feature is that we obtain the Airy, rather
than Bessel, kernel, but as the edge βn is “soft”, this should not be surprising. We close this
section with some open problems:

Problem 2.19. Let µ be a measure with compact support.

(a) Assume that I is a subinterval of the support and that µ′ is bounded above and below by
positive constants in I. Describe the set of limiting kernels arising from scaling limits
around points in I.

(b) More generally, without any restrictions on µ, describe the set of limiting kernels arising
from scaling limits around points in supp[µ].

As we noted above, something like de Branges spaces might play a role [57]. Following is
a more specific problem:

Problem 2.20. Investigate the universality limits for a compactly supported measure µ around
a “strong” interior zero, such as

µ′(x) = exp
(
− exp

(
· · · exp

(
|x|−α

)))
, x ∈ (−1, 1), α > 0.

3 Applications in orthogonal polynomials

Since S(z) = sinπz
πz has zeros at all the non-zero integers, the universality limit (1.2) suggests that

these should attract zeros of the scaled reproducing kernels, which include zeros of orthogonal
polynomials. One can make this rigorous using Hurwitz’ theorem if the universality limit holds
uniformly for u, v in compact subsets of the plane. Alternatively, if one only knows this only
for real u, v, we can use the intermediate value theorem and more elementary techniques. This
connection has been explored by several authors. In some sense it goes back to Freud [31],
though it was Eli Levin who discovered and formalized the idea in [46]. We present only the
most general known result, due to V. Totik [93, Theorem 2.1]. Other aspects of “clock spacing”
of zeros, relating to universality, have been explored by Barry Simon and his collaborators in
[3, 80, 81, 83]. The zeros of pn(µ, x) are denoted by

−∞ < xnn < xn,n−1 < · · · < x1n <∞.

Theorem 3.1. Let µ be a regular measure with compact support J ⊂ R. Let K be a compact
subset of the interior of J . Assume that µ is absolutely continuous in an open set containing K,
and that µ′ is positive and continuous at each point of K. Let ω denote the equilibrium density
of J . Let L ≥ 1. Then

lim
n→∞

n(xkn − xk+1,n)ω(x) = 1 (3.1)

uniformly in x ∈ K and |xkn − x| ≤ L/n.

Totik [93, Theorem 2.3] also proved a version of this result where continuity of µ′ is replaced
by integrability of logµ′ in a neighborhood of a point x0, which is assumed to be a Lebesgue point
of appropriate functions. For weights with jump discontinuities, spacing of zeros was explored
in [30], where it is shown that there is not “clock behavior” around the discontinuity, so that (3.1)
fails. For weights with interior power singularities, Danka has completed the task [15].

Our next result [46, Theorem 1.2, p. 72] concerns asymptotics of the zeros close to 1, which
follows from Theorem 2.3. We denote the positive zeros of the Bessel function Jα by

0 < jα,1 < jα,2 < jα,3 < · · · .
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Theorem 3.2. Let µ be a finite positive Borel measure on (−1, 1) that is regular. Assume that
for some ρ > 0, µ is absolutely continuous in K = [1− ρ, 1], and in K, its absolutely continuous
component has the form w = hwα,β, where α, β > −1. Assume that h(1) > 0 and h is continuous
at 1. Then for each fixed k ≥ 1,

lim
n→∞

n
√

1− x2
kn = jα,k

and

lim
n→∞

n2(xkn − xk+1,n) =
1

2

(
j2
α,k+1 − j2

α,k

)
.

Analogues of Theorems 3.1 and 3.2 for exponential and varying weights, based on universality
limits, have been explored in [22, 46]. In particular, Deift et al. give remarkably precise results
for the largest and smallest zeros and for spacing of interior zeros.

It is noteworthy that asymptotics of zeros are in some sense equivalent to universality. An-
other equivalence condition involves the differentiated kernel

K(r,s)
n (µ, x, y) =

n−1∑
k=0

p
(r)
k (x)p

(s)
k (y),

and its normalized cousin

K̃(r,s)
n (µ, x, y) = µ′(x)1/2µ′(y)1/2K(r,s)

n (x, y)

for non-negative integers r, s. We also define

τr,s =

{
0, r + s odd,
(−1)(r−s)/2

r+s+1 , r + s even.

Given a fixed real number ξ, we let {tj,n}j = {tj,n(ξ)}j denote the n − 1 or n zeros of the
“quasi-orthogonal” polynomial

pn(µ, t)pn−1(µ, ξ)− pn−1(µ, t)pn(µ, ξ).

They are real, simple, and interlace the zeros of pn(µ, x) [31, p. 19]. We assume they are ordered
so that

· · · < t−2,n(ξ) < t−1,n(ξ) < t0,n(ξ) = ξ < t1,n(ξ) < t2,n(ξ) < · · · .

Of course it is possible that all tk,n, other than ξ, lie to the left or right of ξ. Below dist(x, J)
denotes the distance from a point x to a set J . The following equivalences appeared in [49,
Theorem 1.3, p. 181]:

Theorem 3.3. Let µ be a finite positive Borel measure on the real line with compact support. Let
J ⊂ supp[µ] be compact, and such that µ is absolutely continuous in an open set containing J .
Assume that µ′ is positive and continuous at each point of J . The following are equivalent:

(I) Uniformly for x ∈ J and u, v in compact subsets of the complex plane, we have

lim
n→∞

Kn

(
µ, x+ u

K̃n(µ,x,x)
, x+ v

K̃n(µ,x,x)

)
Kn(µ, x, x)

= S(u− v).
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(II) For each r, s ≥ 0, and uniformly for x ∈ J ,

lim
n→∞

K̃
(r,s)
n (µ, x, x)

K̃n(µ, x, x)r+s+1
= πr+sτr,s.

