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ON THE BOUNDARY BEHAVIOR OF CONJUGATE
HARMONIC FUNCTIONS

It is proved that if a harmonic function «w on the unit disk D in C has angular limits on a measurable
set E of the unit circle, then its conjugate harmonic function v in D also has (finite !) angular limits a.e.
on E and both boundary functions are measurable on E. The result is extended to arbitrary Jordan
domains with rectifiable boundaries in terms of angular limits and of the natural parameter. This
result is essentially based on the Fatou theorem on angular limits of bounded analytic functions and
on the construction of Luzin and Priwalow to their uniqueness theorem for analytic and meromorphic
functions. The result will have interesting applications to the study of the various Stieltjes integrals in
the theory of harmonic and analytic functions and, in particular, of the Hilbert—Stieltjes inyegral.

Key words: correlation, boundary behavior, conjugate harmonic functions, rectifiable Jordan curves,
angular limits, boundary value problems.

2010 Mathematics Subject Classification: Primary 30C62, 31A05, 31A20, 31A25, 31B25; Secon-
dary 30E25, 31C05, 34M50, 35F45, 35Q15.

1. Introduction.

First of all, recall that a path in D := {z € C : |2| < 1} terminating at { = ¢/’ € 9D
is called nontangential at ( if its part in a neighborhood of ( lies inside of an angle in
D with the vertex at (. Hence limits along all nontangential paths at ( are also named
angular at ¢. The latter is a traditional tool of the geometric function theory, see e.g.
monographs [1]-[6]. Note that every closed rectifiable Jordan curve has a tangent a.e.
with respect to the natural parameter and the angular limit has the same sense at its
points with a tangent.

It is known the very delicate fact due to Lusin that harmonic functions in the unit
circle with continuous (even absolutely continuous !) boundary data can have conjugate
harmonic functions whose boundary data are not continuous functions, furthemore,
they can even be even not essentially bounded in neighborhoods of each point of the
unit circle, see e.g. Theorem VIII.13.1 in [7]. Thus, a correlation between boundary
data of conjugate harmonic functions is not a simple matter, see also I.LE in [3].

Denote by h?, p € (0,00), the class of all harmonic functions u in D with

27
sup / lu(re'?)|P do < 0.
re(0,1) 0

It is clear that h? C h? for all p > p/ and, in particular, h? C k! for all p > 1.

Remark 1. It is important that every function in the class h! has a.e. nontangential
boundary limits, see e.g. Corollary IX.2.2 in [§].
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It is also known that a harmonic function u in ID can be represented as the Poisson

integral
2m
1 1—r?

21 ) 1—=2rcos(V—t) + 12 7
0

(t) dt (1.1)

with a function ¢ € LP(0,27), p > 1, if and only if u € hP, see e.g. Theorem 1X.2.3
in [8]. Thus, u(z) — ©(¥9) as z — € along any nontangential path for a.e. 9, see e.g.
Corollary IX.1.1 in [8]. Moreover, u(z) — ¢() as z — €0 at points 9y of continuity
of the function ¢, see e.g. Theorem IX.1.1 in [8].

Note also that v € h? whenever u € hP for all p > 1 by the M. Riesz theorem, see
[9], see also Theorem IX.2.4 in [8]. Generally speaking, this fact is not trivial but it
follows immediately for p = 2 from the Parseval equality, see e.g. the proof of Theorem
1X.2.4 in [8]. The case u € h! is more complicated.

The correlation of the boundary behavior of conjugate harmonic functions outside
the classes h? was not investigated at all. This is just the subject of the present article.

2. The case of the unit disk with respect to the arc length.

Here we apply in a certain part a construction of Luzin—Priwalow from the proof
of their theorem on the boundary uniqueness for analytic functions, see [10], see also
[3], Section III.D.1, and [6], Section IV.2.5.

Theorem 1. Let u : D — R be a harmonic function that has angular limits on a
measurable set E of the unit circle OD. Then its conjugate harmonic functions v have
(finite !) angular limits a.e. on E and both boundary functions are measurable on E.

Remark 2. By the Luzin—Priwalow uniqueness theorem for meromorphic functions
u as well as v cannot have infinite angular limits on a subset of D of a positive measure,
see Section IV.2.5 in [6].

Proof. By Remark 2 we may consider that angular limits of u are finite everywhere
on the set E. Moreover, the measurable set E admits a countable exhaustion by measure
of the arc length with its closed subsets, see e.g. Theorem III(6.6) in [11], and hence
with no loss of generality we may also consider that E is compact, see e.g. Proposition
1.9.3 in [12].

