

УЛК 621.313.322

БОНДАРЕНКО Ю.Н., ген. директор, **КУЗЬМИН В.В.**, докт. техн. наук, проф., **ШПАТЕНКО Т.В.,** канд. техн. наук, **БОНДАРЕНКО Я.Ю., ШПАТЕНКО В.С.,** инженеры, Консорциум "НПО "Укргидроэнергострой",

ЦЕЛИ И МЕТОДЫ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГИДРОГЕНЕРАТОРОВ, ОТРАБОТАВШИХ РАСЧЕТНЫЙ РЕСУРС

Статья посвящена изложению современных подходов к организации обследования и оценке технического состояния гидрогенераторов, работающих за пределами расчетного срока службы.

ведение. Если в последние годы (вторая половина XX века) стратегической задачей энергетики экономически развитых стран было наращивание установленных мощностей электростанций, то в последние десятилетия на первое место вышла проблема всемерной экономии топливных и финансовых ресурсов.

Здесь центральной задачей является повышение технико-экономических показателей (мощность, надежность) и значительное продление срока службы основного оборудования.

В принципе, в мировой практике наметились общие пути оптимальных решений этой задачи для всех видов крупных электрических машин — турбогенераторов, гидрогенераторов и трансформаторов. Острота возникновения проблем наиболее значительна в области турбогенераторов, имеющих наивысший уровень использования активных и конструктивных материалов.

Как показывает накопленный опыт, во всех крупных электрических машинах действуют сходные физические процессы преобразования энергии, сопровождающиеся целым рядом силовых эффектов; оказывающих радикальное влияние на их работоспособность, вследствие этого и комплексы организационных мероприятий по решению рассматриваемой проблемы тождественны.

По изложенным причинам далее будут рассмотрены пути ее решения, применяемые в мировой практике, в основном, для крупных электрических машин.

Настоящая статья содержит тезисный обзор и анализ основных идей, изложенных в приложениях.

1. Обзор тенденций по выбору альтернатив в решении проблемы.

1.1. Исторические аспекты.

До 90-х годов прошлого века продление ресурса крупных электрических машин даже в вы-

сокоразвитых странах осуществлялось, в основном, путем замены [1]. В последние годы по ряду причин, которые рассмотрены ниже преимущество в решении проблем переходит на сторону "реабилитации", т. е. модернизации действующего оборудования с улучшением его технико-экономических показателей.

Одними из первых изложению этой проблемы были посвящены доклады на СИГРЭ-1990 [2], и ценные соображения изложены также в докладе сессии СИГРЭ 1992 г. [3].

Характерно, что современные приоритеты исследований в комитетах А1 ("Вращающиеся электрические машины") и А2 (Трансформаторы) [4] также имеют аналогичную направленность.

В основе выбора альтернативы лежит ряд объективных факторов научно-технического, коммерческого и экономического характера.

1.2. Научно-технические факторы.

Во-первых, это результат объективной оценки текущего технического состояния электрических машин и вытекающий из этого объем "лечебно-оздоровительных" (планово-предупредительных) мероприятий.

Во-вторых, наличие арсенала апробированных инноваций, внедрение которых позволит достичь целей реабилитации.

В-третьих, достаточность таких инноваций для повышения активной мощности. Обычно такое повышение на 10-15 % не вызывает проблем. Если требуется больше — без замены не обойтись.

1.3 Бизнес-коммерческие факторы

Как и в других отраслях промышленности в электроэнергетике сохраняется конфликт бизнес-коммерческих интересов: изготовителю выгоднее замена, потребителям — реабилитация.

Оптимальное решение видится только путем привлечения конкурирующих производителей к работам по продлению срока службы действую-

щего оборудования на основе грамотно сформированных тендерных требований.

1.4. Экономическая сторона выбора альтернативы.

Накопленный к настоящему времени опыт реабилитации турбогенераторов мощностью 200—300 МВт серии ТГВ [1, 5], а также гидрогенераторов ГЭС Украины показывают, что затраты на реабилитацию удовлетворительно спроектированных и изготовленных электрических машин не превышает 20 % от стоимости замены на новые. Кроме того сокращаются сроки проведения работ, а также достигается существенная экономия электроэнергии на их выполнение.

2. Цели реабилитации.

Задачами реабилитации являются внедрение инноваций путем модернизации и оснащения средствами контроля и диагностики в целях:

- повышения надежности до уровня норм, установленных для вновь вводимых машин,
 - продление срока службы на 20-25 лет,
- повышение нагрузочной способности роста активной мощности, Расширение диапазона допустимых нагрузок.

