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ADAPTIVE STABILIZATION OF SOME
MULTIVARIABLE SYSTEMS WITH NONSQUARE GAIN
MATRICES OF FULL RANK

Introduction. The paper states and solves a new problem concerning the adaptive stabiliza-
tion of a specific class of linear multivariable discrete-time memoryless systems with non-
square gain matrices at their equilibrium states. This class includes the multivariable systems
in which the number of outputs exceeds the number of control inputs. It is assumed that the
unknown gain matrices have full rank.

The purpose of this paper is to answer the question of how the pseudoinverse model-
based adaptive approach might be utilized to deal with the uncertain multivariable memory-
less systemif the number of control inputs is less than the number of outputs.

Results. It is shown that the parameter estimates generated by the standard adaptive
projection recursive procedure conver ge always to some finite values for any initial values of
system’ s parameters. Based on these ultimate features, it is proved that the adaptive pseudo-
inverse model-based control law makes it possible to achieve the equilibrium state of the
nonsquare system to be controlled. The asymptotical properties of the adaptive feedback
control system derived theoretically are substantiated by a simulation experiment.

Conclusion. It is established that the ultimate behavior of the closed-loop control sys-
tem utilizing the adaptive pseudoinver se model-based concept is satisfactory.

Keywords: adaptive control, multivariable system, discrete time, feedback, pseudoinversion,
stability, uncertainty.
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INTRODUCTION

A long-standing problem of the optimal controller design for multivariable systems
has been solved by using different approaches including the |, optima control ap-
proach[1, 2]. It remains the important problem in the modern control theory [3-5].

Based on the well-known interna model principle, multivariable control
problem was first approached in the paper [6]. Within the framework of this
principle, the so-called inverse model approach seems to be perspective to deal
with improving MIMO (multi-input multi-output) feedback controls. Since the
pioneering work [7], the problem of inversion of linear time-invariant MIMO
systems has attracted an attention of severa researches; see, e.g. [8-10]. Last
time, a significant progressin this scientific area has been achieved in [11-14].

Theinverse mode approach to ensuring perfect steady-state regulation of linear
discrete-time memoryless multivariable systems was first advanced in [15]. Similar
approach has also been discussed in [10] dealing with the problem of minimd inver-
sion. However, the inverse mode approach is quite unacceptable if the MIMO sys-
tems to be controlled are nonsquare.

It turned out that the so-called pseudoinverse (generalized inverse) model
approach first proposed in the paper [9] can be exploited to cope with the non-
inevitability of nonsguare system. Recently, this approach was extended
in [16-19] for controlling a wide class of discrete-time memoryless multivari-
able systems. In particular, in [16] it was first established that pseudoinverse
model-based controller for the steady-state regulation of the MIMO systems
having singular or nonsguare gain matrices is indeed optimal. But such control-
ler can be implemented if system parameters are known a priori. In the case of
the parameter uncertainty, the nonadaptive controller employing a fixed linear
pseudoinverse model can be shown to be acceptable to ensure the robust stability
of multivariable closed-loop systems containing uncertain linear and some
nonlinear memoryless plants [17-19]. Nevertheless, this controller may not be
suitable if parameter uncertainty is great enough.

An adaptation of control law is known as some universal concept to deal
with uncertain systems. Results obtained within the framework of adaptive con-
trols were summarized in many books [20-27], etc. A key question in these con-
trols concerns the stability of resulting systems, i.e. the boundedness of the con-
trol input and output signals [20, 21]. In order to resolve this important question,
two different tools were independently advanced in above two books. Namely,
the so-called Frequency Theorem was exploited in [20, Theorem 4.17.3] to es-
tablish the ultimate boundedness properties of linear adaptive control systems
including multivariable plants with square gain matrices, whereas the so-called
Key Technical Lemma of [21, item 6.2] was used to derive such properties in
MIMO case where the number of outputs does not exceed the number of control
inputs, see [21, subitem 6.3.6]. Unfortunately, these tools seems to be not admis-
sible to an adaptive nonsguare case. To the best of author’s knowledge, there are
no theoretical results concerning adaptive controls of these MIMO systems
while they may appear in practice [21, p.141].