(III) There exists L > 0, such that uniformly in n and for x with dist(x, J) ≤ L/n,

K(1,0)
n (µ, x, x) = o

(
n2
)
.

(IV ) For each fixed j, we have uniformly in x ∈ J ,

lim
n→∞

(tn,j+1(x)− tn,j(x))K̃n(µ, x, x) = 1.

Remarkably, asymptotics for K
(r,s)
n for r, s = 0, 1, are just what are needed for studying zeros

of random polynomials, expressed as linear combinations of {pj(µ, x)}. This was observed by
Igor Pritsker, and used in [64, 77].

4 Bulk limits and sine kernels for other orthogonal systems

The bulk limit, in the form (1.2), has been extended to other systems of orthogonal “polyno-
mials”. Of course in many of these cases, the connection to random matrices is lost. We briefly
cover these in this section:

4.1 Unit circle

Let µ be a finite positive Borel measure on [−π, π) with infinitely many points in its support.
Then we may define orthonormal polynomials φn(z) = κnz

n + · · · , κn > 0, n = 0, 1, 2, . . .
satisfying the orthonormality conditions

1

2π

∫ π

−π
φn(z)φm(z)dµ(θ) = δmn, (4.1)

where z = eiθ. The normalization by 2π is part of the “culture” of this topic. Regularity in the
sense of Stahl, Totik and Ullman takes the form

lim
n→∞

κ1/n
n = 1.

The nth reproducing kernel for µ is

Kn(µ, z, u) =
n−1∑
j=0

φj(z)φj(u), (4.2)

with normalized cousin

K̃n

(
µ, eiθ, eis

)
= µ′(θ)1/2µ′(s)1/2Kn

(
µ, eiθ, eis

)
. (4.3)

Sometimes, we identify µ′(θ) with µ′(eiθ). Eli Levin and the author proved [45]:
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Theorem 4.1. Let µ be a finite positive Borel measure on [−π, π) that is regular. Let J ⊂
(−π, π) be compact, and such that µ is absolutely continuous in an open set containing J .
Assume moreover, that µ′ is positive and continuous at each point of J . Then uniformly for
θ ∈ J and u, v in compact subsets of the plane, we have

lim
n→∞

1

n
K̃n

(
µ, ei(θ+

2πu
n ), ei(θ+

2πv̄
n )
)

= eiπ(u−v)S(u− v).

Equivalently,

lim
n→∞

Kn

(
µ, z

(
1 + i2πu

n

)
, z
(
1 + i2πv̄

n

))
Kn (µ, z, z)

= eiπ(u−v)S(u− v),

uniformly for u, v in compact subsets of the complex plane and z = eiθ, θ ∈ J .

Of course, if µ′(−π) = µ′(π), and µ′ is continuous at ±π, then this result also holds at
z = e±iπ.

Corollary 4.2. Let r, s be non-negative integers and

K(r,s)
n (µ, z, z) =

n−1∑
k=0

φ
(r)
k (z)φ

(s)
k (z).

Then uniformly for θ ∈ J , z = eiθ,

lim
n→∞

zr−s

nr+s
K

(r,s)
n (µ, z, z)

Kn(µ, z, z)
=

1

r + s+ 1
.

4.2 Arcs of the unit circle

Let α ∈ (0, π) and let our arc be ∆α = {eiθ : θ ∈ [α, 2π − α]}. Let µ be a finite positive
Borel measure on ∆α (or equivalently on [α, 2π−α]) with infinitely many points in its support.
Then we may define orthonormal polynomials φn(z) = κnz

n + · · · , κn > 0, n = 0, 1, 2, . . .
satisfying (4.1) with [−π, π] replaced by [α, 2π− α]. The reproducing kernel and its normalized
cousin are given by (4.2), (4.3). For θ ∈ [α, 2π − α], let

T (θ) =
sin θ

2√
cos2 α

2 − cos2 θ
2

.

T (θ)/(2π) is the density of the equilibrium measure for ∆α. The author and Nguyen [63] proved

Theorem 4.3. Let α ∈ (0, π), and let µ be a finite positive Borel measure on [α, 2π−α] that is
regular. Let J ⊂ (α, 2π− α) be compact, and be such that µ is absolutely continuous in an open
set containing J . Assume moreover, that µ′ is positive and continuous at each point of J . Then
uniformly for θ0 ∈ J and u, v in compact subsets of the complex plane, we have

lim
n→∞

Kn

(
µ, ei(θ0+ 2πu

n ), ei(θ0+ 2πv̄
n )
)

Kn (µ, eiθ0 , eiθ0)
= eiπ(u−v)S((u− v)T (θ0)).

This reduces to Theorem 4.1 as α→ 0+. Applications to asymptotics of zeros and differen-
tiated kernels were also presented in [63].
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4.3 Smooth closed contours

Consider a smooth closed contour Γ = {γ(s) : s ∈ [0, L]}, where L > 0. Γ is assumed to be
“smooth” in the following sense: γ′′ exists and is continuous on [0, L], and satisfies a Lipschitz
condition of some positive order β > 0. Thus, for some C > 0,∣∣γ′′(s)− γ′′(t)∣∣ ≤ C|t− s|β, s, t ∈ [0, L].

In addition, we assume that γ is periodic on [0, L], so that γ(j)(0) = γ(j)(L), j = 0, 1, 2. In
Suetin’s 1966 terminology [88], Γ ∈ C(2, β).

We denote the exterior of Γ by D, and denote the conformal map of D onto the exterior of
the unit ball by Φ, normalized by Φ(∞) = ∞, and Φ′(∞) > 0. We assume that µ is a finite
positive Borel measure on Γ, and {φn} are orthonormal polynomials for µ, so that

1

2π

∫
Γ
φn(z)φm(z)dµ(z) = δmn.

