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HIGHER ORDER NUMERICAL METHOD 

FOR AEROELASTIC PROBLEMS  

Запропоновано метод чисельного моделювання течії в'язкого 

стисливого газу через решітку коливних лопаток. Метод 

призначений для інтегрування нестаціонарних двовимірних 

рівнянь Нав'є-Стокса, усереднених за Рейнольсом, які 

доповнюються рівнянням моделювання турбулентності. Метод 

має локально третій порядок апроксимації по просторових 

координатах та часу. З використанням методу проведено 

чисельний аналіз аеропружних характеристик решітки 

турбінних профілів 4-ї стандартної конфігурації в 

трансзвуковому потоці. Здійснено зіставлення отриманих 

результатів з даними чисельного моделювання з використанням 
методів другого і першого порядку апроксимації, а також з 

даними експерименту. 

Ключові слова: чисельне моделювання 

течії, аеропружність в турбомашинах, 

нестаціонарна течія, нестаціонарні 

навантаження. 

Introduction 

The solution of the aeroelasticity problem involves solving the unsteady aerodynamic problem, 
which consumes a significant amount of computing resources. The accuracy and detail of the solution to the 

problem affect the accuracy of determining the conditions for the possible onset of uncontrolled oscillations. 

A lot of papers are devoted to improving the methods for solving the aerodynamic problem. The 

most popular method of simplification is the solution to the stationary problem of modeling flow followed by 
a solution to one-dimensional piston motion problem for determining unsteady loads on a blade surface [1]. 

Further, according to the degree of simplification, there follows the method of harmonic balance [2], which 

involves solving the aerodynamic problem in a frequency domain followed by a solution of the system of 
linear equations for determining the conditions for the possible onset of oscillations. In some cases, the solu-

tion of the Euler equations of fluid motion [3] or the time-linearized Navier-Stokes equations [4] are consid-

ered admissible simplifications. Comparing the results of different approaches to solving the aerodynamic 

problem [5], one can see that the most accurate and detailed data are obtained by solving the unsteady Na-
vier-Stokes equations. Such an approach is rather widely used for solving the problems of aeroelasticity in 

turbomachines [6], including the use of implicit schemes [7]. The accuracy of the solution obtained depends 

mainly on the order of approximation of the basic equations. An increased accuracy of the simulation is nec-
essary for complex flows in which shocks waves are present, i.e. in trans- and supersonic flows. This work 

presents the results of transonic flow simulation in the cascade of oscillating turbine profiles using methods 

of different accuracy, and a quantitative evaluation of the correspondence of the results depending on the 
order of approximation. 

Numerical method 

The numerical method is based on the approved explicit modified numerical scheme of Godunov-

Kolgan [6], which has a second order of approximation for spatial variables. The scheme integrates two-
dimensional, Reynolds-averaged Navier-Stokes equations:  
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Here U is the vector of conservative variables, F and G are the fluxes of conservative variables in x 

and y coordinates, respectively. Equations (1) are complemented by equations of the Wilcox turbulence 

model k- [8]: 

k
x

k
kv

x
k

t i

Tki

i














 *))(()(  

 2))(()( 


















kx
v

xt i

Ti

i

 (2) 




k
T , ij

T
ijS . 

Equations (1) and (2) are integrated according to the modified explicit Godunov scheme [6], which 

is well approved in the calculation of various types of compressible fluid flows [9]. The scheme is designed 
for the use of arbitrary non-structural grids. In this paper, we used a moving O-grid of quadrilateral cells. 

For integrating the initial equations, the following schemes for approximating the unknown variables 

were used: 

 the original Godunov scheme of a first-order approximation, in which the variables take constant 

values within one cell: ii uu  5.0  (here ui±0.5 – values on the cell faces, ui – values in the cell cen-

ters); 

 схема the Godunov-Kolgan scheme having a locally second-order approximation of the equa-

tions, the variables being represented as a linear function within the cell:  
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the variable); 

 the ENO decomposition, proposed in [10], which has a second order approximation of the equa-

tions and uses the second derivative of the variable:  
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 the ENO decomposition, which has a locally third order approximation of the equations (here the 
indices i and j denote the corresponding values in the centre of the cell, the indices i±0.5 and 

j±0.5 denote the values on the cell faces):  
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To achieve a third-order approximation in integrating a quadratic representation of variables on the 

cell faces is used, for which the values of the variables are determined at two points having coordinates:  
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where ξ takes the values in the range [0,1] within one cell face. 