3. Пути достижения цели реабилитации.

Процедура реабилитации согласно мировой практике включает в себя комплекс работ по:

- обследованию фактического состояния и оценке остаточного ресурса,
 - выполнению работ по восстановлению рабо-

ЭЛЕКТРОМЕХАНИКА Обследование гидрогенератора

Обследование проведено	Электростанция				
Фамилия	Блок № Страна				
Поверенный в делах клиента	Клиент				
Фамилия	Фамилия				
Фирма	Фирма				
Адрес	Адрес				
Телефон	Телефон				
Факс	Факс				

Общая информация		Вертикаль- ный	Горизон- тальный	№ гене- ратора	Дата ввода в эксплуата- цию	Нара- ботка в часах	Активная мощность, МВТ	Реактивная мощность, МВАр
Тип	Генератор- двигатель	Капсуль- ный	Компен- сатор	G1				
Изготовитель генератора			G2					
Изготовитель турбины			G3					
Изготовитель системы возбуждения/ /регулирования			G4					
Мощность, МВТ								
Частота вращения, мин ¹								
Коэффициент мощности (созф), о.е.								
Напряжение, кВ								

Общее заключение экспертизы:

Рис. 1. Титульный лист Формуляр— программы обследования технического состояния гидрогенератора фирмы "Альстом"

тоспособности и повышению надежности в требуемом диапазоне нагрузочных режимов,

- оснащению генератора современными средствами контроля, диагностики и мониторинга.

Определяющими компонентами и узлами турбогенератора, ограничивающими срок службы и режимные возможности, принято считать

- сердечник статора,
- обмотку статора,
- бандажи и обмотку ротора,
- систему вентиляции (охлаждения),
- системы возбуждения, защиты и др.

Они и служат объектами внедрения инноваций в процессе реабилитации.

4. Методы обследования и оценки.

4.1. Техническое состояние. В соответствии с общемировыми тенденциями (по причинам борьбы с монополизмом и коррупцией) обследование состояния гидрогенератора (и других видов крупного электросилового оборудования) должны проводить специализированные научно-технические компании за исключением тех, кто причастен к изготовлению этого оборудования.

Обследование фактического состояния "состарившегося" оборудования является весьма важным начальным этапом в процедуре реабилитации этого оборудования. Именно на основе такого обследования принимается решение об объеме работ по реабилитации.

Процедура обследования включает в себя:

- сбор информации о текущем состоянии и истории эксплуатации оборудования,
- оценку технического состояния его узлов и вспомогательных систем,
- выдачу экспертного заключения о фактическом состоянии и рекомендаций по оптимальному объему модернизации.

Как и в медицине, процедура диагностики состояния больного или стареющего организма актуализируется в виде диагноза и назначения курса лечебных процедур, так и в энергетической электротехнике — поиск оптимального решения проблемы реабилитации требует высокого уровня профессионализма персонала фирм, проводящих обследование.

В этой связи как процедура (программа обследования), так и методы оценки фактического состояния с вытекающими отсюда предложениями по объему реабилитации являются предметом "ноу—хау" этих фирм.

Ниже приводится краткий обзор содержания такого рода документов, полученных нами как по официальным каналам, так и неофициальным (в процессе контактов с ведущими западными фирмами).

4.2. Типичный формуляр—программа организации обследования состояния гидрогенератора. [Рис. 1] получен нами в процессе научно—технического сотрудничества с концерном "Альстом" (Бельфор, Франция).

На основе принятого в мировой практике документа может быть сформулирован аналогичный документ не только для гидрогенераторов, но также и другого крупного силового оборудования электростанций и подстанций (турбогенераторов, трансформаторов, крупных электродвигателей и т. д.).

При этом полезно учесть следующие важные организационно—целевые моменты этого документа.

В формуляре кроме параметров обследуемого гидрогенератора приводятся данные машин того же типа, эксплуатируемых на обследуемой ГЭС, а так же заключение экспертизы и весьма важные данные из "истории болезни" обследуемой машины, в том числе:

- перечень важных этапов жизненного цикла (инциденты, важные работы, модернизации....),
- сведения по учету важнейших деталей, которые были установлены взамен стоявших раньше,
- данные о случаях и мотивации принятия решений по реабилитации (модернизации).