As usual, Kn is given by (4.2). The author and Levin proved [51]:

Theorem 4.4. Let Γ be a simple closed curve in the complex plane, of class C(2, β), for some
β ∈ (0, 1). Let µ be a finite positive Borel measure on Γ that is regular. Let Γ1 be a closed
proper subarc of Γ, such that µ is absolutely continuous with respect to arclength, in an open arc
containing Γ1, and the Radon–Nikodym derivative µ′ (with respect to arclength) is positive and
continuous in that open subarc. Then uniformly for z0 ∈ Γ1 and u, v in compact subsets of C,

lim
n→∞

Kn

(
µ, z0 + 2πiu

n
Φ(z0)
Φ′(z0) , z0 + 2πiv̄

n
Φ(z0)
Φ′(z0)

)
Kn(µ, z0, z0)

= eiπ(u−v)S(u− v).

In the special case where Γ is the unit circle, we have Φ(z) = z, and this reduces to Theo-
rem 4.1.

4.4 Bergman polynomials

Let G be a bounded simply connected domain in the complex plane, bounded by a Jordan
curve Γ. As above, Φ is the conformal map of the exterior of G onto the exterior of the unit
ball. Let µ be a finite positive Borel measure on G. We may define, for n ≥ 0, orthonormal
polynomials

pn(µ, z) = κnz
n + · · · , κn > 0

satisfying∫
G
pn(µ, z)pm(µ, z)dµ(z) = δmn.

We shall assume that µ is regular in the sense of Stahl and Totik and in this section, also assume
that µ is absolutely continuous with respect to planar Lebesgue measure dA near given points
on ∂G. In this sense, the polynomials {pn} fall within the framework of Bergman polynomials.
For u ∈ ∂G, we define

dµ

dA
(u) = lim

z→u, z∈G

dµ

dA
(z),

whenever the limit is defined. The n-th reproducing kernel and its normalized cousin are given
by (4.2) and (4.3).

In formulating the result, we need the notion of the convex hull Co(K) of a set K, as well as
its boundary ∂ Co(K). If J ⊂ ∂G, a ∂G neighborhood of J means a relatively open subset J1

of ∂G containing J . In [58], I proved:
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Theorem 4.5. Let G be a bounded simply connected set, and assume that Γ = ∂G is of class
C(1, α), with α ∈

(
1
2 , 1
)
. Let J ⊂ ∂G be compact, and let some ∂G neighborhood of J also

lie in ∂ Co(G). Let µ be a finite positive Borel measure on G that is regular. Assume that µ
is absolutely continuous with respect to planar Lebesgue measure in an open subset of G whose
boundary contains a ∂G neighborhood of J . Assume moreover, that dµ

dA is positive and continuous
at each point of J . Then uniformly for z ∈ J and u, v in compact subsets of the plane, we have

lim
n→∞

Kn

(
µ, z + u

n , z + v
n

)
Kn(µ, z, z)

= H
(
uΦ′(z)Φ(z) + vΦ′(z)Φ(z)

)
,

where

H(t) =

2
et(t− 1) + 1

t2
, t 6= 0,

1, t = 0.

The restriction that J ⊂ ∂G ∩ ∂ Co(G) is a severe geometric restriction – basically requiring
that G is “locally convex”” in some neighborhood of J . More general boundaries were allowed
in [58].

Corollary 4.6. Let r, s be non-negative integers. Then uniformly for z ∈ J ,

lim
n→∞

K
(r,s)
n (µ, z, z)

nr+sKn(µ, z, z)
=

2
(
Φ′(z)Φ(z)

)r(
Φ′(z)Φ(z)

)s
r + s+ 2

.

A substantial generalization of this result has been given by Christopher Sinclair and Maxim
Yattselev [85]. They considered varying, potential theoretic weights, and established Szegő
asymptotics for the associated orthogonal polynomials, as well as universality limits. There one
needs a generalization of the function H.

4.5 Rational orthogonal polynomials

Assume that we are given a sequence of extended complex numbers {αj} ⊂ C̄\[−1, 1], that will
serve as our poles. Assume that for some η > 0, and for all j ≥ 1, dist(αj , [−1, 1]) ≥ η. We let
π0(x) = 1, and for k ≥ 1,

πk(x) =
k∏
j=1

(1− x/αj).

Define nested spaces of rational functions by L−1 = {0}, L0 = C, and for k ≥ 1,

Lk = Lk {α1, α2, . . . , αk} =

{
P

πk
: deg(P ) ≤ k

}
.

Note that if all αj =∞, then Lk = Pk. Assume that the poles have an asymptotic distribution ν
(with support in C̄\[−1, 1]), so that

lim
k→∞

log |πk−1(x)|1/k =

∫
log |1− x/t|dν(t), (4.4)

uniformly for x ∈ [−1, 1]. Define orthogonal rational functions ϕ0, ϕ1, ϕ2, . . . corresponding to
the measure µ, such that ϕk ∈ Lk\Lk−1, and∫ 1

−1
ϕjϕkdµ = δjk.
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Also define the corresponding rational kernel functions

Kr
n(µ, x, y) =

n−1∑
j=0

ϕj(x)ϕj(y),

and the normalized form

K̃r
n(µ, x, y) = µ′(x)1/2µ′(y)1/2Kr

n(dµ, x, y).

Karl Deckers and the author proved [17, Theorem 1.2, p. 275]:

Theorem 4.7. Let µ be a regular measure on [−1, 1]. Let I be an open subinterval of (−1, 1)
in which µ is absolutely continuous. Assume that µ′ is positive and continuous at a given
x ∈ I. Assume that the poles {αj} are all at least η away from [−1, 1] and have the asymptotic
distribution specified by (4.4). Then for x ∈ I and uniformly for u, v in compact subsets of the
real line,

lim
n→∞

Kr
n

(
µ, x+ u

K̃r
n(µ,x,x)

, x+ v
K̃r
n(µ,x,x)

)
Kr
n(µ, x, x)

e
i
[
arg
(
πn−1

(
x+ u

K̃rn(µ,x,x)

))
−arg

(
πn−1

(
x+ v

K̃rn(µ,x,x)

))]

= S(u− v).

