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Abstract. The Skyrme–Faddeev–Niemi (SFN) model which is an O(3) σ model in three
dimensional space up to fourth-order in the first derivative is regarded as a low-energy
effective theory of SU(2) Yang–Mills theory. One can show from the Wilsonian renormali-
zation group argument that the effective action of Yang–Mills theory recovers the SFN in
the infrared region. However, the theory contains an additional fourth-order term which
destabilizes the soliton solution. We apply the perturbative treatment to the second deriva-
tive term in order to exclude (or reduce) the ill behavior of the original action and show
that the SFN model with the second derivative term possesses soliton solutions.

Key words: topological soliton; Yang–Mills theory; second derivative field theory

2000 Mathematics Subject Classification: 35Q51; 35G30; 70S15

1 Introduction

The Skyrme–Faddeev–Niemi (SFN) model which is an O(3) σ model in three dimensional space
up to fourth-order in the first derivative has topological soliton solutions with torus or knot-like
structure. The model was initiated in 70’s and the interest to it has been growing considerably.
The numerical simulations were performed in [1, 2, 3, 4, 5], the integrability was shown in [6],
and the application to the condensed matter physics [7] and the Weinberg–Salam model [8] were
also considered. The recent research especially focuses on the consistency between the SFN and
fundamental theories such as QCD [9, 10, 11, 12]. In those references, it is claimed that the SFN
action should be induced from the SU(2) Yang–Mills (YM) action at low energies. One can also
show from the Wilsonian renormalization group argument that the effective action of Yang–
Mills theory recovers the SFN in the infrared region [13]. However, the derivative expansion for
slowly varying fields n up to quartic order produces an additional fourth-order term in the SFN
model, resulting in instability of the soliton solution.

Similar situations can be seen also in various topological soliton models. In the Skyrme
model, the chirally invariant Lagrangian with quarks produces fourth order terms after the
derivative expansion and they destabilize the soliton solution [14, 15]. To recover the stability
of the skyrmion, the author of [16] introduced a large number of higher order terms in the
first derivative whose coefficients were determined from those of the Skyrme model by using
the recursion relations. Alternatively, in [13] Gies pointed out the possibility that the second
derivative order term can work as a stabilizer for the soliton.

In this paper, we examine the Gies’s supposition by numerical analysis. In Section 2, we give
an introduction to the Skyrme–Faddeev–Niemi model with its topological property. In Section 3,
we show how to derive the SFN model action from the SU(2) Yang–Mills theory. In Section 4,
soliton solutions of this truncated YM action are studied. In order to find stable soliton solutions,
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we introduce a second derivative term which can be derived in a perturbative manner. The naive
extremization scheme, however, produces the fourth order differential equation and the model
has no stable soliton solution. In Section 5, the higher derivative theory and Ostrogradski’s
formulation are reviewed. We show the absence of bound state in the second derivative theory
using an example in quantum mechanics and introduce the perturbative treatment for the second
derivative theory. In Section 6, we present our numerical results. Section 7 contains concluding
remarks.

2 Skyrme–Faddeev–Niemi model

The Faddeev–Niemi conjecture for the low-energy model of SU(2) Yang–Mills theory is expressed
by the effective action:

SSFN = Λ2

∫
d4x

[
1
2
(∂µn)2 +

g1

8
(n · ∂µn× ∂νn)2

]
, (1)

where n(x) is a three component vector field normalized as n ·n = 1. The mass scale parameter
Λ can be scaled out by the replacement Λx → x and Λ2g1 → g1, and for the static energy
Estt/Λ → Estt. Stable soliton solutions exist when g1 > 0.

The static field n(x) maps n : R3 7→ S2 and the configurations are classified by the topo-
logical maps characterized by a topological invariant H called Hopf charge

H =
1

32π2

∫
A ∧ F, F = dA, (2)

where F is the field strength and can be written as F = (n · dn ∧ dn).
The static energy Estt from the action (1) has a topological lower bound [17],

Estt ≥ KH3/4, (3)

where K = 4
√

2 33/8π2√g1. Note that Ward improved this topological bound by using the Hopf
map [18]. It seems, however, to be an upper bound of the model rather than lower bound.

