STRUCTURAL PHASE TRANSITIONS IN THIN CONVECTION
AT DEPENDENCE OF VISCOSITY ON TEMPERATURE
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Conditions for a second-order phase transition in a thin liquid layer with poorly conductive boundaries under
conditions of dependence of viscosity on temperature are considered. It is shown that, when the dependence is weak,
the shaft system of toroidal vortices develops first, and then a field of square convective cells is being formed. If the
viscosity dependence on temperature is strong, even for the system described by Proctor-Sivashnsky equations, tran-
sitions from the shaft structure to hexagonal convection cells are possible.

PACS: 51.20.+d

INTRODUCTION

In a number of applications, such as thin clouds,
convection between closely spaced heat-poor surfaces,
the Proctor-Sivashinsky model [1, 2] was of great inter-
est, which was used to describe the development of
convection in a thin fluid layer with poorly conductive
heat boundaries. The authors of [3] discovered station-
ary solutions and studied their stability.

Below we discuss the possibility of phase transitions
of the second kind in a thin layer of liquid between
poorly conducting walls. In contrast to the traditionally
used Swift-Hohenberg equations, we use the Proctor-
Sivashinsky 3D equation more appropriately to the real
conditions. This problem is obviously three-dimensional
in space and non-stationary, which at first sight creates
significant problems. However, the Proctor-Sivashinsky
model makes it possible to reduce the dimensionality of
the description and focus on topological aspects, that is,
the type, size and time of the development of spatial
structures.

The peculiarity of the model is that it singles out one
spatial scale of interaction, leaving for the evolution of
the system the possibility to choose the character of
symmetry. All spatial disturbances of the same size, but
of different orientations, interact with each other. Non-
linearity in the system is vector. It turned out that the
presence of the minima of the mode interaction poten-
tial, the absolute value of the wave number vectors of
which is unchanged, determines the choice of symmetry
and, accordingly, the characteristics of the spatial struc-
ture.

1. PROCTOR-SIVASHINSKY EQUATION

Assuming a thin layer of liquid (or gas), it is possi-
ble to integrate all perturbations due to convection along
the height of the layer and go to the two-dimensional
description [1, 2] (see, also, [4]). In two-dimensional
geometry, the Proctor-Sivashinsky equation for the con-
vection temperature field takes the form

0
a—$+v4¢+V[(2—w—|V¢)2 DVel+ap=0. (1)

where the two-dimensional operator

v¢=f.%+ ]% moreover i , ] — unitary unit vec-

tors orthogonal to each other in the plane (£,) of the
media section. However, in contrast to [5, 6], where
two-dimensional vortices are considered, this problem,
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despite the two-dimensional description, is a three-
dimensional case.

It should be noted, to the fact that the quadratic non-
local (that is, the presence of derivatives with respect to
time or coordinate), the nonlinearity in the equation is
present in the form of a term proportional to »,, and is

due to the dependence of the viscosity on the tempera-
ture on the height of the layer, and the nonlocal cubic is
taken into account by a term proportional to |V )? |Ve.

In works (see review [4]) it was noted that in the
process of development of convection in the absence of
viscosity dependence on temperature (y, =0) arise —

toroidal vortex shaft structures, which turn out to be
metastable and after a short time a second-order phase
transition occurs, which leads to the appearance of
square toroidal vortex structures.

If the viscosity in the system depends on the temper-
ature, then we usually use the Swift-Hohenberg equa-
tion, in which the cubic nonlinearity is local, that is, the
proportional (03. However, in problems of describing

the convection of a fluid between weakly conducting
walls, the nonlinearity is still a vector, then the question
arises of the character of the processes in this case.

The solution is represented in the form of a series

D=¢) A exp(ilzj F) with |k, [=1.
]

When replacing T .e?=t, for slow amplitudes
A, in the absence of noise, we get a convenient repre-

sentation of the Proctor-Sivashinsky model for describ-
ing convection:

A=A =27(A A, — A

where the interaction coefficients are determined by the
relations

» 2[1+2(Cos 9)?] A 2
3 .

vij:(z/s)(1—2(|2i|2j )Z): (2/3)(1+2c05? 8;).

and §; — angle between vectors K and kj. Expres-

sion (2) must be supplemented with the initial values of
the amplitudes of the spectrum Aj. le. A o= Aio'
The dependence of the viscosity on temperature is de-
termined by a term of the form proportional to y, where

9, =2x13 wherein S, =0 +2713 and
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9., =9 +4rl3, accurate to

(9+9'+9"=27s,s=0,+1,+2...). Let us recall that
y >0 is responsible for the convection of the gas layer,
and y <0 — is responsible for the convection of the
liquid.