The purpose of this paper is to answer the question of how the pseudoin-
verse model-based adaptive approach might be utilized to deal with the uncertain
multivariable memoryless system in which the number of its output exceeds the
number of control inputs.
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PROBLEM STATEMENT

Let

Yo =BUy, (1)
be the difference equation of an static (memoryless) plant that is some MIMO
discrete-time system to be stabilized. In this equation, y. =[y®,...,y™]" and
u, =[u®,...ul”1" areits mdimensional output and r-dimensional control input

n o1t

vectors, respectively, at the nthtimeinstant (n=1, 2,...), and

p™ ... p™
b™ ... b™
denotes the time-invariant mxr gain matrix.
Consider a nonsquare system, where
r<m, ©)

i.e., where the number of output variables y" (1<i < m) exceeds the number of

control variables u(" (1< j <r).
Suppose that B is some unknown matrix of full rank meaning that
rank B = min{r, m}. Dueto (3) we have

rank B=r. (4)
Introducing the vector y° =[y°® ..., y*™]" whose components are the de-
sired output variables (the given set-points for outputs), define the current ith
output error ) as

g =y -y, i=1...m (5)
Then the output error vector will be given by

& =Y"-V,. (6)

It is assumed that the dlements b™ (i=1,...,m, j=1...,r) of B in (2
are unknown a priori. Moreover, the bounds on these elements are assumed to

be unknown (contrary to [18, 19]) and it is essential.
The problem stated below is as follows. Based on the available observations

of e,,€,4,...,€ given by (6), devise an adaptive controller of ageneral form

Uy =U, (&), 81, &), (7)

such that the closed-loop control system containing the uncertain plant (1) and
the feedback (7) will be stable. More specifically, we require the sequences
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{u}=upu,... and {y,}=V¥, ¥,... to be bounded uniformly
(u}er . {y,}er.,) andfor any initia conditions to achieve

e U Yo 5> ¥ (8)

n n—o0

u

where the pair (u®, y®) with y® = Bu® defines the equilibrium state of the feed-
back control system (1), (6), (7).

Remark 1. Note that it is not required for the errors €, ..., &™ given by
(5) to be asymptotically equal to zero. In fact, m zero errors cannot be achieved
simultaneously except a unique case when y° € R(B), where R(B) denotes the
so-caled range of B (the definition of 9R() can be found in [28, Exercise

2.8.6]). Thus without less of generality we assumethat y° ¢ R(B).

ADAPTIVE CONTROLLER DESIGN

Suppose that B is known. Then the pseudoinverse model-based control law of
theform

u,=u,,+B"e, 9)
advanced in [16] can here be chosen. In this equation, B* specifies the so-called
pseudoinverse matrix given by [28, Theorem 3.4]

B* =!Siir3(BTB+8lr)‘lBT, (10)

where |, denotestheidentity qxq matrix.

Note that under conditions (3), (4) on B, instead of (10), a very simple
formula

B*=(B"B)'B' (11)

may be employed to calculate B* for given B; see[28, Exercise 3.5.3].

Following to the standard identification approach, we will design an adap-
tive control by replacing the unknown matrix B in (9) by its suitable estimate
B, updated at the nth time instant. Then the control law takes the form

u, =u,,+Be, (12)
where
b .. b
B,=| -+ o e | (13)
™ ... p™
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To derive the estimation agorithm for updating B,, we first define the ith
current estimation error 8 given asfollows:

80 =g _el 1 pOTyy . (i=1,...,m). (14)

In these expressions, b™™ =[b™, ..., b{"] istheith row of B, selected from (13),
and the notation Vu, =u, —u,_, isused.

