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Aim: Acetylation levels of histones are the result of the balance between histone acetyltransfrases and histone deacetylases activi-
ties, which plays an important role in chromatin remodeling and regulation of gene expression. Histone deacetylases inhibitors such 
as valproic acid, vorinostat have attracted interest because of their ability to induce differentiation and apoptosis of cancer cells. The 
current study was designed to assess the effect of valproic acid in comparison to and in combination with vorinostat on cell growth 
inhibition and apoptosis induction in the human colon cancer SW48 cells. Materials and Methods: The colon cancer SW48 cells 
were seeded and treated with various doses of valproic acid and vorinostat and MTT assay and flow cytometric assay were done 
to determine cell viability and cell apoptosis, respectively. Results: All concentrations of both agents reduced viability significantly 
in a dose- and time-dependent fashion (p < 0.004). Both compounds, either single or combined agents, induced apoptosis signifi-
cantly, whereas the ratio of the apoptotic cells treated with combined agents was more significant than the single. Conclusion: Our 
findings suggest that vaproic acid and vorinostat can significantly inhibit cell growth and induce apoptosis in colon cancer SW48 cells.
Key Words: valproic acid, vorinostat, apoptosis, colon cancer.

Colorectal cancer is currently the third most com-
mon  cancer  in men and the second in women and 
also the fourth cause of cancer death worldwide. The 
incidence rate of the cancer is expected to increase 
by 60% to more than 2.2  million new cases and 
1.1 million deaths by 2030 [1]. Genetic and epigenetic 
alterations are the most causes of human cancer. For-
tunately, epigenetic changes are reversible by drugs 
targeting the epigenome, including histone modifica-
tions and DNA methylation [2].

Epigenetic modifications such as posttranslational 
modification of nucleosomal histones play an impor-
tant role in gene expression in the eukaryotic cells. 
These modifications have a significant role in tumori-
genesis and cancer induction. DNA hypermethylation 
and histone deacetylation are the most epigenetic 
alternations, which lead to tumor suppressor genes 
silencing and cancer induction. Acetylation of histones 
is one of the most important mechanisms of regulation 
of the gene expression [3]. Acetylation of histones 
regulated by two opposing groups of enzymes, in-
cluding histone acetyltransfrases (HATs) and histone 
deacetylases (HDACs) is associated with increased 
transcription. Acetylation levels of histones are the 
result of the balance between HATs and HDACs ac-
tivities, which plays an important role in chromatin 
remodeling and regulation of gene expression. HATs 
add acetyl groups to amino acid of histone proteins, 
whereas HDACs have opposite activity and remove 
the acetyl groups. Histone hypoacetylation induced 

by HDACs activity is associated with gene silencing. 
These enzymes account for as critical regulators of cell 
growth, differentiation, and apoptotic programs [4–6]. 
HDACs have been classified into four classes (com-
prising >  18 isoenzymes) including class I (HDACs 
1, 2, 3 and 8), class II (HDACs 4, 5, 6, 7, 9 and 10), 
class III (sir2 family) and class IV (HDAC11) [7–11]. The 
class I HDACs (1, 2, 3 and 8) and the class II HDAC (4) 
are expressed in the normal colon cell. Class I HDACs 
play a role in promoting colonic cell proliferation. It has 
been demonstrated that Knockdown of these en-
zymes reduces growth of colon cancer cells (HCT116, 
HT29 and SW480). Several studies have demonstrated 
increased expression of the class I HDACs (HDACs 
1, 2, 3 and 8) in colon tumor cells [12–18]. HDAC 
inhibitors (HDACIs) have attracted interest because 
of their ability to induce differentiation and apoptosis 
of cancer cells.

It has been reported that several HDACIs such 
as valproic acid (VPA), vorinostat (suberoylanilide 
hydroxamic acid, SAHA), trichostatin A (TSA) and 
sodium butyrate can induce differentiation, cell cycle 
arrest and apoptosis in colon cancer cell lines in vi-
tro [19–24]. Up to date there was no data on the anti-
proliferative and apoptotic effect of VPA and vorinostat 
on colon cancer cell line. Therefore, we examined the 
effect of VPA in comparison to and in combination with 
vorinostat on viability and apoptosis of colon cancer 
SW48 cell line in the current study.