4.6 Multivariate orthogonal polynomials

Let d ≥ 2, and Πd
n denote the space of polynomials in d variables of degree at most n. Let Nd

n =(
n+d
n

)
denote its dimension. (This is a different notion of degree of a multivariate polynomial

from that used for Theorem 2.13.) Let µ be a positive measure on Rd. We say µ is regular, if

lim
n→∞

(
sup
P∈Πdn

‖P‖2L∞(supp[µ])∫
|P |2dµ

)1/n

= 1.

This is often called the Bernstein–Markov condition [8], but we prefer the term regularity, to
be consistent with the univariate case. We let Kn(µ,x,y) denote the reproducing kernel for µ
and Πd

n, so that for all P ∈ Πd
n, and all x ∈ Rd,

P (x) =

∫
P (y)Kn(µ,y,x)dµ(y).

Let J∗α(z) = z−αJα(z) for α > 0. Andras Kroo and the author proved some general results on
universality, which yielded [38, Theorem 1.7, p. 606]:

Theorem 4.8. Let µ be a regular measure on B̄ = {x ∈ Rd : ‖x‖ ≤ 1}, and assume that D
is a compact subset of the interior of B̄, such that µ′ is positive and continuous in D. Then
uniformly for x ∈ D, and u, v in compact subsets of Rd,

lim
n→∞

Kn

(
µ,x + u

n ,x + v
n

)
Kn(µ,x,x)

=
J∗d/2

(√
G(x,u,v)

)
J∗d/2(0)

,

where if · denotes the standard Euclidean inner product,

G(x,u,v) = ‖u− v‖2 +
(x · (u− v))2

1− ‖x‖2
.
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For the simplex, we have [38, Theorem 1.8, p. 606]:

Theorem 4.9. Let µ be a regular measure on the d-dimensional simplex

Σd =

x ∈ Rd : x1, x2, . . . , xd ≥ 0;

d∑
j=1

xj ≤ 1

 .

Assume that D is a compact subset of the interior of Σd, such that µ′ is positive and continuous
in D. Then uniformly for x ∈ D, and u, v in compact subsets of Rd,

lim
n→∞

Kn

(
µ,x + u

n ,x + v
n

)
Kn(µ,x,x)

=
J∗d/2

(√
H(x,u,v)

)
J∗d/2(0)

,

where,

H (x,u,v) =

d+1∑
j=1

(uj − vj)2

xj
,

and the (d+ 1)st component is given by

xd+1 = 1−
d∑
j=1

xj ,

with similar definitions of ud+1, vd+1.

Universality on the boundary of the d-dimensional ball was investigated in [39].

4.7 Schrödinger operators

Anna Maltsev [65] observed and used analogies between Schrödinger operators and orthogonal
polynomials to establish universality limits for Schrödinger operators. Let

A = − d2

dx2
+ V (x)

be a Schrödinger operator on L2[0,∞) with Neumann boundary conditions at x = 0. Assume
that V is locally integrable and bounded from below. Let u(ξ, x) be the standard fundamental
solution of the eigenvalue equation

Au(ξ, x) = ξu(ξ, x)

with initial conditions

u(ξ, 0) = 1 and u′(ξ, 0) = 0.

If µ is the spectral measure of A, then for L > 0, its associated reproducing kernel is

SL (ξ, ζ) =

∫ L

0
u(ξ, t)u(ζ, t)dt,

in the sense that

u(ξ, x)χ[0,L](x) =

∫
SL(ξ, ζ)u(ζ, x)dµ(ζ).
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We call a perturbation q non-destructive if it leaves the essential spectrum unchanged. We say
that it has zero-average if

lim
L→∞

1

L

∫ L

0
|q| = 0.

Maltsev proved [65, p. 464, Theorem 1.3]:

Theorem 4.10. Let A = − d2

dx2 + p(x) + q(x), where p is periodic and continuous, and q is
non-destructive and has zero average. Let dµ(x) be its spectral measure. Let I be a compact
subinterval of the essential spectrum, such that µ is absolutely continuous on I, while µ′ is
continuous and non-zero on I. Let ξ0 ∈ I. Then uniformly for u, v in bounded subsets of the
real line,

lim
L→∞

SL
(
ξ0 + u

L , ξ0 + v
L

)
SL (ξ0, ξ0)

= S(ρ(ξ0)(u− v)),

where ρ is the density of states.

Maltsev uses this result to study asymptotic spacing of the zeros of u, and also investigated
a number of related settings.

4.8 Universality for entire functions

Mishko Mitkovski [74] established a version of universality in the bulk where polynomials are
replaced by entire functions. Let µ be a positive measure in the real line, which is Poisson
summable, that is∫

dµ(t)

1 + t2
<∞.

For T > 0, let ET (µ) denote the Hilbert space of entire functions of exponential type ≤ T that
lie in L2(µ). It has a reproducing kernel, which we denote by KT (ξ, ζ). For complex z, define
its majorant

mT (z) = sup
{
|F (z)| : F ∈ ET (µ), ‖F‖L2(µ) ≤ 1

}
.

We say that µ is regular if for any ε > 0, there exists C > 0 such that for all T > 0 and
t ∈ supp[µ],

mT (t) ≤ CeεT .