2. ANALYSIS OF THE MODEL

The so-called "amorphous" state is obtained first be-
cause of averaging < (Cosg)’>=1/2, then <V >~4/3,

and at small ¥ the explosive growth of modes stops
when z< N2 ><3] 4 Then a system of shafts is formed.

There appears one (in the half-cycle) mode A1 with an

amplitude of about unity. Let's see how other small am-
plitude modes (linear theory) are shifted by an angle &
If the angle 9= 27 /3, then the second term (2) is van-
ishingly small, and the increment I (determined from
exp{l’ -t}) of this mode is

2[1+2(Cos9)’] 1-4(Cos9)? (3)

3 3

and is positive only for —1/2<Cos9<1/2, i.e. in the
surrounding area of +7/2, and when 9=+7/2,

Tyoa =1/3 — the maximum increment of the growing

modes, which form together with the developed shafts
the square cells.

Let’s consider the case when 9 =25 /3. Let us find
out how three-mode interactions can be competitive.

Equation for modes Aﬂm small amplitude shifted by

9=+27/3 relative to the basic mode A already
formed shafts, can be written in the form
Aris=RAons— 27/(A;2n/3A1) -

L 21+ 2(J312)] )
_Ai 3

r=1-

A

\27/3 =

5
= _5 A12A¢2n/3 - 27(A;2;z/3A1)a

or for a system of coupled equations

d 5,0 _
(G5 AR As =27 (A ),

(%)
d 5
(a + El A |2)A72;z/3 ==2y(As5A)-
The increment of such a process
5
F=-2yA -2 A" ©)

for the case of convection |y|>%. lLe. at |}/|>% the

process of forming hexagonal cells in the case of a well-
developed structure of shafts only receives the right to
life.

That is why smaller values |y| only formed shaft

structures at the initial stage [7]. But in order to compete
with the process of growth of the lateral spectrum (that
is, the process of forming square cells), it is necessary
that the increment (6) exceed the increment (3), that is

[yg =1/3- In other words, the increment | (A
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what is possible with | »|>1. It can be seen that the de-

veloped structure of hexagonal cells inhibits the devel-
opment of square cells. That is, this instability regime
leads to the same results as in the case considered in the
Swift-Hohenberg model.

Thus, the formation of hexagonal cells, found in ex-
periments [8] (see also [9] and Figs. 1, 2), is associated
with a strong dependence of viscosity on temperature.
At the periphery of the viewing area, the cell formation
process has just begun, so the phase transition from the
shaft system to the cell system has not yet occurred (see
Fig. 1). That is, shaft structures dominate. In the center
there is already a structural-phase transition to hexago-
nal convective cells.

Fig. 1. Experiment. Thermal convection in a thin
layer of gaseous CO, [8, 9]. Growth of hexagonal
crystal lattice in the abovethresholdmode
(figure on the right corresponds to a early period)

In Fig. 2 shows the final stage of the formation of a
field of hexahedral cells — toroidal vortices.

Fig. 2. Experiment. Thermal convection in a thin
layer of gaseous CO, [8, 9]. Growth of hexagonal
crystal lattice in the abovethreshold mode
(figure corresponds to a later time)