Following [3], Section III.D.1, we set, for ¢ € ID,

1 T
Sg—{zEID).|z]>\/2,|arg(g“—z)\<4} (2.1)
and
9 = J S uD. (2.2)
CeEE
where

1
D*:{zE(C: |z| < \/2}
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It is easy geometrically to see that 9® contains E and it is a rectifiable Jordan curve
because 0D\ E is open set and hence it consists of a countable collection of arcs of 9D,
see the corresponding illustrations in [3], Section III.D.1.

By the construction, the radii of D to every ( € E belong to ® and the well defined
real-valued function ¢(() := nlglgo on(C), ©n(C) == u(rp¢), n = 1,2,..., with arbitrary

sequence 1, — 1 — 0 as n — o0, is measurable, see e.g. Corollary 2.3.10 in [13]. Thus,
by the known Egorov theorem, see e.g. Theorem 2.3.7 in [13], with no loss of generality
we may assume that ¢, — ¢ uniformly on E and that ¢ is continuous on FE, see e.g.

Section 7.2 in [14].
Let us consider the sequence of the functions

¥n(Q) == sup fu(z) —@(Q)],  C(EE, (2.3)

ZESCﬁ DZL

where D' = {2 € C: |z — (| < &p} with &, \, 0 as n — oo. First of all, ¢,(¢) = 0
as n — oo for every ( € E. Moreover, the functions 1, (() are measurable again by
Corollary 2.3.10 in [13] because of ¢, ({) = ILII] Ymn () as m — oo where the functions

Grn(Q) = max  Ju(z)—p(Q),  RM=DI\DM™,  CeB, (24)
2€ScN R

are continuous. Indeed, ¥, () coincide with the Hausdorff distance between the compact
sets u(.S¢ N RP) and {p(¢)}, see e.g. Theorem 2.21.VII in [15], and any distance
is continuous with respect to its variables, recall that both functions v and ¢ are
continuous.

Again by the Egorov theorem with no loss of generality we may consider that ¢, — 0
uniformly on E. The latter implies that the restriction U of the harmonic function u to
the domain ®© is bounded. Indeed, let us assume that there exists a sequence of points
zn, € ® such that |u(z,)| > n, n=1,2,.... With no loss of generality we may consider
that z, — ¢ € F because the function u is bounded on the compact subsets of D and
by the construction £ = 39 N JD and F is compact. Moreover, by the construction
of ©, we also may consider that z, € S¢,, (, € £, n = 1,2,... and that ¢, — ¢ as
n — 0o. Consequently, it should be that u(z,) — ¢(¢) because ¥, (¢,) — 0 as {, — (,
see e.g. Theorem 7.1(2) and Proposition 7.1 in [14]. The latter conclusion contradicts
the above assumption.

Further, by the construction the domain ® is simply connected and hence by the
Riemann theorem there exists a conformal mapping w = w(z) of © onto D, see e.g.
Theorem I1.2.1 in [8]. Note that the function U, := U o w™! is a bounded harmonic
function in D and there exists its conjugate harmonic function V in D, ie. F :=
Ui + iV, is an analytic function in D. Let N be a positive number that is greater
than sup |U,(w)| = sup |U(z)|. Then the analytic function g(w) := F(w)/(N — F(w)),

web z€D

w € D, is bounded. Thus, by the Fatou theorem, see e.g. Corollary III.A in [3|, g has
finite angular limits as w — W for a.e. W € 0. By Remark 2 these limits cannot be
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equal to 1 on a subset of D of a positive measure. Consequently, the function F(w)
has also (finite!) angular limits as w — W for a.e. W € 0D.

Let us consider the analytic function f = F o w given in the domain ®. By the
construction Re f = U = u|p and hence V := Im f is its conjugate harmonic function
in ©. By the standard uniqueness theorem for analytic functions, we have that V' = vl|g
where v is a conjugate harmonic function for u in . Recall that the latter is unique
up to an additive constant. Thus, it remains to prove that the function f(z) has (finite
I) angular limits as z — ¢ for a.e. ¢ € E. For this goal, note that the rectifiable curve
09 has tangent a.e. with respect to its natural parameter. It is clear that tangents at
points ¢ € E to 09D (where they exist !) coincide with the corresponding tangents at ¢
to OD.

