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In this paper, we consider a method of construction of a velocity field based on an optimization approach. A
general formulation of the problem is given. It is shown how, under the appropriate assumption, it reduces to known
particular case. Two-dimensional case of the velocity field construction is considered in detail under the gradient
constancy assumption of the density of the radiopharmaceutical distribution. The problem is reduced to solving a
sparse system of large dimension, and the convergence of the iterative algorithm to the solution is considered. This

method can be used in the radionuclide data processing.
PACS: 87.15.A

INTRODUCTION
BASIC CONCEPTS

The solution of various inverse problems has always
been of great practical interest. In [1], the problem of
determining velocity field from a given density of the
distribution of charged particles was considered. In this
paper, we propose to use this approach for the radionu-
clide data processing, and to search for the velocity field
from the known radiopharmaceutical distribution densi-
ty [2].

Radionuclide studies are performed using gamma
cameras and gamma tomographs [3]. Radionuclide
methods are one of the most modern methods of func-
tional diagnostics of diseases of the cardiovascular sys-
tem, nephrology system, hepatobiliary systems etc. [2,
4, 5]. They require using of mathematical methods for
data processing and analysis.

PROBLEM STATEMENT

Let us consider following system of differential
equations

x=f, Q)
op 3 0p .
——+ Yy =" + pdivf =0. 2
p Elaxi itp 2

In accordance with the statement of the problem in
article [1], we assume that the transport of the radio-
pharmaceutical is described by equation (1) and the dis-
tribution density of the radiopharmaceutical satisfies the
Liouville’s  equation (2). Here t is time,
X =(X,Xp,X3)| — the spatial coordinate’s vector,
p=p(t,x)=p(t X, X;,X3) — radiopharmaceutical dis-
tribution density, f = f(t,x)=(f,,f,, ;)" is the ve-
locity field and the superscript T denotes transposition
of vector.

We suppose that given function p(t,x) satisfies the
equation (2). The problem is to restore the velocity field
of the system (1), i.e. to find function f(t,x). In com-
mon case, this is ill-posed problem [6]. So in [1] the
regularization method is used and the corresponding
variational problem is investigated.

Further we will denote

Xl:X,XZZy,stz,
fi=u, fy=v, f3=w
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Following suggested approach [1] let us fix some
moment t and formulate the problem of determination

function f(t,x) as a minimization problem. We intro-
duce the functional

J(u,v,w) = f((pz +a21//2)dxdydz, (3)
M

where @ = (p, + pU+ PNV + p,W+ p(Uy +Vy +W,))?,

WP =UL UL UV VS VT W W W
o’ is a regularization parameter, M is a nonzero measure
region in R, Pui Py Py are notations for partial deriva-
tives of first order in t,x,y respectively.

Thus, the problem of finding velocity field is con-
sidered as a functional minimization problem (3) [1, 7].

If we put in the equation (2) divf =0, we get a case
of the so-called optical flow, when the density of the
indicator remains constant along the trajectories of the
system (1) [8, 9].

Further we consider two-dimensional case

X =X X =y, f=(uv)'.

The Euler-Lagrange equations for the integral func-
tional (3) were written in [1] for the general three-
dimensional case. For the two-dimensional case, taking
into account divf =0, we obtain the well-known equa-
tions for finding the velocity field [8]:

—a* AU+ pu+ p,p N ==pp,, @)

—a?AvV + pjv + P =—ppy,
here A— Laplace operator.

As a result of this approach, the problem for deter-
mining functions u,v reduces to solving the system (4)
under the appropriate boundary conditions.

In this paper we will consider in more detail the case
of the gradient constancy assumption, i.e. when the gra-
dient of the distribution density along the trajectories of
the system (1) remains constant:

PxU+ PxyV =—Pyts

PyU+ PV =—pPy,
here o, PusPrys Py Py are notations for partial deriva-

tives of the second order.
In this case, the integral functional (3) will be con-
sidered for the two-dimensional case and we put

9° = (P + Pl + Py V)% + (e + Pyl + Py V).

()
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The Euler-Lagrange equations will have following
form

— @2 AU+ (Pl + P U+ oy (P + Py IV =
~ PxxPxt ~ Pyx Pyt ©)
—a? A+ (g + Po I+ Pry (P + Py U =
— PxyPxt ~ PyyPyt-
To find the velocity field of the system (1), it is nec-

essary to solve the system (6) under the appropriate
boundary conditions.

DATA PROCESSING

CONSTRUCTION OF THE SPARSE SYSTEM
OF SPECIAL FORM

We consider the system (6), where (X,y)eM and
functions u, v are defined at the boundary of the region M.

The dynamic data acquisition mode allows observ-
ing radiopharmaceutical density distribution in the stud-
ied system as a function of time [2]. As a result we ob-
tain radiopharmaceutical density distribution as a func-
tion of time and spatial coordinates o= p(t,x,y),

te[0,T], (x,y)eM . Taking into account the discreti-
zation with respect to time and spatial coordinates we
get the sequence of matrices.