MATERIALS AND METHODS
Cell line and culturing. Human colon carci-

noma SW48 cell line were obtained from the National 
Cell Bank of Iran-Pasteur Institute and maintained 
in RPMI supplemented with 10% fetal bovine serum 
(FBS), 1% nonessential amino acids, 1% antibiotics, 
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including penicillin G sodium (Sigma, USA), strep-
tomycin sulfate and amphotericin  B (Sigma, USA) 
at 37 °C in 5% CO2 to promote attachment. The cells 
were cultured and exposed to drugs after they reached 
> 80% confluence and routinely observation was done 
for the presence of Mycoplasma. Vorinostat (Sigma, 
USA) was dissolved in DMSO as a 10 mmol/l stock 
solution and diluted in order to different concentra-
tions preparation. VPA was purchased from Sigma-
Aldrich (St. Louis, MO, USA) and dissolved in the 
culture medium to prepare a stock solution, which 
was further diluted with culture medium to yield vari-
ous concentrations of VPA. Other materials, including 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT), trypsin-EDTA, FBS, RPMI-1640, 
Annexin-V-(FITC) and propidium iodide (PI, Becton-
Dickinson, San Diego, CA, USA) were purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). Dimethyl 
sulfoxide (DMSO) was purchased from Merck Co. 
(Darmstadt, Germany).

Cell viability assay. The effect of VPA and vorino-
stat individually and in combination on the cell viability 
was measured by MTT assay. First, the cells were 
seeded into 96-well plates (4 • 105 cells per well) and 

allowed to adhere for 24 h and then culture medium 
was replaced with medium containing different doses 
of VPA (0.5, 1, 5, 10 and 25 μM) and vorinostat (0.5, 
1, 5, 10 and 25 μM) except control groups for differ-
ent time periods, control groups were incubated with 

Fig. 2. Apoptotic effects of VPA on SW48 cells. Significant apoptosis was shown at different time periods (24, 48, and 72 h) in a dose 
dependent manner (*p < 0.001)
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Fig. 1. Effect of VPA (0.5, 1, 5, 10 and 25 μM) and vorinostat (0.5, 
1, 5, 10 and 25 μM) on the SW48 cell viability. The effects were de-
termined by the MTT assay. Data are presented as mean ± SD from 
at least triplicate wells and 3 independent experiments. Asterisks (*) 
indicate significant differences between treated cells and the control 
group. The first column of each group belongs to control group
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DMSO only. After incubation times (24, 48 and 72 h), 
the cells were washed twice with FBS, a medium con-
taining MTT was added and maintained for 4 h and 
finally the formazan crystals were dissolved in DMSO 
and the absorbance was measured at 570 nm. All 
experiments were repeated three times.

Cell apoptosis assay. For detection of cell apop-
tosis, the cells were cultured in 24-well plates at a den-
sity of 4  •  105 cells/well and incubated overnight 
before exposure to medium containing drugs. After 
cell adhesion, the cells treated with VPA (5 μM) and 
vorinostat (1 μM), based on IC50 values, as alone and 
combined for 24, 48, and 72 h. After treatment times, 
all the adherent cells were harvested by trypsinization, 
washed with PBS and resuspended in Binding buffer 
(1× ). Annexin-V-(FITC) and propidium iodide were 
used for staining according to the protocol. Finally, 
the apoptotic cells were counted by FACScanTM flow 
cytometer (Becton Dickinson, Heidelberg, Germany).

Statistical analysis. The data were obtained 
from three tests and are shown as means ± standard 
deviations. Statistical comparisons between groups 
were performed with ANOVA (one-way ANOVA) and 

Turkey test. A significant difference was considered 
as p < 0.05.

RESULTS
Result of cell viability assay. The effects of the 

VPA and vorinostat on the colon cancer SW48 cell vi-
ability were assessed by MTT assay after treatment 
with various doses of the compounds (as mentioned 
above). As can be seen in Fig. 1, the effective doses 
of the VPA and vorinostat that inhibited 50% cell growth 
were 5 μM and 1 μM, respectively. All concentrations 
of both compounds reduced viability significantly 
in a dose-dependent fashion (p < 0.004).

Result of flow cytometric assay. The SW48 cells 
were treated with VPA (5 μM) and vorinostat (1 μM) 
at different times (24, 48 and 72 h) as mentioned 
in Materials and Methods. By flow cytometry, we as-
sessed the ability of VPA and vorinostat, alone and 
combined, to induce apoptosis in colon cancer 
SW48 cell line. As shown in Fig.  2, VPA induced 
significant apoptosis at all experimental time points 
(p < 0.001). Apoptotic effect of varinostat was signifi-
cant as shown in Fig. 3 (p < 0.001). The fraction of the 

Fig. 3. Apoptotic effects of vorinostat on SW48 cells. Significant apoptosis was shown at different time periods (24, 48, and 72 h) 
in a dose dependent manner (*p < 0.001)
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apoptotic cells with combined agents was superior 
to that with the single agents. The percentage of apop-
totic cells is indicated in the Table. Relative analysis 
between VPA and vorinostat treatment groups at diffe
rent times indicated that VPA induced apoptosis more 
significantly than vorinostat. Maximal apoptosis was 
seen in the group, which received VPA in combination 
with vorinostat for 72 h (p < 0.001) (Fig. 4).