By the Caratheodory theorem w can be extended to a homeomorphism of ® onto
D and, since 9 is rectifiable, by the theorem of F. and M. Riesz length w=!(£) = 0
whenever £ C D with length € = 0, see e.g. Theorems I1.C.1 and I1.D.2 in [3|. By the
Lindel6f theorem, see e.g. Theorem I1.C.2 in [3], if 9D has a tangent at a point ¢, then

arg [(w(¢) —w(z)] —arg [( —2] - const as z— (.

In other words, the conformal images of sectors in ® with a vertex at { € 09 is
asymptotically the same as sectors in D with a vertex at w = w({) € 9D up to
the corresponding shifts and rotations. Consequently, nontangential paths in D are
transformed under w™! into nontangential paths in ® and inversely at the corresponding
points of dD and 09.

Thus, in particular, v(z) has finite angular limits ¢, (¢) for a.e. { € E. Moreover, the
function ¢, : E — R is measurable because ¢, (() = nh_)rrolo v (€) where v, (¢) 1= v(rn(),

n=1,2,..., with r, - 1—0as n — oo, see e.g. Corollary 2.3.10 in [13]. O
In particular, we have the following consequence of Theorem 1.

Corollary 1. Let u : D — R be a harmonic function that has angular limits a.e.
on the unit circle OD. Then its conjugate harmonic functions v in D also have angular
limits a.e. on 0D and both boundary functions are measurable.

By Remark 1 we have also the next consequence of Theorem 1.

Corollary 2. Let u : D — R be a harmonic function in the class h*. Then its
conjugate harmonic functions v : D — R have (finite !) angular limits v(z) — p() as
z — ( for a.e. { € OD.

3. The case of rectifiable Jordan domains.

Theorem 2. Let D be a Jordan domain in C with a rectifiable boundary and u :
D — R be a harmonic function that has angular limits on a measurable set E of 0D
with respect to the natural parameter. Then its conjugate harmonic functions v : D — R
also have (finite !) angular limits a.e. on E with respect to the natural parameter and
both boundary functions are measurable on E with respect to this parameter.
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Proof. Again by the Riemann theorem there exists a conformal mapping w = w(z)
of D onto D and by the Caratheodory theorem w can be extended to a homeomorphism
of D onto D. As known, a rectifiable curves have tangent a.e. with respect to the natural
parameter. Hence 0D has a tangent at every point ¢ of the set E except its subset &
with length & = 0. By the Lindel6f theorem, for every ( € E'\ £,

arg [w(¢) —w(z)] —arg [( — 2] = const as z— (.

Thus, the harmonic function u, := uow™! given in D has angular limits v«(w) at all
points w of the set E, := w(F \ £) C JD. Consequently, by Theorem 1 its conjugate
harmonic function v, : D — R has (finite !) angular limits 1. (w) at a.e. point w € E,
and the boundary functions ¢, : EF, — R and ¢, : E, — R are measurable. The
harmonic function v := v, ow is conjugate for u because the function f := f, ow, where
fx = U + vy, is analytic. Finally, by theorems of Lindeléf and F. and M. Riesz v has
(finite !) angular limits ¥(¢) = ¥« (w(()) at a.e. point ( € E.

The boundary functions ¢ = p,ow and ¥ = ¥, ow of u and v on F, correspondingly,
are measurable functions on E because ¢(() = nh_)rrolo on(Q) for all ( € E and 9¥(¢) =

nan;own(C) for a.e. ( € E, where the functions ¢, () = u«(r,w(¢)) and ¥,(¢) =

Vi (rpw(C)) with 7, — 1 — 0 as n — oo are continuous, see e.g. Corollary 2.3.10 in [13].
(]

Corollary 3. Let D be a Jordan domain in C with a rectifiable boundary and
u: D — R be a harmonic function that has angular limits a.e. on D with respect to
the natural parameter. Then its conjugate harmonic functions v : D — R also have
(finite !) angular limits a.e. on OD and both boundary functions are measurable on E
with respect to the natural parameter.

Remark 3. These results can be extended to domains whose boundaries consist of
a finite number of mutually disjoint rectifiable Jordan curves (through splitting into a
finite collection of Jordan’s domains !).

The established facts can be applied to various boundary value problems for harmonic
and analytic functions in the plane, see e.g. [16]-[19].
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B. . Pszaunos

O TPAaHUYIHOM IIOBE€EHHUU COIIPA>KEHHBbIX FAPpMOHNYECKHUX (byHKI_lMﬁ.