Remark 2. By virtue of (1) together with (8), (5), it follows that if
b =b®, where b®T =[b™, ..., b™] denotestheith row of B then

s _g (15)

will be ensured. Based on (15) define aset T, of possible s under which the

estimation errors are equal to zero for given observable e, e, Vu_,. Obvi-
ously, I',, represents the hyperplane

r,={b”: e’ -e” +b"'Vu, =0 cR' (16)

belonging to the r-dimensional Euclidean space R'. It is not hard to see that
b er, foral n=12,.... O

Now, similar to [21, sect. 3.3], we will choose the adaptation agorithm as
the recursive estimation procedure

=(0)
b =p® 4@ & gy =1 m), 17
n h-1t¥n Co+||vun71”2 n-1 ( ) ( )

where ¢, isan arbitrary sufficiently small positive constant (c, <<1) needed to
avoid the possibility of division by zero, and y" is a scalar possibly time-
varying multiplier (in contrast to Equation (3.3.19) of [21]) satisfying

0<yV <yP <30 <2, (18)

This procedure describes the so-called projection algorithm which is a'so known
in the literature as the normalized | east-mean-squares algorithm [21, p. 52].
There is a simple geometrical interpretation of (17), (18) (in terms of or-

thogonal projection of vector b{"; onto the hyperplane T, represented by (16) if
v =1 and ¢, =0). Itisgivenin Fig. 1, where admissible b{’s for y! € (0, 2)
are also shown.

Remark 3. In order to do not deal with the possible division by zero, in-
stead of (17), other estimation algorithm

b’y it [[Vu, . [|=0
b = g : (19)

b, +yy —"——wVu,, otherwise
VU, |l
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can also be proposed as the adaptive estimation procedure. This algorithm repre-
sents the dightly modified well known Kaczmarz' s algorithm who proposed it in
1937 for solving a set of linear equations (a trandation of his original work can
be found in the recent paper [29]). O

Thus, the agorithm (17) (or (19)) together with (16), (18) leads to forming
the estimate matrix B,, given by (13). It turnsout that it is possible to ensure

rank B,=r Vvn=12,... (20)
by suitable choice of y{’s from [y",7'] with arbitrary numbers i =iy, ..., i, such
that 1<i, <...<i, <m To substantiate this fact, consider the so-called r xr sub-
matrix B,[i,...,i; |1 ...,r] of B, congsting of its r rows with the numbers

iy, ..., 1, and of dl columns (the definition of some submetrix of an arbitrary P and
itssymbol notation P[-|-] have been taken from [30, part 1, item 2.2]).

Following to [20, item 4.2.2] it can be shown that if y©) [y’,y"] then the
requirement rank B [i,,...,i, |1...,r] =r can aways be satisfied because

det B,[iy,....i, |L...,r] =0

may take place at some isolated y(s. Thereby, the condition (20) can be met.
This makes it possible to calculate B. by

B, =(ByB,) "B, (21)

similarly to (11).

Fig. 1. Theagorithm (17), (18) as an orthogonal projection process
for the two-dimensional case (r = 2)
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Fig. 2. Configuration of adaptive control system

The choice of v completes the synthesis of the adaptive control agorithm

determined in the expressions (12), (17) together with (6), (13), (14), (18) and
(21) in full detail. To implement this algorithm, the adaptive pseudoinverse
model-based control system is designed as shown in Fig. 2.

As it is seen, the controller of this system contains the discrete integrator
summing the increments

vu,=B'e, (22)

from O to n at each nth time instant and giving

n
u, = kZ:(;Vuk

(in accordance with (12)).