We denote the density distribution of the radiophar-
maceutical at the point located at the intersection of i-th
line, j-th column, and k-th moment of time as p(i, j),
i,j=0,...,N +1. The solution of system (6) can be con-
sidered at the nodes of a square grid with a step equal to
the one pixel change in the distance along any axis. In
the grid point (i, j) the approximation to the solution of
system (6) can be written as u(i, j), v(i, j). Laplacians

in (6) then can be changed with finite differences and
partial derivatives of the second order can be calculated
using the density values in the neighboring grid points
according to the chosen scheme. So we obtain linear
system of equations

—a?u@i-1 j)+ul+1 j)+uli, j-1)+
ugi, j +0) + (4a® + pg (i, 1)+ pix (i, UG, J) +
(Pxc (1, 1) + pyy (1, 1)) oy (1, VAL ) =
=P (1 D Pw (1 1) = Py (1 1) oy (i 1), )
—a?(v(i-1 ) +v(i+1 j)+v(i, j-1)+
V(i, j+D) + (4a® + pg (i, ) + gy (i VG, 1) +
(P (i3 1) + pyy (1, 1)) pry (1, DU, J) =
=Py (D Py (1) = pyy (1, D oy (0, 1)
i,j=1...,N.
According to our assumption that the functions u,v

are given on the boundary of the region, only 2N?at
the interior points of the grid are unknown in equations
(7). Thus, we obtain a linear system of 2N? equations,
the solution of which gives an approximation to the so-
lution of the system (6) at grid points. Further we will
denote

u(i, ) =uy Vi, §) = vy

ISSN 1562-6016. BAHT. 2018. Ne3(115)

As a result of the discretization of the system of par-
tial differential equations (6), a linear system of differ-
ence equations (7) was obtained, and then we consider
its solution. Let introduce the following notation

u
2=(2,25,23,...2,) , where z, :[ S],
VS

(U, Uy,...u,)" =
(U gty s Ungee el e g ) s
(Vi, Vo, V) =
(Vigree Vi Voo Von oo VLo Vi) |-

The system (7) can be written in the following form
Hz=q. (8)
The matrix H and right-hand side and vector of
unknowns are portioned as follows

Hiyp Hy Hin Y 21 0,
Hy Hyo Hon | 2, _ *P) )
Hnl Hn,n—l Hnn Zy an

the partitioning of g and z into subvectors g; and z;

of size 2 are identical and compatible with the partition-
ing of H. Here H- block matrix of size

nxn, n=N?  with square blocks of second order

a.. b . .
Hss:( . J ag =4’ + p (i, )+ (i, 1),

bSS SS
bys = sy (1 DN i )+ 24, 0, )
css =4’ +pf, (i, )+ P50, 1)1, j=LN,

agz O
H = 0 ,S#I, a5 =Cg, and nonzero ele-
Sr
ments are equal to —a?; g, = ds ,s,r=LN?,
S es
(dy,d,,...d,)" =

(< PR PPN PR RN PR ) LI
here d;; =—py (i, 1) (i, 1) = Py i, )y isJ), i j =N .
(e1.€,...8,) =
(E110- - 1N+ €21re e BN 1o BNLr - BNN) o
here &;; =—pyy (i, )Py (i )= Py (i )Py i i), 1T =LN
Fig. 1 shows the matrix H scheme for the mesh 6x6.

Fig. 1. Pattern of matrix associated with the 6x6 mesh
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System (8) is large sparse linear system, and we will
solve it by iterative block Gauss-Seidel method [10].

BLOCK GAUSS-SEIDEL METHOD.
THE CONVERGENCE OF METHOD

Let us represent matrix H in following way
H=D-E-F. (10)
Matrix D— block diagonal, E and F — lower tri-
angular and upper triangular block matrices, respective-

ly.

Hy, 0 - 0
0 H 0
D= '22 '
: 0
0 - 0 H,,
0 _H12 _Hln
—H 0 —H
E4+F = :21 : N :2n ’
_Hnl _Hn,n—l 0

note, that zeros here are for zero blocks of second order.

Block Gauss-Seidel method for solving system (8),
corresponding to introduced partition (9), has the fol-
lowing form

n n
H; z¢*? :—J%Hijz'j‘+l - EiHijz‘j( +q;, w
i=1,n,k=041,...,
or taking into account (10) and using matrix notations
(D-E)z*t=Fz"+q, k=012.. (12
For the convergence of the method it is sufficient
that the conditions obtained in [11] be satisfied:

a) a,Ce —h2 >0, ag >0, ci >0,

s=1n,

2
b) Ags +Css > i|a5r|+ Ass —Css +bszs ,
2 r=1 2

L r#s (13)
s=1n and for some s

2
a, +C n a, —C 2
SS SS > z|asr|+ SS SS +b551
2 r=1 2

r#i

¢)"block™ irreducible condition.