Mitkovski [74, Theorem 1.2] proved:

Theorem 4.11. Let µ be a positive measure on the real line that is Poisson summable, and
regular. Assume that µ is absolutely continuous in a neighborhood of ξ0, and that µ′ is positive
and continuous at ξ0. Then for all u, v ∈ R, we have

lim
T→∞

KT

(
ξ0 + u

T , ξ0 + v
T

)
KT (ξ0, ξ0)

= S(u− v).
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4.9 Dirichlet polynomials

Let 1 = λ1 < λ2 < λ3 < · · · . Let φ1 = 1, and for n ≥ 2, let

φn(t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

.

One can show that∫ ∞
−∞

φn(t)φm(t)
dt

π (1 + t2)
= δmn, m, n ≥ 1.

The nth reproducing kernel for the span of {λ−itj , 1 ≤ j ≤ n} is

Kn(x, t) =

n∑
j=1

φj(x)φj(t).

The author proved [62, Theorem 1.4]:

Theorem 4.12. Assume

lim
n→∞

λn =∞ and lim
n→∞

λn+1

λn
= 1.

Uniformly for u, v in compact subsets of C, and x in compact subsets of the real line,

lim
n→∞

1

log λn
Kn

(
x+

u

log λn
, x+

v

log λn

)
=
[
1 + x2

]
ei(u−v)/2S

(
u− v

2π

)
.

We close this section with three problems. The first involves generalizations of the results
for the unit circle, its subarcs, and smooth closed curves, discussed in Sections 4.1–4.3:

Problem 4.13. Investigate universality limits in the bulk for measures on a finite system of
closed curves or arcs in the plane.

Problem 4.14. Investigate universality limits at the edge for measures on a finite system of
arcs in the plane.

Vili Totik noted that this problem is open even for the case of a single smooth arc, other
than an interval.

Problem 4.15. Investigate universality at interior points of a curve, where a measure has a zero
or inf inity or a discontinuity (such as a jump). Also, what does universality look like at corners
and cusps?

5 Varying exponential weights

The archetypal varying exponential weight is exp(−2nx2), leading to the Gaussian Unitary
Ensemble considered by Wigner. The case of general exp(−2nQ) has been investigated over the
decades with varying degrees of rigor. Potential theory plays a crucial role in this endeavor. Q
is called an external field in this context.

Assume that Σ ⊂ R is a closed set of positive logarithmic capacity, and if Σ is unbounded,
that Q : Σ→ [0,∞) is continuous, with

lim
|x|→∞, x∈Σ

Q(x)

log |x|
=∞.



26 D.S. Lubinsky

Associated with Σ and Q, we may consider the extremal problem

inf
ν

(∫∫
log

1

|x− t|
dν(x)dν(t) + 2

∫
Qdν

)
,

where the inf is taken over all positive Borel measures ν with support in Σ and ν(Σ) = 1. The
inf is attained by a unique equilibrium measure νQ, characterized by the following conditions:
let

V νQ(z) =

∫
log

1

|z − t|
dνQ(t)

denote the potential for νQ. Then [79, p. 27, Theorem I.3.1]

V νQ +Q ≥ FQ on Σ;

V νQ +Q = FQ q.e. in supp[νQ].

Here the number FQ is a constant, and recall that q.e. means except on a set of capacity 0.

In the case where Σ is an interval, and Q is convex, or xQ′(x) exists and is increasing in
(0,∞) on Σ, the support of νQ is an interval [a−1, a1], called the Mhaskar–Rakhmanov–Saff
interval. The Mhaskar–Rakhmanov–Saff numbers a±1 are defined by the equations [44, p. 57,
Theorem 2.14], [79, p. 201, Theorem IV.1.11]

1 =
1

π

∫ a1

a−1

xQ′(x)√
(x− a−1)(a1 − x)

dx, 0 =
1

π

∫ a1

a−1

Q′(x)√
(x− a−1)(a1 − x)

dx.

The measure νQ is absolutely continuous in (a−1, a1), and its density is given by [44, p. 42]

ν ′Q(x) =

√
(x− a−1)(a1 − x)

π2

∫ a1

a−1

Q′(t)−Q′(x)

t− x
dt√

(t− a−1)(a1 − t)
. (5.1)

In the case where Q is even, a−1 = −a1. See the monographs [72, 79] or [44, Chapter 2] for
a comprehensive introduction.

For the key example

Q(x) = |x|α, x ∈ R,

α > 0, we have a1 = βa, where [73, p. 204, p. 210]

a1 =

[
2α−2Γ(α/2)2

Γ(α)

]1/α

,

and one can determine νQ by (5.1), or by ν ′Q(x) = να(x/a1)/a1, x ∈ (−a1, a1), where [73, p. 205]

να(x) =
α

π

∫ 1

|t|

yα−1√
y2 − x2

dx, x ∈ (−1, 1).

The first rigorous results for general Q were established using the Deift–Zhou steepest descent
method, building on the Fokas–Its–Kitaev representation of orthogonal polynomials as solutions
of 2 × 2 matrix Riemann–Hilbert problems. Bleher and Its had earlier [6] considered the case
Q(x) = x4 − tx2, for a general t. In the mathematical physics literature, the results of Pastur
and Shcherbina [76] are amongst the most general.
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Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou [21, 22] considered a function Q (in
their terminology V

2 ), that is real analytic on R, with

lim
|x|→∞

Q(x)

log |x|
=∞. (5.2)

They note that in this case the equilibrium measure νQ has support J consisting of finitely
many intervals. There is a (mostly) explicit formula for ν ′Q, and in particular, ν ′Q is positive and
analytic in the interior of any of the intervals in the support.

