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A new type of billiard is introduced — the one with chaotic beams dynamics. The
dynamics of dumbbell-like polymorphous billiards family is studied. The chaotic behaviour
of the beams and their uniform stationary distribution are proved. The chaotic properties
found let one use polymorphous billiard in physical applications.

ITpennosxkeH HOBBI THUI OUJIMapa ¢ XAOTUUECKOI NUHAMUKOM Jydeii. VsyueHa fuHaMuU-
Ka ceMeiicTBa MoJUMOP(HBEIX OuanuapnoB B hopMe ranrenu. [JoKasaHo XaoTUUYeCcKoe IOBeJe-
HUe Jyuell U WX pPaBHOMepHOe CTAIMOHapHoe pacmpepeseHne. OOHapyKeHHBIE XaOTHUUYECKUe
CBOIICTBA ITO3BOJIAIOT MCIOJb30BATH HOJIUMOPMHEIN OWUJIMap] B PasIUUHBIX (DUBUUECKUX

IIPUJIOKEeHUAX.

Billiards, i.e. systems with elastic or
mirror reflections, occupy the central posi-
tion in the deterministic chaos theory and
have numerous physical applications [1].
Chaotic billiards, in which beams dynamics
is everywhere chaotic, have won a special
popularity. Close trajectories in such bil-
liards exponentially quickly diverge in the
phase space and mix up. The most well-
known among the chaotic billiards are dis-
persing Sinai billiards [2] and defocusing
Bunimovich billiards [3]. The paper intro-
duces a new type of chaotic billiard — poly-
morphous billiard. Unlike the known ones,
it contains dispersing as well as focusing
regions of the boundary and has no neutral
components. Its characteristic phase dynam-
ics (at control parameter changes) is studied
and Lyapunov exponent as well as invariant
reflections density on the boundary are calcu-
lated by the example of the simplest specimen
of this family - dumbbell-like billiard.

Let us smoothly join (so that the tangent
has no discontonuities) an even number of
arcs taken from one circle to get a closed
curve. We shall call the billiard limited by
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such a curve polymorphous. Its boundary is
formed by the arcs of the same circle and
has everywhere constant curvature to sign.
Some examples of such billiards one can see
in Fig. 1. The simplest polymorphous bil-
liard is a dumbbell-like billiard, the bound-
ary of which is formed by ares of four cir-
cles. A smaller number of arecs is impossi-
ble, otherwise the smoothness of the
boundary obtained would have been broken.

To study the "dumbbell” dynamiecs, let us
use geometro-dynamical approach [4, 5], in
which beams dynamics is described in a spe-
cial symmetric phase space. Let us chose
angle y between the axis, connecting the
centres of the convex components of the
border and the beam, drawn to the point of
contact between the convex and concave
components (Fig. 1) as the control parame-
ter of the dynamic system. This angle g
corresponds to the width of the middle of
the dumbbell. It is changed from =n/2 to
n/6. At there is no narrow middle and we
have a billiard in a circle instead of the

dumbbell one. At y=rn/3 the circles corre-
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Fig.1. Examples of polymorphous billiards.
Above — two dual (relative to the change of
all the convex components for concave and
vice versa) polymorphous billiards of 3 order,
formed due to 6 disks joining. Below — "dumb-
bell” billiard and its control parameter — angle y.

sponding to the convex parts of dumbbell
boundary, contact (inside of the billiard). At
¥ =n/2 we have the most symmetric configu-
ration. At y = n/6  the middle reaches its
maximum and billiard falls into two ones.
Fig. 2 shows the phase portrait of the
"dumbbell”, the control parameter chang-
ing. When the narrow middle appears, the
beams dynamies in the billiard is always
chaotic. This is also confirmed by Lyapunov
exponent dependence, shown in Fig. 3. At
all the values of the control parameter (ex-
cept the integrable case of a billiard in a
circle at ¥y = n/2) Lyapunov exponent is
strictly positive. Angle y increasing, in the
phase space hollow zones — lacunas — ap-
pear. They correspond to the classically for-
bidden beams in the region of geometrical
shadow of the billiard. When the middle
gets larger, the volume of lacunas in-
creases. Lacunas play the part of topological
obstacles in the phase space. Near them the
phase cascade has discontinuities. As a re-
sult, its chaoticity increases with the in-
crease of lacunas volume. This can be seen
on the graph of the Lyapunov exponent
(Fig. 3). At y =n/3 the exponent reaches its
maximum, because total length of dispers-
ing components (the reflection from which
causes trajectories dispersing) of the bound-
ary is maximal at this value. With further
extending of the middle the lacunas volume
increase is accompanied by the reducing of
scattering components relative length. So
Lyapunov exponent decreases. When the
middle is about to reach its maximum at
¥ =7/6 it tends to a finite value. Lacunas
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Fig. 2. Geometrical (above) and phase (below)
portrait of "dumbbell™ billiard with its mid-
dle increase at y = n/2; x = 1.569; x = 1.552;