ASYMPTOTIC BEHAVIOR OF ADAPTIVE FEEDBACK CONTROL SYSTEM

To study the ultimate behavior of the adaptive control algorithm (12), (17) to-
gether with (6), (14), (21), the preliminary results formulated in [21, Lemma
3.3.2] are needed. From these results we can derive the following asymptotic
properties:

(i) the scalar variables V" :=||b® —b{" || are the Lyapunov function of the
algorithm (17) meaning

v <v®  vi=1..,m;
(ii) the sequences {b{"} satisfy

b - | >0 as n—oow Vi=1..,m;
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(i) there exist the limits

G
lim =0 Vi=1....m. (23)
N (Co+ || VU, 4 7)Y

With the foregoing properties (i) — (iii), the following lemma can be shown
to bevalid.

Lemma. For the algorithm (17) together with (14) and subject to (18), it
follows that:

(a) the current estimate B, of unknown B remains always upper bounded
implying
B, l|l<wo Vn;
(b) the matrix sequence {B,} satisfies
" Bn - Bn—l " now >0;

(c) the zero limit

& |

— = = 24
et VU | &9

isachieved, where €, representsthe estimation error vector defined as
&=[&"....8"T", (25)

and ¢, =cy%.

Proof. Part (a) follows from the property (i) and the definition (13) of B,.

Part (b) holds due to the property (ii).
To prove part (c) we can write

& Il
=0, 26
N> (Cort || VU )1 9

using (23) and the definition (25) of &,. Since (h, + h,)"2 <h’? + h}'? for any
numbers h;, h, >0, theinequality

e ll Y
(Co+IVu, 4 ”2)1/2 C+[IVu,, |l

with ¢, =c¥'? isvalid. Taking this inequality into account, due to (26) we im-

mediately obtain (24). O
Now, we are able to present some basic result as
Theorem. The adaptation procedure (17), (14) has the following ultimate

property:
lim |, =0, @
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Proof. First, recaling that e, =[e, ..., e{™]", dueto (13), (14) we obtain
é‘n =6, —6 1t Bn—lvun—l' (28)

Substituting (28) into (24) gives

" €61t Bn—lvun—l " =0.

S @)
By virtue of (22), the expression (29) can then be rewritten as follows:
&= (m=BuBies )
N> G+ VU, |l
Consider the equation
e, —e.,=-BVvu,, (31)

produced by (1) together with (6). Using this equation, represent (28) and (29) in
theform

é~n =(B.1 - B)Vu,4, (32

||m ” (Bn—l - B)Vun—l ” — 0
e O || Vi |l

(33)

Itisclear that if |[Vu,, || tendsto O as n goesto infinity, then (33) isaways
satisfied. Assume that lim sup,, . [Vu,_, ||=c0. To study this case, write
. [\
e 146 /| VU ||

0, (34)

dividing the numerator and the denominator of (33) by ||Vu,,, ||. Inthisexpression,
vu, , =Vu,, /| Vu,_, || denotesthe unit vector of the samedirectionas Vu,, ;.

It is not hard to establish that when B, ; # B and sup, .., I VU, || tendsto
oo then zero limit (34) will be satisfied if and only if

VUn TN(anl - B)1 (35)

where the notation X(P) of the null-space of an arbitrary matrix P taken from

[28, Exercise 2.8.6] has been used.
By definition of X(-), it followsthat (35) implies aso that

Vu, ———>N(B, ;- B) (36)

becomes the necessary and sufficient condition to achieve the limit (33) for any

{Vu,}. Taking (34) in to account, due to (32) which may be rewritten as
lim{|(B,, -~ B)Vu, [I=0,

result (27) follows. O
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Further, the following proposition is advanced.
Proposition. If the adaptation agorithm (17) together with (14) and with y®
chosen asin (18) is applied to the MIMO system (1), then there exigt afinite limit

limB, =B, (IIB, [l<). (37)

This proposition is based on the observation that each {b{"} isthe so-called
Fejer's sequence because b(" is pointwise closer than b, to the intersection

ﬂl“wl of al the hyperplanes T',s defined in (16) (since they contain the point

v=n
b®, thisintersection is non-empty set).