Performing numerical simulation, one can find that the static configurations for H = 1, 2
have axial symmetry [3]. Thus “the toroidal ansatz” which was studied in [2] is suitable to be
imposed on these configurations. The ansatz is given by

n1 =
√

1− w2(η, β) cos(Nα + v(η, β)),

n2 =
√

1− w2(η, β) sin(Nα + v(η, β)),
n3 = w(η, β), (4)

where (η, β, α) are toroidal coordinates which are related to the R3 as follows:

x =
a sinh η cos α

τ
, y =

a sinh η sinα

τ
, z =

a sinβ

τ

with τ = cosh η − cos β.
The function w(η, β) is subject to the boundary conditions w(0, β) = 1, w(∞, β) = −1 and is

periodic in β. v(η, β) is set to be v(η, β) = Mβ + v0(η, β) and v0(, β) is considered as a constant
map. Equation (2) then gives H = NM .

In this paper we adopt a simpler ansatz than (4), which is defined by

n1 =
√

1− w2(η) cos(Nα + Mβ),
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n2 =
√

1− w2(η) sin(Nα + Mβ),
n3 = w(η), (5)

where w(η) satisfies the boundary conditions w(0) = 1, w(∞) = −1. We numerically study
soliton solutions for both ansatz (4) and (5). By comparing those results, we find that this
simple ansatz produces at most 10 % errors and does not much effect to the property of the
soliton solution.

By using (5), the static energy is written in terms of the function w(η) as

Estt = 2π2a

∫
dη

[
(w′)2

1− w2
+ (1− w2)UM,N (η) +

g1

4a2
sinh η cosh η(w′)2UM,N (η)

]
,

w′ ≡ dw

dη
, UM,N (η) ≡

(
M2 +

N2

sinh2 η

)
.

The Euler–Lagrange equation of motion is then derived as

w′′

1− w2
+

ww′2

(1− w2)2
+ UM,N (η)w +

g1

2a2

(
−2N2 coth2 ηw′UM,N (η)w′

+
(
cosh2 η + sinh2 η

)
+ sinh η cosh ηUM,N (η)w′′) = 0. (6)

The variation with respect to a produces the equation for variable a. Soliton solutions are
obtained by solving the equations for a as well as for w.

3 Effective action in the Yang–Mills theory
with CFNS decomposition

In this section, we briefly review how to derive the SFN effective action from the action of SU(2)
Yang–Mills theory in the infrared limit [11, 13]. For the gauge fields Aµ, the Cho–Faddeev–
Niemi–Shabanov decomposition is applied [9, 10, 11, 12]

Aµ = nCµ + (∂µn)× n + W µ. (7)

The first two terms are the “electric” and “magnetic” Abelian connection, and W µ are chosen
to be orthogonal to n, i.e. W µ · n = 0. Obviously, the degrees of freedom on the left- and
right-hand side of equation (7) do not match. While the LHS describes 3color × 4Lorentz = 12,
the RHS is comprised of (Cµ :)4Lorentz + (n :)2color + (W µ :)3color × 4Lorentz − 4n·W µ=0 = 14
degrees freedom. Shabanov introduced in his paper [11] the following constraint

χ(n, Cµ,W µ) = 0, with χ · n = 0.

The generating functional of YM theory can be written by using equation (7) as

Z =
∫
DnDCDW δ(χ)∆FP∆Se

−SYM−Sgf .

∆FP and Sgf are the Faddeev–Popov determinant and the gauge fixing action respectively, and
Shabanov introduced another determinant ∆S corresponding to the condition χ = 0. YM and
the gauge fixing action is given by

SYM + Sgf =
∫

d4x

[
1

4g2
F µν · F µν +

1
2αgg2

(∂µAµ)2
]

.
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Inserting equation (7) into the action, one obtains the form:

Z =
∫
Dne−Seff(n) =

∫
Dne−Scl(n)

∫
DC̃DW µ∆FP∆Sδ(χ)

× e−(1/2g2)
∫

(C̃µMC
µν C̃ν+W µM̄W

µν W ν+2CνKC
ν +2W µ·KW

µ )

with

MC
µν = −∂2δµν + ∂µn · ∂νn,

MW
µν = −∂2δµν − ∂µn⊗ ∂νn + ∂νn⊗ ∂µn,

QC
µν = ∂µn∂ν + ∂νn∂µ + ∂µ∂νn,

KC
µν = ∂ν(n · ∂νn× ∂µn) + ∂µn · ∂2n× n,

KW
µν = ∂µ(n× ∂2n), (in gauge αg = 1)

and

M̄W
µν := MW

µν + Q̃
C
µsM

C−1
sλ QC

λν ,

C̃µ = Cµ + W s ·QsλMC−1
λµ .