В формуляре так же приведены тезисы содержания раздела, посвященного сбору данных по параметрам и конструкции обследуемого гидрогенератора ("чужой" фирмы).

По сведениям, полученным от польского филиала "Альстом" в большинстве случаев реабилитации "старых" машин невозможно получить полный объем такой информации от руководства ГЭС — приходится эскизировать узлы и детали в процессе осмотров (разборки).

4.3. Методы обследования. По теме обследования состояния турбо- и гидрогенераторов в откры-

той печати, в основном, приводятся сведения о методах и аппаратуре для определения режимных и конструктивных параметров [6].

4.4. Оценка технического состояния. Единственный ценный материал по методологии оценки текущего состояния узлов гидрогенератора содержится в докладе [7].

Для заключительного этапа выдачи экспертного заключения о состоянии гидрогенератора и формулировании предложений по объему реабилитации единственно стоящей рекомендацией, повторяющейся в ряде публикаций, является то, что предлагать к внедрению можно только те, которые в достаточной степени проверены на практике.

В Табл. 1—3 приведены данные для оценки технического состояния из [7] (перевод с англий-

Таблица 1.

	ТАБЛИЦА	оценки с	СОСТО	яни	Я ГИДРОГЕНЕРАТОРА				
ЭЛЕ	КТРОСТАНЦИЯ:	ГЕНЕРАТОР №	ГЕНЕРАТОР №						
Изго	товитель:	Дата изготовления:	Дата изготовления:						
Моц	цность: МВА	НАПРЯЖЕНИЕ:	кВ						
Числ	ю полюсов:	Мощность:	Мощность:						
ОКС	НЧАНИЕ РАБОТЫ				Дата:				
		ОХЛА	ждени	IE C	АТОРА				
1	Проект и изгот	говление		2	ИСТОРИЯ				
1.1	Тип изоляции			2.1	Номер и вид дефектов катушек				
	-«Ъ-стадия» слюды эпокс	оды эпоксидной смолы			- не было	0			
	-эпоксид слюдинит		1		- в соединительной шине (# x 2)	' I			
	-полиэстер - миканит		2		- вне паза (# x 4) - посторонний объект (# x 5)				
	-компаундированный мик	анит	3						
	-микафолий		4		- в пазу «на землю» (# x 6)				
	-кембрик		5		в пазу между фазами (# x 10)				
1.2	Тип обмотки								
	- один стержень Robel (Ро	н стержень Robel (Робель)			Дефекты за прошлые 5 лет				
	- многовитковая (катушка))	5		-не было	0			
					- да (# x 5)				
1.3	.3 Число витков/катушек				- на параллельную ветвь +(# x 5)				
	- 1 виток (Robel)		1		среднее 7 x S				
	-2 витка	2	2.3	Дефекты на подобных енераторах					
			3		- не было 0				
	- 4 витка		4		- есть (agv # x 5)				
	- 5 витков		5						
			2.4	«Возраст» обмотки					
1.4	Номинальное линейное на	апряжение			< 10 лет	0			
	- 2 до 2,4 кВ		0		- 10 до 20 лет	1			
	- 4 до 4,4 кВ		1		- 20 до 30 лет	3			
	- 6,6 до 6,9 кВ		2		- 30 до 40 лет	7			
	- 11 до 12 кВ		3		- 40 до 50 лет	10			
	- 13,8 кВ		4		- 50 до 60 лет	13			
	> 13,8 kB		5		- 60 до 70 лет	16			
					- >70 лет	20			
1.5	Система пожаротушения	Эпоксид- ная смола	Битум						
	- Автоматическая	0	0						
	- Ручная	1	2						
	- только на сигнал 2		4						
	- Никакой 3		6						
Про	межуточный итог: 1				2				
	Примечание: 1 - Если ответ неиз максимально указанны		ишите са	амый	вероятный ответ или 25 % из				
	2- Смотри объясне			лицы					
	3 - # представляет	номер генера	атора						

ского).

Приложение.

Предпочтительные темы докладов Сессии СИГРЭ—2010 г. Исследовательские Комитеты

- А1. Вращающиеся электрические машины
- 1. Новые разработки электрических машин и опыт их эксплуатации.
- современные конструкции и материалы, изоляция, охлаждение, применение подшипников, повышение эффективности и улучшение технического обслуживания;
- влияние пуска и останова на разработки гидравлических и тепловых машин;
- оптимизация систем регулирования возбуждения в условиях электромеханических колебаний, сброса нагрузки, повышенного магнитного потока, регулирования напряжения и реактивной мощности.