Theorem 5.1. Let Q : R → R be real valued, and the restriction to the real line of a function
analytic in an open set containing R. Assume that (5.2) holds, and let J denote the support
of the equilibrium measure νQ for the external field Q. Then for any m ≥ 1, x ∈ Jo, with
ν ′Q(x) > 0, and u1, u2, . . . , um ∈ R, there is the universality limit

lim
n→∞

1

(nν ′Q(x))m
Rm,n

(
e−2nQ, x+

u1

nν ′Q(x)
, x+

u2

nν ′Q(x)
, . . . , x+

um
nν ′Q(x)

)
= det[S(uj − uk)]1≤j,k≤m.

This result from [21, p. 1348, Theorem 1.4] was a rather direct consequence of far deeper
asymptotics for orthogonal polynomials, covering every part of the complex plane. These asymp-
totics should surely also yield universality at the endpoints of the interval J . However, this was
not stated in that paper.

One drawback of the Riemann–Hilbert method is the requirement of analyticity of Q. We
shall shortly discuss the ∂̄-method, which permits its use for non-analytic Q. However, for
universality in the bulk, the most successful general method involved the same mix of methods
that yields Theorem 2.5 – classical techniques of orthogonal polynomials, complex analysis, and
Paley–Wiener space. With the aid of these, and Vili Totik’s asymptotics [92] for Christoffel
functions (see also [91]), Eli Levin and the author proved [47]:

Theorem 5.2. Let W = e−Q be a continuous non-negative function on the set Σ, which is
assumed to consist of at most finitely many intervals. If Σ is unbounded, we assume also (5.2).
Let h be a bounded positive continuous function on Σ. Let I be a closed interval lying in the inte-
rior of supp[νQ], where νQ denotes the equilibrium measure for Q. Assume that νQ is absolutely
continuous in a neighborhood of I, and that ν ′Q and Q′ are continuous in that neighborhood,
while ν ′Q > 0 there. Then uniformly for x ∈ I, and u, v in compact subsets of the real line, we
have

lim
n→∞

K̃n

(
hW 2n, x+ u

K̃n(hW 2n,x,x)
, x+ v

K̃n(hW 2n,x,x)

)
K̃n (hW 2n, x, x)

= S(u− v), (5.3)

or equivalently,

lim
n→∞

K̃n

(
hW 2n, x+ u

nν′Q(x)
, x+ v

nν′Q(x)

)
nν ′Q(x)

= S(u− v).

In particular, when Q′ satisfies a Lipschitz (or if you prefer, Hölder) condition of some
positive order in a neighborhood of J , then [79, p. 216] ν ′Q is continuous there, and hence we
obtain universality except near zeros of ν ′Q. Theorem 5.2 was a special case of a more implicit
result:
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Theorem 5.3. For n ≥ 1, let µn be a positive Borel measure on the real line, with at least the
first 2n + 1 power moments finite. Let I be a compact interval in which each µn is absolutely
continuous. Assume moreover that in I,

dµn(x) = h(x)W 2n
n (x)dx,

where

Wn = e−Qn

is continuous on I, and h is a bounded positive continuous function on I. Let νQn denote the
equilibrium measure for the restriction of Qn to I. Let J be a compact subinterval of Io. Assume
that

(a) {ν ′Qn}
∞
n=1 are positive and uniformly bounded in some open interval containing J ;

(b) {Q′n}∞n=1 are equicontinuous and uniformly bounded in some open interval containing J ;

(c) for some C1, C2 > 0, and for n ≥ 1 and x ∈ I,

C1 ≤ Kn

(
W 2n
n , x, x

)
W 2n
n (x)/n ≤ C2;

(d) uniformly for x ∈ J and u in compact subsets of the real line,

lim
n→∞

Kn

(
W 2n
n , x, x

)
W 2n
n (x)

Kn

(
W 2n
n , x+ u

n , x+ u
n

)
W 2n
n

(
x+ u

n

) = 1.

Then uniformly for x ∈ J , and u, v in compact subsets of the real line, we have (5.3)
with hW 2n replaced by µn.

Our proof actually established the following limit, uniformly for x ∈ J and u, v in compact
subsets of the complex plane, not just the real line:

lim
n→∞

Kn

(
µn, x+ u

K̃n(µn,x,x)
, x+ v

K̃n(µn,x,x)

)
Kn(µn, x, x)

e
− n

K̃n(µn,x,x)
Q′n(x)(u+v)

= S(u− v).

In a recent paper [52], Eli Levin and the author established that universality holds in measure
for sequences of varying weights under hypotheses weaker than those in Theorem 5.2. In princi-
ple, the same sorts of techniques that yield Theorem 5.2 in the bulk, should work at the soft and
hard edges. Indeed, the equivalence of universality along the diagonal (that is the limit (5.3)
with a = b) to universality for u, v in compact sets, was explored for the soft edge in [50] and
the hard edge in [54]. However, the asymptotics for Christoffel functions that are needed to
apply these results are not generally available.

The most general known universality results at the edge are due to McLaughlin and Miller [67].
They use the Riemann–Hilbert method, but modified using ∂̄-techniques to approximate non-
analytic Q with analytic Q. They consider the case of an equilibrium measure supported on
finitely many intervals, and place conditions on the sign of certain functions formed from complex
potentials and equilibrium densities:

Theorem 5.4. Let Q : R → R and assume that Q′′ satisfies a Lipschitz condition of order 1.
Assume that the support of the equilibrium measure νQ consists of finitely many intervals [αj , βj ],
1 ≤ j ≤ `. Assume that Condition 2 in [67, p. 17] is satisfied. Then at every edge ξ ∈
{α1, β1, . . . , α`, β`}, there is a number λ such that for real u, v,

lim
n→∞

1

(λn)2/3
K̃n

(
e−2nQ, ξ +

u

(λn)2/3
, ξ +

v

(λn)2/3

)
= Ai(u, v).