Here, Q̃
C
µs has same form of QC

µs but differentiates to the right objects of MC−1
sλ QC

λν . The
classical action of n including the gauge fixing term is given by

Scl =
∫

d4x

[
1

4g2
(∂µn× ∂νn)2 +

1
2αgg2

(
∂2n× n

)2
]

.

The δ functional is expressed by its Fourier transform

δ(χ) =
∫
Dφe−i

∫
(φ·∂W µ+φ·Cµn×W µ+(φ·n)(∂µn·W µ)).

Integrating over C, W , φ, we finally obtain

e−Seff = e−Scl∆FP∆S

(
det MC

)−1/2( det M̄W
)−1/2( det−Q̃φ

µ

(
M̄W

)−1

µν
Qφ

ν

)−1/2
, (8)

where Qφ
ν = i(−∂µ + ∂µn ⊗ n) and Q̃φ

µ differentiates to the right. We perform the derivative
expansion for the four determinants in equation (8) under the following assumptions

(i) the theory is valid for the momenta p with k < p < Λ (k, Λ are infrared and ultraviolet
cut-off),

(ii) |∂n| � k,

(iii) the higher derivative terms, such as ∂2n are omitted.

The effective action is then given by

Seff =
∫

d4x

[
1
2
(∂µn)2 +

g1

8
(∂µn× ∂νn)2 +

g2

8
(∂µn)4

]
. (9)

For g1 > 0 and g2 = 0, the action is identical to the FSN effective action (1).
In order to get the stable soliton solutions, g2 must be positive [2]. However, g2 is found to

be negative according to the above analysis (see [13]). Therefore we consider higher-derivative
terms and investigate if the model with the higher-derivatives possess soliton solutions.
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4 Search for the stable soliton solutions (1)

The static energy is derived from equation (9) as

Estt =
∫

d3x

[
1
2
(∂in)2 +

g1

8
(∂in× ∂jn)2 +

g2

8
(∂in)4

]
:= E2(n) + E

(1)
4 (n) + E

(2)
4 (n).

A spatial scaling behavior of the static energy, so called Derrick’s scaling argument, can be
applied to examine the stability of the soliton [19]. Considering the map x 7→ x′ = µx (µ > 0),
with n(µ) ≡ n(µx), the static energy scales as

e(µ) = Estt

(
n(µ)

)
= E2

(
n(µ)

)
+ E

(1)
4

(
n(µ)

)
+ E

(2)
4

(
n(µ)

)
=

1
µ

E2(n) + µ
(
E

(1)
4 (n) + E

(2)
4 (n)

)
. (10)

Derrick’s theorem states that if the function e(µ) has no stationary point, the theory has no static
solutions of the field equation with finite density, other than the vacuum. Conversely, if e(µ)
has stationary point, the possibility of having finite energy soliton solutions is not excluded.

equation (10) is stationary at µ =
√

E2/
(
E

(1)
4 + E

(2)
4

)
. Then, the following inequality

g1(∂in× ∂jn)2 + g2(∂in)2(∂jn)2

= g1(∂in)2(∂jn)2 − g1(∂in · ∂jn)2 + g2(∂in)2(∂jn)2

= g2(∂in · ∂jn)2
(

∵ (∂in)2(∂jn)2 = (∂in · ∂jn)2
)

ensures the possibility of existence of the stable soliton solutions for g2 = 0. As mentioned in
the Section 3, g2 should be negative at least within our derivative expansion analysis of YM
theory.

A promising idea to tackle the problem was suggested by Gies [13]. He considered the
following type of effective action, accompanying second derivative term

Seff =
∫

d4x

[
1
2
(∂µn)2 +

g1

8
(∂µn× ∂νn)2 − g2

8
(∂µn)4 +

g2

8
(
∂2n · ∂2n

)]
. (11)

Here we choose positive value of g2 and assign the explicit negative sign to the third term.
In principle, it is possible to estimate the second derivative term by the derivative expansion
without neglecting throughout the calculation.