Notice that, in this proposition nothing has been said about the convergence
{B,} totrue B, and it not necessary, in principle.

By virtue of (27) and (37), from the definition (28) of €,, it follows that

our time-varying control system becomes asymptotical close to a time-invariant
system described by

en - (I m Boo B; )en—l = 0m (38)

T

a n—ow, where 0, :=[0,...,0]' denotes the r-dimensional zero vector.
%,_/

r

Since (38) produces

e

n

=e,, Wwith|e,|<w

for any integer positive n and for any finite || e, || <o [16, 18], according to
[31], it can be concluded that the adaptive control system given in equations (1),
(6), (12) hasthe following main ultimate properties:

D limlie, -, l=0; (39)
thereis afinite limit

2) lime, =e, (lle, [l<=). (40)

Using the fact that B isthe matrix of full rank (see (4)), from (31) we derive
Vu,,=-B"(e,-¢€,,)
to establish
VU, 1B 16, =y Il (1)
Dueto (39) from (41) it follows that

” vun71 ” TO (42)
By (40) and (42) we conclude that {y,} and {u,} will go to the equilibrium
state (u®, y®) with y®=y° —e_ and u® = B*y® asntendsto infinity.
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Hence, the problem (8) stated in this paper will be solved.
Comment. It can understand that u® may be specified by solving the vector
equation
B;Bu®=B;y’ (43)

yielding by the condition
B (¥° ~ BU, ) —5—0,
%
under which the equilibrium state should asymptotically be achieved.

A SIMULATION EXAMPLE

To illustrate how the adaptive pseudoinverse model-based control agorithm
performs, a simulation of the closed-loop system consisting of the nonsquare
memoryless MIMO system (1) (the plant) and of the adaptive controller de-
scribed in equation (6), (12), (17) together with (13), (14), (21) was conducted.
The system to be stabilized at an equilibrium state was given by
02 14
B={08 24|

11 05

with the matrix B of the full rank (rank B=2).
The desired output vector y° was taken as y°=[2,7,3]" to ensure

y° ¢ R(B). The duration of the simulation experiment was chosen as long as

adaptation of the controller parameters continues.
Table 1 sets out the true system parameters and their initial estimates.
Results of the simulation experiment are presented in Figs. 3 to 5. Fig. 3

shows how the estimate vectors b{” (i =1,2,3) move to their final b{". We
can see that they differ from b"). Thesefinal estimates given in Table 1 yield

5.83 9.63
B, =| 468 8.07|
224 217
Table 1. System parameters

Parameters b b b b® peY b
True value 0.2 14 0.8 24 11 05
Initial value 50 20 30 40 10 10
Final value =583 =9.63 =468 =807 =224 =217
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e & 8

3)

b

—
10 6°7

Fig. 3. Trajectories of adaptive estimation processes. (a) Vectors br(ll); (b) Vectors bf]z);
(c) Vectors b,§3);

0 10 20 n 40 50
Fig. 4. Norm of estimation error vector

From Fig. 4 it is seen that the norm of the estimation error €, convergesto 0 as
n— oo as predicted by the theorem above established. Fig. 5 shows the input control
varigbles ul’  (i=1,2) and the output varisbles y" (i =1,2,3). It is seen from
Fig. 5b that the performance of the adaptive controller is satisfactory because this con-
troller is able to stabilize the output vector y,, & someultimate y, given by

y, =[2.99,5.88,2.75]"

as n tends to infinity. Namely, this vector specifies the equilibrium state of the
adaptive control system: y®=1y_.
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Fig. 5. Systems variables: (a) Control inputs ur(]j); (b) Outputs yr(,i) (solid lines)
and desired value y°(i) (dashed lines)

By solving (43) we numerically determine
u® =[1.634,1.905]"

that is the same as observed in the simulation example (see Fig.5a).
We also see that athough the equilibrium state is asymptotically achieved,

there is a difference between the components y°®, y°® | y°® of desired output
vector y° and their ultimate values y®, y? | y®  respectively, if y° ¢ R(B).