In particular, Condition 2 is satisfied if Q is strictly convex, and grows faster at ∞ than
(log |x|)1+ε, for some ε > 0.
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McLaughlin and Miller also established universality in the bulk of course – and both uni-
versality limits are consequences of far deeper asymptotics for orthogonal polynomials that
hold everywhere in the complex plane. For varying exponential weights on the unit circle [66],
McLaughlin and Miller also established asymptotics of the associated orthogonal polynomials
that undoubtedly imply universality limits in the bulk, and probably at appropriate edges too.

The Deift–Zhou steepest descent method has also been used to great effect by Baik, Kriecher-
bauer, McLaughlin, and Miller [5] in establishing universality associated with sequences of dis-
crete measures {µn}, where each µn has finitely many jumps. Appropriate assumptions are
placed on the distributions of the jumps, and their size. Universality at the edge or in the bulk
(appropriately interpreted), is a consequence of far deeper results on asymptotics of orthogonal
polynomials.

Another important recent development is “global asymptotics” due to Kriecherbauer, Schu-
bert, Schüler, and Venker [36], where they obtain universality with error estimates, that are
uniform in the range, as well as (remarkably) uniform for Q in a class of real analytic external
fields. Both universality in the bulk and at the edge are established. See also [37].

For varying exponential weights in the plane, of the form e−n(|z|2−Re(tz2)) on the complex
plane, Roman Riser investigated universality in [78], using orthogonal polynomial techniques.
There the limiting kernel is not a sine kernel. In a related vein, Antti Haimi [32] established
universality for weights e−nQ defined on the whole complex plane, and polyanalytic polynomials,
leading to universality limits that involve associated Laguerre polynomials. Polyanalytic Ginibre
ensembles were considered, for example, in [33].

6 Fixed exponential weights

A powerful 1999 paper of Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou [22] estab-
lishes asymptotics in all regions of the plane for orthogonal polynomials associated with fixed
exponential weights e−2Q on R, where Q is a polynomial of even degree with positive leading
coefficient. Using direct substitution into the Christoffel–Darboux formula, this must lead to
universality both in the bulk and at the soft-edge, although this was not stated there. Another
powerful paper that implies universality results, but which are not explicitly stated, is that of
Kriecherbauer and McLaughlin [35], for exp(−|x|α), all α > 0. Of course, there was a lot of
earlier work for such asymptotics, that also implies universality in the bulk, at least, for various
exponential weights.

An excellent illustration of universality in the bulk, and at the soft and hard edge, is provided
by the 2007 paper of Vanlessen [96] for generalized Laguerre weights,

µ′(x) = xαe−Q(x), x ∈ (0,∞), (6.1)

where α > −1 and

Q(x) =
m∑
k=0

qkx
k, where m ≥ 1 and qm > 0. (6.2)

Because we are dealing with a fixed weight, there is a sequence of equilibrium densities and
a sequence of Mhaskar–Rakhmanov–Saff intervals [0, βn]. The nth Mhaskar–Rakhmanov–Saff
number βn is defined by the equation

1

2π

∫ βn

0
Q′(x)

√
x

βn − x
dx = n.
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βn grows like n1/m and has a complete asymptotic expansion

βn = n1/m

(
β(0) +

∞∑
k=1

β(k)n−k/m

)
.

The equilibrium density for the rescaled external field 1
nQ(βnx) has the form

ν ′n(x) =
1

2π

√
1− x
x

hn(x), x ∈ [0, 1],

where hn is a polynomial of degree m − 1, that converges to a limit polynomial h as n → ∞.
We can now state the associated universality limits in contracted form, for the bulk, soft edge
at βn, and hard edge at 0 [96]:

Theorem 6.1. Assume that µ is given by (6.1) and (6.2), and that {βn}, {ν ′n} are as above.

(a) Uniformly for x in compact subsets of (0, 1) and u, v in compact subsets of the real line,

βn
nν ′n(x)

K̃n

(
µ, βn

(
x+

u

nν ′n(x)

)
, βn

(
x+

v

nν ′n(x)

))
= S(u− v) +O

(
1

n

)
.

(b) For n ≥ 1, let

cn =

(
1

2
hn(1)

)2/3

.

Uniformly for u, v in compact subsets of R,

βn

cnn2/3
K̃n

(
µ, βn

(
x+

u

cnn2/3

)
, βn

(
x+

v

cnn2/3

))
= Ai(u, v) +O

(
1

n1/3

)
.

(c) For n ≥ 1, let

c̃n =

(
1

2
hn(0)

)2

.

Uniformly for u, v in bounded subsets of (0,∞),

βn
4c̃nn2

K̃n

(
µ,

u

4c̃nn2
,

v

4c̃nn2

)
= Jα(u, v) +O

(
uα/2vα/2

n

)
.

In [48], Eli Levin and the author used first order asymptotics for orthogonal polynomials {pn}
for exponential weights, established in [44], to obtain universality limits for a broad class of
exponential weights e−2Q on the whole real line. Here Q is assumed twice differentiable, and
satisfies some other regularity conditions, and we also considered weights he−2Q, where h does
not oscillate or grow too rapidly – for example it could be a generalized Jacobi weight. The main
observation, that all one needs is asymptotics with only a o(1) error term, was due to Eli Levin.
In our later paper [47, p. 720 ff.] (ironically published earlier), Eli Levin and the author turned
results for varying exponential weights into ones for a more general class of exponential weights:

Definition 6.2. Let I = (c, d) be an open interval, bounded or unbounded, containing 0 in its
interior. Let W = exp(−Q), where Q : I → [0,∞) satisfies the following properties:

(a) Q′ is continuous in I and Q(0) = 0.
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(b) Q′ is non-decreasing in I;

(c)

lim
t→c+

Q(t) = lim
t→d−

Q(t) =∞.