x=mn/3; 1 =m/2; x = n/6.
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Fig. 3. The dependence of Lyapunov exponent
of the "dumbbell” on the control parameter
(above). Stationary density of reflections f(x)
on the billiard boundary (below). The full length
of the billiard boundary is normalized to one.

overlapping in the phase space corresponds
to intermediate value y = n/3 (equidistant
from points y = n/2 and y = n/6). In the
phase space there appears one common re-
gion of forbidden movement instead of two
isolated lacunas.

It is convenient to describe the statistic
properties of the "dumbbell” with stationary
density of reflection about the billiard bound-
ary [5]. Numeric calculations have shown that
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here it remains constant (Fig. 8), as well as
in the case of billiard in a circle. This is
obviously connected with the constancy of ab-
solute curvature for the given billiard. Beams
visit the billiard’s boundary with approxi-
mately equal frequency. So, in the asymptotic
limit they are uniformly distributed in the
phase space as well.

One should expect analogous behaviour
of the beams in polymorphous billiard of
arbitrary form. The chaotic properties
found let one use polymorphous billiard in
applications. In particular, "dumbbell” form
can be used for atomic [6], microwave [7] or
semiconductor billiards [8]. Chaos peculiari-
ties in polymorphous billiards can also in-
fluence the character of light pass in optic
nanoceramics microclusters, formed due to
coagulating of ball-like nanoparticels etc.

References

. G.M.Zaslavsky, R.Z.Sagdeev, Introduction to
nonlinear physics. From pendulum to turbu-
lence, Nauka, Moscow (1988) [in Russian].

. Ya.G.Sinai, Doklady AN USSR, 153, 1261
(1963).

. L.A.Bunimovich, Chaos, 1, 187 (1991).

. S.V.Naydenov, V.V.Yanovsky, A.V.Tur,

Pis’ma v Zh. Eksper. Teor, Fiziki, 75, 499
(2002).

. S.V.Naydenov, V.V.Yanovsky, Functional Ma-
terials, 8, 27 (2001).

. V.Milner, J.L.Hanssen, W.C.Campbell, M.G.Rai-
sen, Phys Rev. Lett., 86, 1514 (2001).

. Alt H., Graf H.D., Hofferbert R. et al., Phys.
Rev. E, 54, 2303 (1996).

. K.-F.Berggren, dJ.Zhen-Li, Chaos, 6, 543
(1996).

IMonimopguui 6inbapm
3 XaO0THYHOI JHHAMIKOIO ITPOMEHIB

C.B. Haiidvonos, IO.H. Macnoecvrkuii, B.B. Anoeécvrxuii

3aIpoONOHOBAHO HOBHUII THII OiIbApPAY 3 XaOTHYHOI AHMHAMiIKOIO IpoMeHiB. BuBueHo
IUHAMIRY paxy mouaiMopdHux OinbapxaiB y ¢opmi ranTesi. [JoBeneHO XaOTUUHY IIOBEIiHKY
IPOMEHIB Ta PiBHOMIpHiCTH IXHBOrO CTAI[iOHAPHOrO po3nominy. Bunaligeni xaoTuuHi BiracTu-
BOCTi J03BOJISAIOTh BUKOPHCTOBYBATH HOJNIiMOP(MHUII Oinbapa y pisHux (PismuyHHX cucTeMax.
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