o ! 0

CONCLUSION

This paper shed light on the adaptive pseudoinverse model-based approach to
deal with the stabilization of uncertain nonsguare memoryless MIMO systemsin
which the number of the outputs exceeds the number of their control inputs. It
ensure the asymptotical stabilization of such systems at equilibrium states for
any initia estimates of system’s parameters. A simulation experiment has dem-
onstrated a good performance of these systems.
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AJIATITUBHA CTABUIIBALIA AEAKUX BATATOBUMIPHUX CUCTEM
3 [IPAMOKYTHUMU MATPULSAMUA KOE®IICHTIB IIJCUJIEHHA
I[TOBHOI'O PAHI'Y

Bemyn. Y cTaTTi HOCTaBICHO Ta PO3B'S3aHO OIHY HOBY 33jauy, sIKa CTOCYETHCS aJalTHBHOL
cTabimizailil MOJOKEHHsI PIBHOBArk TIEBHOTO KJIacy JIIHIHHUX 0araTOBUMIPHHUX JTUCKPETHUX CHC-
TeM 0e3 maM'sATi 3 NPAMOKYTHHMH MaTpuLsIMU KoedillieHTiB mincuneHHs. Llei kmac Bkimouae
06araTOBUMIpHI CHUCTEMH, y SKHUX KUIBKICTh BHXO[IB IEPEBHUIIYE KiJbKICTh BXOJIB KEpPyBaHHS.
BeeneHo npurnyIieHHs, 110 HeBiIOMi MaTpUIl Koe(illieHTiB MiJCUICHHS MalOTh IOBHUM PaHT.

Memoio 1aHOTO NOCIiMKEHHS € BIIIOBiAb Ha MUTaHHS PO T€, YU MOXHA pealizyBaTH
aZlanTHBHUN TIJIXi Ha OCHOBI ITICEBIOOOEPHEHOT MOAETi Ui KEepyBaHHS HEBH3HAUCHOIO
6araToMipHOIO CHCTEMOIO 0e3 IaM'sITi, B SIKil KiNbKICTb BXOMIB KEPYBAHHS € MEHIIA 32 KiJlb-
KICTh BUXIJTHUX 3MIHHUX.

Pesynvmamu. TlokazaHo, O OI[IHKY MapaMeTpiB, sIKi (OPMYIOTBCS CTaHAAPTHO ajia-
NTHBHOIO PEKYPEHTHOIO MPOLEIYPOI0 MPOEKIIHOrO THITY, 3aBXKAN 30IraroThCs A0 ACSIKHUX
CKIHYEHHUX 3HAY€Hb 3a OY/Ab-SKHX IMOYATKOBUX OI[IHOK MapameTpiB cuctemu. JloBeaeHo, 1m0
aJIalITUBHUI 3aKOH KepyBaHHS HA OCHOBI IICEBIOOOEPHEHOT MOJIENi JO3BOJISIE JOCITTH MOJIO-
JKEHHs piBHOBAard CHCTEMH, sIKa IiJUIArae KepyBaHHIO. ACUMIITOTHYHI BIACTUBOCTI CHCTEMHU
KepyBaHHS 3 aJalTHBHIM 3BOPOTHUM 3B'SI3KOM, BCTAHOBJICHI TEOPETHYHO, MiATBEPIKYIOThCS
MOJICTIBHIM €KCIIEPUMEHTOM.

Bucnoexu. BcraHOBICHO, O IpaHUYHA MOBENiHKA 3aMKHEHOI CHCTEMH KEpPYBaHHS 3
BUKOPUCTAHHSAM aJalTUBHOI KOHIENNIi, OCHOBAaHOI Ha IICEBIO00EPHEHHI, € 3a/I0BITBHOIO.