Integration of equations (1, 2) in the time domain is carried out using the third order Runge-Kutta 

scheme: 
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Object of study 

A cascade of turbine profiles was chosen as a study object, which was examined at the École Poly-
technique Fédérale de Lausanne [11]. The cascade is better known as '4th standard configuration'. The cas-

cade was flowed by air with the following parameters: total pressure p0 = 205.8 kPa, outlet pressure 

p2 = 98.4 kPa, flow stagnation temperature T0 = 300 K, incidence angle β = –45°. The chosen mode is char-
acterized by the Mach number M2 = 1.2 and presence of a complex shock wave pattern both on the blade 

suction side and in the inter-blade passage. The blades performed bending vibrations with an amplitude 

0.0038 of the chord and a frequency of 150 Hz. The phase difference between the blades was 0 and 

180 degrees. Fig. 1 shows the appearance of the cascade, Fig. 2 shows the Schlieren picture of the flow in the 
cascade for the M2 = 1.2 mode, on which the position and intensity of the shock waves is clearly visible. 

The flow simulation was performed during the 1.5 period of the profile oscillations. The initial con-

ditions were the results of a steady flow simulation in the cascade. The calculation was carried out for two 

values of the phase shift of the oscillations between the blades: σ = 0° and σ = 180°. 

 

Fig. 1. Turbine blade cascade of the 4th standard configuration: 

c – chord length; M1 – inlet velocity; M2 – outlet velocity; β1 – inlet flow 

angle; β2 – outlet flow angle; γ – chordal stagger angle; δ – bending vibration 

direction; τ – dimensionless blade pitch 
 

 

Fig. 2. Schlieren picture of the 

flow in the turbine blade cascade  
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Results and discussion 

Fig. 3 shows the distribu-
tion of the average pressure over 

the profile surface (hereinafter, 

the values of x/c in the range of 
0−1 correspond to the profile suc-

tion side, the values in the range 

of 1 − 2 – to the pressure side). 

The graph clearly shows the pres-
ence of a shock wave on the suc-

tion side in region x/c = 0.7. 

Hereinafter, the results for differ-
ent approximation schemes are 

marked by the following sym-

bols: 'Godunov' – for the Godu-

nov scheme of a first order, 'G-K' 
– for the Godunov-Kolgan 

scheme of a locally second order, 

'ENO 2' for a second order ENO 
scheme, 'ENO 3' – for a third order ENO scheme, squares – the results of the experiment from [11].  

When analyzing Fig. 3 in detail, one can see that a first and second order schemes predict the posi-

tion of a shock wave at the same point with the difference in intensity, while a third-order scheme shifts the 
position of the wave upstream. All the schemes do not show the presence of a reflected wave from the trail-

ing edge of the adjacent profile, which is to be at position x/c = 0.5. Fig. 4 shows the contour lines of the 

pressure in the inter-blade passage, which can clarify the shock wave distribution pattern. 

    

a) b) c) d) 

Fig. 4. Contour lines of the pressure in the inter-blade passage: 

a — 'Godunov'; b —  'G-K'; c — 'ENO 2'; d — 'ENO 3' 

 

Fig. 3. Distribution of the time-averaged pressure along the profile surface 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3'; ■ – experiment 
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Instead of the shock wave distribution pattern shown in Fig. 2, only two shock waves are observed 

— on the pressure side in the trailing edge region, and on the suction side — in region x/c = 0.7, which are 
scattered toward the middle of the inter-blade passage. The pictures in Fig. 4 show an increase in the intensi-

ty of shock waves as the scheme order increases, the position of the waves with increasing order shifts up-

stream too. Further, unsteady results for the inter-blade phase shift σ = 0° are presented in the form of a first 

harmonic amplitude of the unsteady pressure distribution along the profile
chpp
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(Fig. 5). Here )(),( 11 xCxC ba  is the distribution of the first coefficients of the Fourier expansion for the un-

steady pressure.  