The static energy of equation (11) with the ansatz (5) is written as

Estt = 2π2a

∫
dη

[
(w′)2

1− w2
+ (1− w2)UM,N (η) +

g1

4a2
sinh η cosh η(w′)2UM,N (η)

+
g2

4a2

[
− sinh η cosh η

[
(w′)2

1− w2
+ (1− w2)UM,N (η)

]2

+
(
coth η + sinh2 η − sinh η cosh η

) (w′)2

1− w2

+
(
sinh η cosh η − sinh2 η

)(
1− w2

)
M2 + 2

{
w(w′)3

(1− w2)2
+

w′w′′

1− w2
+ ww′UM,N (η)

}
+ sinh η cosh η

{
1

1− w2

[
(w′)2

1− w2
+ ww′′ + (1− w2)UM,N (η)

]2

+ (w′′)2
}]]

,
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where w′′ ≡ d2w
dη2 . The Euler–Lagrange equation of motion is derived by

− d2

dη2

(
∂Estt

∂w′′

)
+

d

dη

(
∂Estt

∂w′

)
− ∂Estt

∂w
= 0,

which is too complicated to write down explicitly and hence we adopt the following notation

f0(w,w′, w′′) + g1f1(w,w′, w′′) + g2f2

(
w,w′, w′′, w(3), w(4)

)
= 0. (12)

Here w(3), w(4) represent the third and the fourth derivative with respect to η. The first two
terms of equation (12) are identical to those in equation (6). Unfortunately, we could not find
out stable soliton solutions from equation (12) for any (even in the quite small) value of g2.

From the relation∫
d4x

[(
∂2n · ∂2n

)
− (∂µn)4

]
=

∫
d4x

(
∂2n× n

)2
,

one easily finds that the static energy obtained from the last two terms in equation (11)

Ẽ
(2)
4 =

∫
d3x

(
∂2n× n

)2 (13)

gives the positive contribution. The total static energy is stationary at µ =
√

E2/
(
E

(1)
4 + Ẽ

(2)
4

)
and hence the possibility of existence of soliton solutions is not excluded. And also, the positivity
of equation (13) does not spoil the lower bound (3) of original SFN and the possibility still
remains.

The standard action (1) has a fourth differential order term, but only quadratic in time
derivative. On the other hand, the action (11) involves a term with fourth order in time deriva-
tive. Then, even if the static energy is constructed only by the positive terms, it is in general
not bounded from below. As a result, the stability of the soliton is unclear. In the next section,
we report the basic feature of the higher derivative action and introduce the method to avoid
the problems inherent by applying an example in quantum mechanics.

5 Higher derivative theory

In this section, we make a small detour, i.e., we review the problems in the higher derivative
theory [20, 21, 22, 23, 24] which essentially falls into two categories. The first problem concerns
the increase in the number of degrees of freedom. For example, if the theory contains second
derivative terms, the equation of motion becomes up to the order in the fourth derivative. Thus,
four parameters are required for the initial conditions. If one considers higher-order terms, the
situation gets worse. However, this is not a serious problem for our study because our concern
is existence of static soliton solutions. The second problem is that the actions of the theory are
not bounded from below. This feature makes the higher derivative theories unstable.

We briefly review the Lagrangian and the Hamiltonian formalism with higher derivative called
the Ostrogradski method. We consider the Lagrangian containing up to nth order derivatives

S =
∫

dtL
(
q, q̇, . . . , q(n)

)
.

Taking the variation of the action δS = 0 leads the Euler–Lagrange equation of motion

n∑
i=0

(−1)i di

dti

(
∂L

∂q(i)

)
= 0.
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The Hamiltonian is obtained by introducing n generalized momenta

pi =
n∑

j=i+1

(−1)j−i−1 dj−i−1

dtj−i−1

(
∂L

∂q(j)

)
, i = 1, . . . , n,

or

pn =
∂L

∂q(n)
, pi =

∂L
∂q(i)

− d

dt
pi+1, i = 1, . . . , n− 1, (14)

and n independent variables

q1 ≡ q, qi ≡ q(i−1), i = 2, . . . , n.

The Lagrangian now depends on the n coordinates qi and on the first derivative q̇n = q(n). The
Hamiltonian is defined as

H(qi, pi) =
n∑

i=1

piq̇i − L =
n−1∑
i=1

piqi+1 + pnq̇n − L.