Knrwuogi cnosa: anantusHe KepyBaHHS, 0araTOBUMIipHA CHCTEMa, TUCKPETHHI Yac, 3BOPOT-
HHI 3B'A30K, ICEBIOOOCPHEHHS, CTIHKICTh, HEBU3HAYCHICTb.
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AJTATITUBHA S CTABUIIN3ALNA HEKOTOPBIX
MHOTI'OMEPHBIX CUCTEM C ITIPAMOYT'OJIbHBIMU MATPUITAMU
KOOOPUMIIMEHTOB YCHUJIEHMA TTOJIHOI'O PAHT'A

Beedenue. B Hacrosled cTaThe CTABUTCA U PEILAETCs OJHA HOBas 3a/ada, Kacarolascs
aJanTUBHOM CTaOMIM3allMM IIOJNIOKEHUS] PABHOBECHS OIPEAENEHHOIo Kiacca JIMHEHHBIX
MHOTOMEPHBIX JUCKPETHBIX CHCTEM 0e3 MaMATH C IPSMOYTOJIbHBIMH MaTPHIIAMHU K03 duIm-
€HTOB YCHJIEHHS. DTOT KJIacC BKIIIOUYaeT MHOTOMEPHBIE CUCTEMBI, Y KOTOPBIX YHCIIO BBIXOJIOB
IPEBBILAET YHCIO YIPaBIAIOMUX BX0#oB. lIpenmnonaraercsi, 4TO HEU3BECTHbIE MATPHIIbI
K03()(PUIIMECHTOB YCUIICHUSI UIMEIOT MOJIHBIN PaHT.

IJenv 310l CTaTPX — OTBETUTH HA BOIIPOC, MOXKHO JIM PEAIM30BaTh aalTUBHBINA IIOAXOM Ha
OCHOBE IICEBII000PaTHOM MOZEHN Il YHPaBICHUs HEOIPEIETIeHHON MHOTOMEPHON cHCTeMOH 0e3
[IaMATH, B KOTOPOH YKCIIO YIPABILIOLINX BXOJOB MEHBILIE YHCHIA BEIXOIHBIX IEPEMEHHBIX.

Pesynvmamur. IlokazaHo, 4TO OLEHKH I1apaMETPOB, T€HEpPUPYEMBblE CTaHAAPTHOM ajar-
TUBHOM pPEKYPPEHTHOH MNpOLEAYpOH NPOEKIMOHHOIO THUIIA, BCErAa CXOIATCS K HEKOTOPBIM
KOHEYHBIM 3HAUEHUsM UL TIOOBIX HayalbHBIX OLEHOK IapaMeTpoB CHUCTEeMBI. JIOKa3aHO, 4To
a/IalITHBHBIH TICEeBIOOOPATHBII 3aKOH YIIPABICHUS IIO3BOJISIET JOCTUYD [OJIOKEHHST PABHOBECHS
YIPaBJIIEMOH CHCTEMbL. ACHMITOTUYECKUE CBOWCTBA aJANTUBHOM CUCTEMBI YIIPABJICHUS C
00paTHOM CBA3BIO, IOITYYEHHbIE TEOPETHIECKH, IOATBEPAKIACHBI MOJIEIBHBIM SKCTIEPHMEHTOM.

Bb1600b1. Y cTaHOBIIEHO, UTO NPEAEIBHOE IIOBEICHUE 3AMKHYTOI CUCTEMBI yIPaBIICHNUS,
IIOCTPOECHHOH Ha OCHOBE aJalITUBHOI'O [ICEBIO0OPAICHUS, SIBISCTCS YOBIETBOPUTEIBHBIM.

Knwueegvie cnoea. anantueHOE yIpaBieHHE, MHOTOMEpHAs CHUCTEMa, JIMCKPETHOE BpeMs,
oOparHast CBsI3b, IICEBI000pAIeHHE, YCTOHUYNBOCTE, HEOTIPEACICHHOCTb.
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