Table. Percentage of apoptosis
p-value Apoptosis, % Duration, h Dose, μM Drug

< 0.001 8 24 5 VPA
< 0.001 31 48 5
< 0.001 40 72 5
< 0.001 9 24 1 Vorinostat
< 0.001 10 48 1
< 0.001 38 72 1
< 0.001 46 24 5/1 VPA/vorinostat
< 0.001 51 48 5/1
< 0.001 56 72 5/1
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Fig. 4. Apoptotic effect of VPA and vorinostat on SW48 cells. 
The cells were treated with VPA (5 μM), vorinostat (1 μM) and 
VPA/vorinostat (5/1 μM) for 24, 48 and 72 h. Data are presented 
as mean ± standard error of the mean from at least three diffe
rent experiments. Asterisks (*) indicate significant differences 
between treated cells and the control group. *p < 0.01 as com-
pared to the control group

DISCUSSION
Cancer can be induced by genetic and epige

netic alterations, epigenetic changes such as histone 
deacetylation, DNA methylation and non-coding RNA 
deregulation. Histones deacetylation influence gene 
transcription including down regulation of the several 
tumor suppressor genes [25, 26]. HDACIs have potent 
and specific anticancer activities and have emerged 
as a potential strategy to reverse silenced genes asso-
ciated with cancer [27]. Apoptotic and antiproliferative 
effects of HDACIs such as butyrate, TSA, vorinostat, 
benzamides (MS-275) and VPA on colon cancer 
have been reported by several researchers [28–30]. 
We, for the first time, show that VPA and vorinostat 
(individually and in combination) can inhibit viability 
and induce apoptosis in colon cancer SW48 cell line. 
Similar to our data, it has been reported that vorinostat 
has apoptotic and antiproliferative effects on colon 
cancer HCT116 and HT29 cell lines  [31]. There are 
several reports that indicate inhibitory and apoptotic 
effects of VPA on the other cancers such as Panc1 and 
PaCa44 pancreatic cancer cells [32], human melano-
ma G-361 cell [33], ovarian cancer OVCAR-3 cell [34], 

gastric cancer cell [35], and AML1/ETO-positive 
leukemic cells [36]. As mentioned above, vorinostat 
exerted significant antiproliferative and apoptotic ef-
fect. This effect has been reported by several previous 
works on 320 HSR colon cancer  [37], HCT116 and 
SW480 colon cancer  [38], prostate cancer LNCaP, 
PC-3 and TSU-Pr1 [39], human ovarian cancer 
SK-OV-3, OVCAR-3, TOV-21G, OV-90, and TOV-
112D [40], breast cancer SKBr-3, MCF-7, and MDA-
MB-468 [41]. In the present study, the combination 
of VPA and vorinostat gave a significant increase in the 
apoptotic cells and also VPA had a stronger apoptotic 
effect than vorinostat [32]. HDACIs cause acetylated 
histones to reactivate tumor suppressor genes and 
induce apoptosis in cancer cells.

These compounds act by different mechanisms 
and pathways, including activation of the extrinsic 
and/or intrinsic apoptotic pathways, growth ar-
rest, mitotic cell death and reactive oxygen spe-
cies (ROS)-induced cell death [42]. Regulatory 
mechanisms of action of VPA include HDACs, AKT, 
GSK3 α and β, the phosphoinositol pathway, the ERK 
pathway, the tricarboxylic acid cycle, the OXPHOS 
system, and GABA [43]. VPA can sensitize cells 
to TRAIL/Apo2L-mediated apoptosis by increasing 
expression of DR4 and DR5 and modulates expres-
sion of p21WAF1/CDKN1A [44], a CDK associated with 
cell cycle arrest in G1/S phase, and induce apoptosis 
by an extrinsic pathway involving engagement of the 
caspase-8-dependent cascade [45–48]. Several 
studies have demonstrated that vorinostat can in-
hibit classes I, II and IV, but not the NAD-dependent 
class III enzymes. It can induce histones H3 and 
H4 acetylation associated with the proximal pro-
moter of the CDKN1A gene, decrease HDAC1 and 
Myc, and ROS accumulation in transformed cultured 
cells  [49–51]. Vorinostat decreases the expres-
sion of Bcl-2, Bcl-xL and XIAP and enhances the 
proapoptotic protein expression such as Bax and 
Bak in breast cancer [52]. Taken together, our find-
ing indicated that VPA and vorinostat could induce 
apoptosis in colon cancer SW48 cell line if used 
separately or in combination.

CONCLUSION
Collectively, our report suggests an important role 

of VPA and vorinostat on apoptosis induction and cell 
growth inhibition of colon cancer SW48 cell line. The 
function of these compounds in inducing apoptosis 
is very important since it may provide a new preventive 
and therapeutic strategy for cancer treatment.
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