Таблица 2.

ОХЛАЖДЕНИЕ CTATOPA (ctd) ВИЗУАЛЬНАЯ ИНСПЕКЦИЯ ИСПЫТАНИЯ Присутствие пыли Мегомметр (сопротивление) - менее 500 МОм на фазу отсутствует -менее 1 мм -100 до 500 2 -50 до 100 -1 до 5 мм 4 -более 5 м - 30 до 50 - менее 30 15 3.2 Радиальное крепление Би-Эпок катушек (в хорошем состоянии, %) 60 до 80 % 4.2 Коэффициент абсорбции более 80 % -4 до 7 50 до 60 % 4 -3 до 4 2 25 до 50 % -2 до 3 6 менее 25% 10 -1 до 2 клинья/ бандажи 10 -менее 1 15 3.3 Частичные разряды (белая Высоковольтная(е)стандарт пыль) выполнено 0 выполнено (частично) (# x5) -отсутствует - на лобовых частях (2 до 6) 20 - не выдержала - в пазу (3 до 9) - паз + лобовые части (5 до15) Результат защиты от короны - 2 до 5 кОм или не используется 3.4 Блокировки и бандажи - 5 до 10 - 10 до 20 - плотная - среднее значение 2 - 20 до 50 свободно (отсутствует) более 50 10 Потоки битума Превышение температуры под нагрузкой - не используется или отсут-Класс Р Класс В (старая) ствует - < 40° C -<35° C - малое 3.5 40 до 60 35 до 45° С - среднее 10 - 60 до 80 45 до 55 часто - 55 до 60 3.6 Состояние изоляции - 80 до 9 15 > 90 > 60 - твердая (цельная) трещины (5 до 10) разрушения (малые) разрушения (средние) 10 - разрушения (большие) 20 Промежуточный итог: 3

Примечания: 1 - Если нет ответа на вопрос, напишите самый вероятный ответ или 25 % максимальный вероятности

2- Посмотрите пояснения в пункте 9.3 таблицы

3 – N/ А не применяется

- 2. Управление сроком службы.
- модернизация и замена оборудования, повышение номинальных параметров, повышение КПД, экономическая оценка предлагаемых альтернативных вариантов;

Методы анализа рисков для оценки затрат, связанных с ростом объема технического обслуживания и ремонта электрических машин и вероятности отказа из-за ограничения капитальных вложений;

- использование мониторинга и диагностики в режиме реального времени с целью снижения рисков; связанные с этим затраты и выгоды;
- ввод в эксплуатацию вращающихся машин и аттестация их поставщиками.
 - А2. Трансформаторы.
 - 1. Аварийность трансформаторов.
 - предупреждение пожаров: новые виды масел, новые вводы, предотвращение разрывов бака, эффективность действующих стандартов испытаний (для оборудования и материалов), уменьшение воздействия подземных подстанций на окружающую среду, расчетные коэффициенты и методы оптимизации;
 - противопожарные меры: использование жидкостей с высокой температурой воспламенения, ограничение разлива масла, применение брандмауэров, спринклеров; оценка рисков; трехмерное пространственное моделирование внутренних чрезвычайно высоких давлений;
 - 2. Срок службы трансформаторов.
 - технические и экономические факторы для определения исходных данных проектирования, опыт применения документа СИГРЭ ТВ 156;
 - процесс закупки: обзор предложений, опыт использования документа СИГРЭ ТВ 204, расчет затрат на весь срок службы трансформаторов, факторы надежности, которые необходимо учитывать при выборе трансформатора;
 - техническое обслуживание: опыт, диагностика, новые методы, оценка срока службы, применение мониторинга в режиме реального времени и экспертных систем, реинвестирование.
 - 3. Моделирование трансформаторов.
 - переходные процессы: высокоча-

Таблица 3.