JlokasbiBaeTcst, 9TO €C/iM TapMOHUYECKasi (PYHKIMS U, 3aJaHHas B €UHUIHOM Kpyre [) KOMILIEKCHOi
mrockoctu C, mMeer yryioBble Ipeesibl HA M3MEPHMOM MHOXKeCTBe F eIMHUIHON OKPYKHOCTH, TO
ee COMpsizKEHHAas TapMOHWYecKass PYHKIUs v B [) Tak»Ke MMeeT yIJIOBbIE Mpeesbl M.B. Ha F u 0be
rpannyHble (OYHKIUU I1.B. KOHEYHBI U U3MepUMbl Ha F. 3aTeM 3TOT pe3yJjbraT PacHpOCTPAHSIETCS Ha
MIPOU3BOJIbHBIE YKOP/IAHOBBI 00JIACTH CO CIPSMJISIEMBIMI TPDAHUIAMU B TEPMHUHAX YIJIOBBIX IPEJIEJIOB
OTHOCHUTEJILHO €CTECTBEHHOr0 nmapameTrpa. Pe3ysnbrar cyniecTBeHHO OcHOBBIBaeTcs Ha TeopeMme Dary 06
YIJIOBBIX IIpEJIejIaX OTPAHUYEHHBIX aHAJUTUIECKNX PyHKIu n KoucTpykimnu Jlysuna u [IpuBasosa k
UX TeOpeMe eIMHCTBEHHOCTH [IJIs aHAJIUTUYECKAX U MepOoMOpPMHbIX dyHKIWmil. PesynapraTr Oymer numers
WHTEPECHBbIE TPUJIOXKEHUsT K M3YIE€HUI0 PA3JINIHbIX HHTerpasoB CTHITbECa B TEOPUNM TAPMOHIMIECKIX

1 aHaAJIUTUYICCKUX (byHKI]‘I/Iﬁ u, B 94aCTHOCTU, UHTETrpaJIa FI/IJIb6epTafCTI/IJITbe(Ia.

Katouegbie €a08a: KOPPEAAUUS, 2PAHUMHOE NOBEOEHUE, COMPANCEHHDBIE 2aPMOHUYECKUE PYHKUUU,

CNPAMAAEMDLE HCOPIAGHOBDL KPUBDIE, Y2A06ble MPedebl, Kpaesvie 3a0ayu.

B. 1. Pazanos

IIpo rpanuyny nmoBeiHKY IIOB’sSI3aHUX rapMOHIMHUX (yHKIIiH.

JoBouThCs, 10 AKIO rapMOHiHA DYHKITIA U, [0 38/1aHa B OJUHHIHOMY KOJIi [) KOMIIJIEKCHOT TIJIONTHAHI
C, mae KyTOBi Meki Ha BUMIpHOI MHOXKWHI F OJUHUYHOTO KOJIa, TO 11 CITOJTyYeHa TapMOHIiTHA (DYHKITisT
v B D Takok mMae KyToBi Mexi 1.B. Ha F i 06uaBi rpanuyHi ¢yHKIIT 1.B. KiHIleBi Ta BuMipHi Ha F.
ITorim 11€it PE3yIBTAT MOMUPIOETHCS HA TOBLIBHI YKOPIAHOBA 00JIACTI 3 TPAHUIISIMHE, IO CIIPSIMJISIOTHCS
B TepMiHaxX KyTOBHUX MEXK II[0JI0 IIPUPOJIHOIO Hapamerpa. Pe3ybraT iCcTOTHO I'PDYHTYEThCS Ha TeopeMmi

®PaTy 1po KyTOBi MexK1 oOMeKeHHX aHaJITHIHUX GYHKHiR Ta KoHcTpykiil Jlysina i IIpusasosa no ix
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TeopeMi €ruHOCTI It aHAIITHYHUX 1 MepomopdHuX GyHKIiH. Pesynbprar 6yne maTn 1iikasi 1onaTku
J10 BUBYEHHsI pizuHux interpasiB CrinThbeca B Teopil rapMoHiitHuX 1 aHamiTuaHrX (DYHKIIH 1, 30Kpema,

inTerpasa ['inebepra—CrinThECa.

Kna104081 cno6a: Kopessyis, epaHuuHa NosediHka, No6 A3aHT 2aPMOHITHT GYHKYIT, ocopdano6i Kpuei,

WO CNPAMAAIOMBCA, KYMOBL 2DAHUYT, KPATos8l 3a0a4i.
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