 

Fig. 5. Distribution of the unsteady pressure coefficient along the profile, σ = 0° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3' 

A thorough analysis of the results presented shows that the maxima of values in region x/c = 0.7 cor-
respond to the position of the shock wave for each variant. Fig. 6 also shows the distribution of the phase 

shift between the unsteady pressure first harmonic and the profile oscillation
)(
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Fig. 6. Distribution of the unsteady pressure phase shift along the  profile, σ = 0° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3' 
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The form of the pressure oscillation phase distribution along the profile is preserved for all the calcula-

tion variants. A more significant indicator for aeroelastic characteristics is the work distribution of the aerody-

namic forces  
2
0

2
10

1

)(

)(

hcpp
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wn
 (here w is the velocity of a point movement along the profile, n is the 

normal to the profile surface) along the profile surface, which is shown in Fig. 7.  

 

Fig. 7. Distribution of the forces of the aerodynamic work along the profile, σ = 0° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3' 

The graph in Fig. 7 allows us to see that the maxima of values in region x/c = 0.7 correspond to the 
shock wave position for each calculation variant, however, in region x/c = 0.5, work for the first and the third 

order scheme differs in sign, while for the second order scheme it is close to zero. 

Further, in Fig. 8 the unsteady results for the inter-blade phase shift σ = 180° are shown in the form 
of the first harmonic amplitude distribution of the unsteady pressure along the profile. For this mode of oper-

ation, there exist experimental data, which are represented in the graphs by squares. 

 

Fig. 8. Distribution  of the unsteady  pressure coefficient  along the profile, σ = 180° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3'; ■ – experiment 

An analysis of the results presented shows that the maxima of the values in region x/c = 0.7 corre-

spond to the shock wave position for each variant of calculation. At the same time, the values of calculations 

in region x/c = 0.5 do not correspond to the experiment in which a reflected shock wave was detected in this 
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region. The values in region x/c = 0 − 0.3 agree well enough with the experimental data. Fig. 9 also shows 

the distribution of phase shift between the unsteady pressure of the first harmonic and the profile oscillation.  

 

Fig. 9. Distribution of unsteady pressure phase shift along  profile, σ = 180°° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3'; ■ – experiment 

On the suction side, the calculated data are in good agreement with the experimental ones, even in 

region x/c = 0.5, which has no shock wave in the calculation. The phase value in region x/c = 0.5 takes nega-
tive values, which corresponds to the positive work of the aerodynamic forces, whereas in the region of 

shock wave x/c = 0.7 it passes through 180° and takes positive values, working on damping oscillations. 

Thus, there are two regions whose influences compensate each other. Fig. 10 shows the distribution of the 

work of the aerodynamic forces for the variant of calculation σ = 180°. 

 

Fig. 10. Distribution of the work of the aerodynamic forces along the profile, σ = 180° 

—— – 'Godunov'; ∙∙∙∙∙∙∙ – 'G-K'; —— – 'ENO 2'; ∙∙∙∙∙∙∙ – 'ENO 3'; ■ – experiment 

In Fig. 10 one can observe a satisfactory agreement of the data in the range of x/c = 0−0.3, and the 

difference in the maxima positions related to the position of the shock wave. Also, one can observe a signifi-
cant difference in the data of the first-order scheme, which take predominantly negative values. 

The accuracy of the above-mentioned results is considerably dependent on the order of numerical 

scheme approximation. When unsteady processes are simulated, this difference can affect the character of the 
aeroelastic behavior of the blade cascade, predicting excitation instead of the possible damping and vice ver-

sa. Also of great importance in applying higher order methods is the use of grids adapted to the characteristic 
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features of the flow. The absence of grid thickening both in the region of the first shock wave and in the in-

ter-blade passage has led to the wave dissipation and significant distortion of the numerical results, regard-
less of the scheme order. 

Conclusions 

An algorithm for numerical simulation of gas flow through a cascade of oscillating profiles with an 
increased approximation order is presented. The algorithm is designed to solve the aeroelasticity problems in 

the turbomachine cascades. A numerical analysis of transonic flow through the cascade of turbine profiles is 

carried out. It is shown that the numerical simulation of complex transonic flows requires the application of 

methods with increased accuracy. These methods make it possible to improve the resolution of any scheme. 
Unsteady characteristics of complex transonic flows also depend significantly on the approximation order of 

variables. An insufficient order of approximation can sometimes lead to a significant distortion of the results, 

right up to the sign change in the work of the aerodynamic forces. Along with the application of higher order 
schemes, it is necessary to use adaptive computational grids, which take into account the flow features and 

do not introduce additional errors to the region of large gradients of values. 
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