	КРАТ	кая су	VMM.	APH.	АЯ ОЦЕНКА				
Α	ОХЛАЖДЕНИЕ СТАТОРА				Проектирование и изготовление				
				2	История				
				3	Визуальный осмотр				
				4	Испытания				
				,	от 1 до 4				
В	АКТИВНАЯ ЗОНА (сердечник) СТАТОРА			5	Проектирование и изготовление				
					История				
				7	Визуальный осмотр				
				8	Испытания				
				-	от 5 до 8				
С	POTOP			9	Проектирование и изготовление				
_				10	История				
				11	Визуальный осмотр				
				12					
				12	Проверки или испытания				
D	MEN'S THREE CRITE OF TEX	ATTITUTE I		1.2	от 9 до 12				
В	МЕХАНИЧЕСКИЕ ЭЛЕМ	тенты		13					
				14	10 11				
_					от 13 до 14				
Е	ВНЕШНИЕ ФАКТОРЫ			15					
_	HTOEO (1.0					
F	ИТОГО (по генератору)			16	от А до Е				
	ОЦЕНКА ИЗМЕНЕНИЙ	І Сумма	a		ОЦЕНКА СОСТОЯНИЯ				
	состояний	Cymm			оценка состояния				
	А и В (каждый)	< 35			ОТЛИЧНОЕ				
		35 до 60			ХОРОШЕЕ				
		60 до 85			ПОСРЕДСТВЕННОЕ (необходима	а ревизия			
		более 85			статора)				
					ПЛОХОЕ (необходим повышенный контрои/или техническое обслуживание)				
С	DOTOD	nomon 5			ОТЛИЧНОЕ				
C	POTOP	более 30 30 до 55			ХОРОШЕЕ				
					ПОСРЕДСТВЕННОЕ (необходим усиленны				
		55 до 80			контроль и/или техническое обслуживание)				
		более 80			ПЛОХОЕ (необходима ревизия ре ремонт)	этора, кап.			
D	МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ	более 5			ОТЛИЧНОЕ				
		5 до 15			ХОРОШЕЕ				
		15 до 40			ПОСРЕДСТВЕННОЕ (необходим усиленный контроль и/или техническое обслуживание)				
		более 40			ПЛОХОЕ (ревизия механических эл кап. ремонт)				
Е	ВНЕШНИЕ ФАКТОРЫ	50=== 2	10		ОТЛИЧНОЕ				
E	внешпие ФАКТОРЫ	более 20							
		20 до 40 40 до 60			ХОРОШЕЕ				
		40 до 6 более 6			ПОСРЕДСТВЕННОЕ ПЛОХОЕ				
		оолее б	олее 60		TINOAUE				
F	ИТОГО (по генератору)	более 8			ОТЛИЧНОЕ				
		85 до 1			ХОРОШЕЕ				
		165 до	275		ПОСРЕДСТВЕННОЕ (необходим усконтроль и/или техническое обслуж				
		Более 2	275		ПЛОХОЕ (необходим капитальный	ремонт)			

стотное моделирование с целью определения воздействий, вызванных системой (броски тока, феррорезонанс, коммутации), новые требования к испытаниям, меры защиты, сбор необходимых данных для моделирования;

- термическое состояние: распределение потерь, графики нагрузки, применение расчетной гидродинамики, параметры, влияющие на точность, сравнение с непосредственными измерениями температуры во время испытаний на нагрев и при эксплуатации, обоснованное повышение термических характеристик путем совершенствования методов моделирования.

ЛИТЕРАТУРА

- 1. *Кузьмин В.В., Лившиц А.Л., Шпатенко В.С.* Малозатратные и энергосберегающие технологии реабилитации турбогенераторов основа технического перевооружения энергетики Украины // Електромеханічні і енергозберігаючі системи, 2011.—№.2—С. 90—92.
- 2. M. Liese, R. Gern, W. Schier Методы продления срока эксплуатации и опыт продления реабилитации и повышении мощности турбогенератора в номинальном режиме // СИГРЕ, 1990.
- 3. J.M. Guillard, H. Koglek, P.H. Conceicao Life extension of large electric rotating plants // CIGRE, 1992.
- 4. *Приориметы* деятельности комитетов СИГРЭ А1 и А2 (Электра, 2010 №260) перевод в приложении 1.
- 5. Зозулин Ю.В., Лившиц А.Л., Кузьмин В.В. и др. Малозатратная модернизация турбогенератора ТГВ-300 // Гидроэнергетика Украины, 2010.—№.4—С. 14—19.
- 6. *Брошюра* № 386, СИГРЭ, Программы технического обслуживания, осмотров и испытаний генераторов (перевод с английского).
- 7. *R.G. Yelle* Руководство по оценке необходимости реабилитации гидрогенераторов

© Бондаренко Ю	.Н., Кузьми	н В.В.,	Шпатенко	T.B.,	Бондаренко	Я.Ю.,	Шпатенко	В.С.,	2013
		m							