CONCLUSIONS

The formation of spatial structures in the convection
of thin layers of gas and liquid is similar to that for a
weak viscosity dependence on temperature, one can first
see the shaft eddy toroidal convection structures and
then, as a result of a second-order phase transition,
square convection cells, in the field of which a modula-
tion instability can arise with the formation of large-
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scale poloidal vortex structures — the so-called hydro- 6. A.V. Tur, V.V. Yanovsky. Point vortices with a

dynamic dynamo effect [11 - 12]. rational necklace: New exact stationary solutions of
However, many experiments demonstrate the ap- the two-dimensional Euler equation // Physycs of
pearance of hexagonal cells in thin convective layers. Fluids. 2004, v. 16, Ne 8, p. 2877-2885.
Therefore, attempts to clarify this phenomenon led to 7. L.V. Gushchin, A.V. Kirichok, V.M. Kuklin. Struc-
the description in the framework of the Swift- tural-phase transitions and state function in unstable
Hohenberg model [13]. However, the structure of the convective medium // Problems of Atomic Science
nonlinearity in this model is far from real and the de- and Technology. Series “Plasma Electronics and
scriptions obtained were qualitative. Attempts to find New Methods of Acceleration”. 2015, v. 4, p. 252-
solutions for small || also did not lead to the appear- 254.

8. E. Bodenschatz, J.R. de Bruyn, G. Ahlers, D. Con-
nell. Experiments on three systems with non-

h | struct f " hich i id variatinal aspects: Preprint. Santa Barbara, 1991.
exagonal structure ot convection, Which 1S so Wide- g = pg | Rabinovich, A.L. Fabrikant, L.S. Tsimring. A

spread in nature and observed in various experiments. finite-dimensional disorder // Usp. Fiz. Nauk. 1992

ance of solutions of this type [7]. It turned out that only
for much larger |y | there is the possibility of forming a
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CTPYKTYPHO-®A30BBIE IIEPEXO/Ibl B TOHKOI KOHBEKIIMA
TP 3ABUCUMOCTHU BA3KOCTHU OT TEMIIEPATYPBI

HU.B. I'vugun, B.M. Kyxnun

PaccMotpens! ycnoBus i (pa3oBOro Iepexoa BTOPOTO poJia B TOHKOM CJIO€ JKHJIKOCTH C TIJIOXO MPOBOAAIINMHI
TETIO TPAaHULAMH B YCIIOBHUSX 3aBHCHMOCTH BSI3KOCTH OT Temmneparypsl. I[lokazaHo, 4To mpu cinaboil 3aBUCHMOCTH
pa3BHBaeTCsA CHavajga BaJMKOBas CHCTEMa TOPOMIAIBHBIX BUXPEH, a 3aTeM (popMmHpyeTcs mone KBaApaTHBIX KOH-
BEKTHBHBIX sdceK. ECIM 3aBHCHMMOCTH BSA3KOCTH OT TEMIEPATyphl CHIbHAS, JaKe OIS CHCTEMBI, OIMHUCHIBAEMOI
ypaBHeHUMU [IpokTopa-CHUBaIIMHCKOTO, BO3MOXHBI NEPEXOAbl OT BAJMKOBOM CTPYKTYPHI K IIECTUTPAHHBIM KOH-
BEKTHBHBIM sTYEHKaM.

CTPYKTYPHO-®A30BI IEPEXO/IM Y TOHKI KOHBEKIIII
IPU 3AJIEZKHOCTI B’SI3KOCTI BIJI TEMIIEPATYPH

LB. I'vwyun, B.M. Kyknin

Po3risHyTO ymMOBH Ut (ha30BOro MEpexoay JIpyroro poay B TOHKOMY LIapi piAMHM 3 TPaHUISIMH, LIO [OTaHO
MIPOBOJIATH TEIUIO, B YMOBAaX 3aJIeKHOCTI B'SI3KOCTI Big Temmeparypu. [lokasaHo, mo npu cinaOKiil 3ameXHOCTI po3-
BUBAETHCS CHIOYATKY BAIiKOBa CHCTEMa TOPOINaJbHUX BHXOPIB, a HOTIM (OPMYEThCS MOJIE KBaJPAaTHUX KOHBEKTHB-
HUX OCepenKiB. SIKIIo 3aJexHIiCTh B'S3KOCTI BiJ TEeMIIEpaTypH CHIIbHA, HABITh JJISI CUCTEMH, IO OMHCYETHCS PiB-
HsHEIM [IpokTopa-CiBammHCHKOT0, MOYKIIMBI IIEPEX0IH Bill BATIKOBOI CTPYKTYPH [0 MIECTUTPAHHNX KOHBEKTHBHHUX
OCepeKiB.

258 ISSN 1562-6016. BAHT. 2018. Ne4(116)