The canonical equations of motion turn out to be

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

.

Thus, we replace a theory of one coordinate q system obeying 2n-th differential equation with
a set of 1-st order canonical equations for 2n phase-space variables [qi, pi].

We consider a simple example including second derivative term [24], defined as

L =
1
2
(
1 + ε2ω2

)
q̇2 − 1

2
ω2q2 − 1

2
ε2q̈2,

where constant ε works as a coupling constant of second derivative term. The equation of
motion is(

1 + ε2ω2
)
q̈ + ω2q + ε2q(4) = 0. (15)

From equation (14), one gets

πq̇ =
∂L
∂q̈

= −ε2q̈, πq =
∂L
∂q̇

− d

dt

(
∂L
∂q̈

)
=

(
1 + ε2ω2

)
q̇ + ε2...q .

Thus the Hamiltonian becomes

H = q̇πq + q̈πq̇ − L

= q̇πq −
1

2ε2
π2

q̇ −
1
2
(
1 + ε2ω2

)
q̇2 +

1
2
ω2q2.

We introduce the new canonical variables

q+ =
1

ω
√

1− ε2ω2

(
ε2ω2q̇ − πq

)
, p+ =

w√
1− ε2ω2

(q − πq̇),

q− =
ε√

1− ε2ω2
(q̇ − πq), p− =

1
ε
√

1− ε2ω2

(
ε2ω2q − πq̇

)
,



8 N. Sawado, N. Shiiki and S. Tanaka

and the Hamiltonian will have the following form by using these variables

H → 1
2
(
p2
+ + ω2q2

+

)
− 1

2

(
p2
− +

1
ε2

q2
−

)
.

The corresponding energy spectra is then given by

E =
(

n +
1
2

)
ω −

(
m +

1
2

)
1
ε
, n,m = 0, 1, 2, . . . . (16)

One can see that in the limit ε → 0 the energy goes to negative infinity rather than approaching
to the harmonic oscillator energy eigenstates.

To obtain physically meaningful solutions, we employ the perturbative analysis where the
solution is expanded in terms of the small coupling constant and the Euler–Lagrange equation of
motion is replaced with the corresponding perturbative equation. The solutions of the equations
of motion that are ill behaved in the limit ε → 0 are excluded from the very beginning [22, 23, 24].

We assume that the solution of equation (15) can be written as

qpert(t) =
∞∑

n=0

εnq(t). (17)

Substituting equation (17) into equation (15) and taking time derivatives of these equations, we
obtain the constraints for higher derivative terms

O
(
ε0

)
equation : q̈0 + ω2q0 = 0,

constraints :
...
q 0 = −ω2q̇0,

....
q 0 = ω4q0. (18)

O
(
ε2

)
equation : q̈2 + ω2q̈0 + ω2q2 +

....
q 0 = 0,

⇒ q̈2 + ω2q2 = 0, (using (18)),

constraints :
...
q 2 = −ω2q̇2,

....
q 2 = ω4q2. (19)

O
(
ε4

)
equation : q̈4 + ω2q̈2 + ω2q4 +

....
q 2 = 0,

⇒ q̈4 + ω2q4 = 0, (using (19)),

constraints :
...
q 4 = −ω2q̇4,

....
q 4 = ω4q4.

Combining these results, we find the perturbative equation of motion up to O
(
ε4

)
q̈pert + ω2qpert = O

(
ε6

)
,

which is the equation for harmonic oscillator.
This perturbative method can successfully exclude the ill behavior of the second derivative

theory. Of course our problem is different from this quantum mechanics example. While the
energy spectra (16) is quantum value, the energy of the soliton is static and classical. Neverthe-
less, the perturbative method may give some hint to tackle our problem. In the next section, we
will apply the method to the action with the second derivative term (11) and explore the stable
soliton solutions.
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Figure 1. The function w(η) for g1 = 0.4,
g2 = 0, 0.05, 0.1, 0.15, 0.2 (the rescaling radial
coordinate x = η/(1− η) is used).
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Figure 2. The energy density for g1 = 0.4,
g2 = 0, 0.05, 0.1, 0.15, 0.2.
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Figure 3. The energy as a function of g2 (g1 = 0.4).