(d) The function

T (t) =
tQ′(t)

Q(t)
, t 6= 0,

is quasi-increasing in (0, d), in the sense that for some C > 0,

0 < x < y ⇒ T (x) ≤ CT (y).

T is also assumed quasi-decreasing in (c, 0). In addition, we assume that for some Λ > 1,

T (t) ≥ Λ in I\{0}.

(e) There exists ε0 ∈ (0, 1), C1, C2 > 0 such that for y ∈ I\{0},

C1 ≤ T (y)/T

(
y

[
1− ε0

T (y)

])
≤ C2.

(f) For every ε > 0, there exists δ > 0 such that for all x ∈ I\{0},

∫ x+
δ|x|
T (x)

x− δ|x|
T (x)

Q′(s)−Q′(x)

s− x
ds ≤ ε|Q′(x)|.

Then we write W ∈ F(dini).

These conditions, especially that in (f) are somewhat technical! One explicit condition on Q
that guarantees that those in (e), (f) hold, is

(g) Q′′ exists in I\{0} and there exists C1 > 0 such that

Q′′(x)

|Q′(x)|
≤ C1

Q′(x)

Q(x)
a.e. x ∈ R\{0}.

Examples of weights in this class are W = exp(−Q) on I = R, where

Q(x) =

{
Axα, x ∈ [0,∞),

B|x|β, x ∈ (−∞, 0),

with α, β > 1. More generally, if expk = exp(exp(· · · exp( ))) denotes the kth iterated exponen-
tial, we may take

Q(x) =

{
expk (Axα)− expk(0), x ∈ [0,∞),

exp`
(
B|x|β

)
− exp`(0), x ∈ (−∞, 0),

where k, ` ≥ 0, α, β > 1.
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A key descriptive role for such Q is played by the Mhaskar–Rakhmanov–Saff numbers a−n <
0 < an, defined for n ≥ 1 by the equations

n =
1

π

∫ an

a−n

xQ′(x)√
(x− a−n)(an − x)

dx, (6.3)

0 =
1

π

∫ an

a−n

Q′(x)√
(x− a−n)(an − x)

dx. (6.4)

In the case where Q is even, a−n = −an. Yes, there is a conflict with the earlier notation for
recurrence coefficients – in this section an has a different meaning. We also define,

δn =
1

2
(an + |a−n|). (6.5)

We proved [47, Theorem 7.4, p. 771]:

Theorem 6.3. Let W = exp(−Q) ∈ F(dini). Let 0 < ε < 1. Then uniformly for u, v in
compact subsets of the real line, and x ∈ [a−n + εδn, an − εδn], we have

lim
n→∞

K̃n

(
W 2, x+ u

K̃n(W 2,x,x)
, x+ v

K̃n(W 2,x,x)

)
K̃n (W 2, x, x)

= S(u− v).

In particular, if W is even, this holds uniformly for |x| ≤ (1− ε)an.

As far as the author is aware, there are no results on universality at the edge anywhere as
general as those in the bulk. Perhaps still the most general result is due to Deift and Gioev [19].
Undoubtedly the varying weights results of McLaughlin and Miller [67] imply universality at
the edge for appropriate fixed exponential weights, but this does not seem to have been written
down. So we close with the result of Deift and Gioev, which was part of a more general treatment
of edge universality for orthogonal, symplectic, and unitary ensembles:

Theorem 6.4. Let Q be a polynomial of positive even degree, with positive leading coeffi-
cient. Let W = e−2Q on R. Let a±n be the nth Mhaskar–Rakhmanov–Saff number, defined
by (6.3), (6.4). Let δn be defined by (6.5). Then uniformly for u, v in compact subsets of R,

lim
n→∞

δn

τnn2/3
K̃n

(
µ, an +

δnu

τnn2/3
, an +

δnv

τnn2/3

)
= Ai(u, v).

Here {τn} is a sequence of numbers depending on Q and arising from certain equilibrium densi-
ties.

Problem 6.5. Establish universality at the edge for more general fixed exponential weights than
those in Theorem 6.4.
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[83] Simon B., Szegő’s theorem and its descendants: spectral theory for L2 perturbations of orthogonal polyno-
mials, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

[84] Simon B., Real analysis: a comprehensive course in analysis, Part 1, Amer. Math. Soc., Providence, RI,
2015.

[85] Sinclair C.D., Yattselev M.L., Universality for ensembles of matrices with potential theoretic weights on
domains with smooth boundary, J. Approx. Theory 164 (2012), 682–708, arXiv:1108.3052.

[86] Stahl H., Totik V., General orthogonal polynomials, Encyclopedia of Mathematics and its Applications,
Vol. 43, Cambridge University Press, Cambridge, 1992.

[87] Stenger F., Numerical methods based on sinc and analytic functions, Springer Series in Computational
Mathematics, Vol. 20, Springer-Verlag, New York, 1993.

[88] Suetin P.K., Fundamental properties of polynomials orthogonal on a contour, Russ. Math. Surv. 21 (1966),
no. 2, 35–83.

[89] Tao T., Topics in random matrix theory, Graduate Studies in Mathematics, Vol. 132, Amer. Math. Soc.,
Providence, RI, 2012.

[90] Tao T., Vu V., Random matrices: the universality phenomenon for Wigner ensembles, in Modern Aspects
of Random Matrix Theory, Proc. Sympos. Appl. Math., Vol. 72, Amer. Math. Soc., Providence, RI, 2014,
121–172, arXiv:1202.0068.

[91] Totik V., Asymptotics for Christoffel functions for general measures on the real line, J. Anal. Math. 81
(2000), 283–303.

[92] Totik V., Asymptotics for Christoffel functions with varying weights, Adv. in Appl. Math. 25 (2000), 322–
351.

[93] Totik V., Universality and fine zero spacing on general sets, Ark. Mat. 47 (2009), 361–391.
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