It is easy to verify that conditions (13) are satisfied
for system (8), and thus the Gauss-Seidel method con-
verges to a unique solution of system (8) for any initial
approximation.

METHOD APPLICATIONS FOR DATA
PROCESSING IN RADIONUCLIDE STUDIES

This method can be used to process radionuclide
images. Important stages of processing radionuclide
studies are motion correction [12 - 14], contour con-
struction and analysis of the regions of interest (ROI).
This method can be used to solve these problems.
Figs. 2 - 5 give examples of the results of constructing
the velocity field for radionuclide images. In Fig. 2, we
see two images obtained in the study of the human
hepatobiliary system in which there is a shift of the
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studied organ. In the region indicated by the dotted line,
the velocity field has the form shown in Fig. 3.

Fig. 3. Velocity field

In Fig. 4, we see the images of region of interest at
the moment of time k and k +1, these are fragments
of images of cardiac radionuclide research. In Fig. 5 the
velocity field constructed in this region is represented.

Fig. 5. Velocity field
The data illustrate the possibility of using this meth-
od for the motion detecting and its subsequent correc-

tion, and also for constructing the contours of the inves-
tigated objects on radionuclide images.

CONCLUSIONS

The method of constructing the velocity field pro-
posed in the article can be used in solving the problems
of data processing of radionuclide studies. The variants
of application given in the article can be used for the
analysis of radionuclide images, on their basis it is pos-
sible to build algorithms of construction of contours of
the investigated areas of interest, and also to carry out
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correction of motion for dynamic radionuclide research-
es.

This method can also be used in other problems, for
example, in the study of dynamics of charged particles.
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METO/I TOJISI CKOPOCTEM 1151 OBPABOTKHA JAHHBIX PATMOHYKJIMTHBIX
NCCIIEJOBAHUHN

E.JI. Komuna, /1. A. Oscannukos

PaguoHyKIMIHBIE METOBI SABJISAIOTCS OJHUMH U3 COBPEMEHHBIX METOA0B (DYHKIIMOHAILHON JAMArHOCTUKH pa3-
JIUYHBIX OPTAaHOB M CHUCTEM OpraHM3Ma 4ejoBeKa, KOTOpble TPeOYIOT HCIOJIb30BAHHMS MATEMaTHYECKHUX METOJIOB
00paboTKM W aHanmu3a JaHHBIX, MOJYYEHHBIX B XOJA€ uccienoBaHus. [1o3TOMy pa3BUTHE COBPEMEHHBIX METOJIOB
00paboTKN paMOHYKINIHBIX H300paKEHUH SIBIIIETCS aKTyalbHOU 3aaaueid. B cTatbe paccMaTpuBaeTcs METO JUIS
00paboTKN paAMOHYKJIUIHBIX U300paKEHUH, OCHOBAaHHBIN HA MOCTPOEHUH TOJISi CKOpocTel. J[aHHbIN METO MOXKET
MPUMEHSTHCS ISl KOPPEKIMH JBHKCHUS, IOCTPOCHISI KOHTYPOB, aHaTH3a PaTUOHYKIIUAHBIX H300pakKeHUH, TaKkxKe
OH MOJKET UCIIOJIB30BaThCs JUIS aHATH3a U (POPMHUPOBAHUS TUHAMHUKH 3aPsDKCHHBIX YACTHII.

METO/I I1OJISI IIBUJIKOCTEM JJIs1 OBPOBKHU JAHUX PAJTIOHYKJIIJHUX JOCJI)KEHD
O.Z. Komina, /I.A. O¢cannukos

PagioHykITigHI METOAM € OJHUMH 3 CY4aCHHX METOJIB ()YHKIIIOHAIBHOI JIarHOCTHKH Pi3HUX OpPTaHiB i CHCTEM
OpTraHi3My JIFOJAMHH, SIKI BAMAraloTh BUKOPHCTaHHS MaTeMaTHYHUX METOAIB 0OpOOKHM Ta aHANi3y AaHUX, OTPUMAHHUX
y Xozi gocmipkeHHs. ToMy pO3BHTOK CydaCHHX METOJIB OOPOOKHM pamioHYKIIZHUX 300pakeHb € aKTyaJbHUM 3a-
BIAHHAM. Y CTaTTi PO3IIIAAAETHCS METOA U 0OPOOKH pagioHYKIIAHUX 300pakeHb, 3aCHOBAaHUHA HA TIOOYIOBI MO
mBHKOCTEH. J[aHMIT MeTOT MOKe 3aCTOCOBYBATHCS JUIL KOPEKIil pyXy, MOOyIOBH KOHTYPIB, aHAJI3y pagioHyKJIiI-
HHUX 300pa)XeHb, TAKOX BiH MOK€ BUKOPHUCTOBYBATHCS U aHAJI3y Ta (JOpMyBaHHS TUHAMIKH 3apSKEHUX YacTH-
HOK.
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