6 Search for the stable soliton solutions (2)
(perturbative expansion method)

As in the case of quantum mechanics, we assume that g2 is relatively small and can be considered
as a perturbative coupling constant. Thus, in analogy of (17), the perturbative solution is written
by a power series in g2

w(η) =
∞∑

n=0

gn
2 wn(η). (20)

Substituting equation (20) into equation (12), we obtain the classical field equation in O(g0
2)

f0(w0, w
′
0, w

′′
0) + g1f1(w0, w

′
0, w

′′
0) = 0. (21)

Taking derivatives for both sides in equation (21) and solving for w′′
0 , we obtain the following

form of the constraint equations for higher derivatives

w
(i)
0 = F (i)(w0, w

′
0), i = 2, 3, 4. (22)

The equation in O
(
g1
2

)
can be written as

(f0 + g2f1)O(g1
2) + f2

(
w0, w

′
0, w

′′
0 , w

(3)
0 , w

(4)
0

)
= 0. (23)
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Substituting the constraint equations (22) into equation (23) and eliminating the higher deriva-
tive terms, one can obtain the perturbative equation of motion

f0(w,w′, w′′) + g1f1(w,w′, w′′) + g2f̃2(w,w′) = O
(
g2
2

)
. (24)

Now equation (24) has stable soliton solutions.
Our results of the estimated function w(η) and the energy density are displayed in Figs. 1

and 2. (In all figures, we show the results for the case of Hopf charge H = 2; N = 2, M = 1.)
The dependence of the total energy on g2 is shown in Fig. 3. The change is moderate with
respect to g2.

7 Summary

In this paper we have studied the Skyrme–Faddeev–Niemi model and its extensions by intro-
ducing the reduction scheme of the SU(2) Yang–Mills theory to the corresponding low-energy
effective model. The requirement of consistency between the low-energy effective action of the
YM and the SFN type model leads us to take into account second derivative terms in the action.
However, we found that such an action including the second derivative terms does not have
stable soliton solutions. This is due to the absence of the energy bound in higher derivative
theory. This fact inspired us to employ the perturbative analysis to our effective action. Within
the perturbative analysis, we were able to obtain the stable soliton solutions.

Our analysis is based on perturbation and the coupling constant g2 is assumed to be small.
However, Wilsonian renormalization analysis of YM theory [13] suggests that the coupling con-
stants g1, g2 (and the mass scale parameter Λ) depend on the renormalization group time
t = log k/Λ (k, Λ are infrared, ultraviolet cutoff parameter) and those are almost comparable.
To improve the analysis, we could perform the next order of perturbation, but it is tedious and
spoils the simplicity of the SFN model.

It should be noted that our solutions do not differ much from the solution of original SFN
model, at least in the perturbative regime. We suspect that an appropriate truncation (such as
“extra fourth order term + second derivative term”) always supplies the stable solutions that are
close to the original SFN model. Thus we conclude that the topological soliton model comprised
of the “kinetic term + a special fourth order term” like SFN model is a good approximation.

Since our results were obtained from numerical study in the perturbative approach, it is
uncertain whether the existence of the soliton is kept for larger coupling constant g2. To confirm
that, we should proceed to investigate next order perturbation, or, otherwise, find some analy-
tical evidence for that. We point out that the perturbative treatment is only used for excluding
the ill behavior of the second derivative field theory. We hope that applying this prescription
does not alter the essential feature of the solutions.

Finally, let us mention the application of the soliton solutions to the glueball. Obviously
this is one of the main interests to study the model and, many authors have given discussions
on this subject [13, 25, 26]. On the other hand, the possibility of the magnetic condensation
of the QCD vacuum within the Cho–Faddeev–Niemi–Shabanov decomposed Yang–Mills theory
have been studied by Kondo [27]. The author claims the existence of nonzero off diagonal gluon
mass MX , which is induced in terms of the condensation of the magnetic potential part of the
decomposition Bµ ∼ (∂µn)× n, as

M2
X = 〈Bµ ·Bµ〉 = 〈(∂µn)2〉.

Throughout our calculation, we scaled out the mass scale parameter Λ in the action (1) but, in
this sense, it should reflect the information of such gluon mass, or the condensation property of
the vacuum. After a careful examination of the value of Λ, we will be able to make a prediction
for the glueball mass.
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